
An Analysis of Reshuffled Handshaking Expansions

Rajit Manohar
Computer Systems Laboratory

Electrical and Computer Engineering
Cornell University

Ithaca, NY 14853, U.S.A.

Abstract

We present a method for reasoning about the synchro-
nization behavior of reshuffled handshaking expansions.
The technique introduced converts the handshaking expan-
sion into communicating hardware processes. We identify
and discuss some of the limitations of the method. We show
how the approach can be applied to analyze both the per-
formance and the correctness of handshaking expansions.

1. Introduction

Martin’s synthesis method for asynchronous circuit de-
sign begins with a sequential specification of a computa-
tion in the Communicating Hardware Process (CHP) nota-
tion. This specification is then transformed into a number of
CHP programs whose actions are synchronized by actions
on communication channels. The next step in the synthe-
sis procedure replaces all channel communication actions
with the appropriate handshake protocols. This handshak-
ing expansion is then reshuffled before being transformed
into a circuit. This reshuffling phase is one of the challeng-
ing phases of the synthesis method, and it can significantly
impact the efficiency of the final implementation.
In this paper, we present a method for analyzing reshuf-

fled handshaking expansions by converting them back to
CHP programs. This permits us to analyze the correct-
ness of reshuffled handshaking expansions at the CHP level,
thus simplifying the analysis. We introduce a new compo-
sition operator among synchronization actions as a result
of this analysis that differs from existing synchronization
constructs used in CHP. However, we show that one cannot
represent all handshaking expansions (HSE) in CHP, and
we discuss the limitations of our technique.
We apply our technique to various commonly used

reshuffled handshaking expansions, and show how the tech-
nique can be used for deadlock detection and timing analy-

sis. We show how this method can analyze the performance
of different reshuffled handshaking expansions in a simpler
manner, because the analysis is performed at the CHP level.
van der Goot created a formal semantics for CHP pro-

grams, handshaking expansions, and production rules [3].
In his semantics, CHP processes, handshaking expansions,
and production rules are represented using trees of traces.
Smith and Zwarico present a semantics for determinstic
asynchronous computations [11]. Several researchers have
presented approaches that attempt to directly determine
both the performance (cf. [2], [12]) and correctness (cf. [1])
of asynchronous circuit implementations. While these se-
mantics can be used to analyze the circuit implementations
(and in some cases the handshaking expansions) directly,
we believe our approach is more intuitive and simpler to
use when examining handshaking expansions because it de-
scribes the effect of reshuffling at the CHP level rather than
in terms of computation traces.

2. The Problem

CHP programs are translated into handshaking expan-
sions by replacing communication actions with handshake
protocols. (A description of the CHP notation can be found
in the appendix.) For simplicity, we consider dataless com-
munication channels. (An extension of this analysis to com-
munication actions with data can be found in [6].) Each
communication channel � is implemented using two wires
��� ,��� (An extension of this analysis to single wire hand-
shake protocols can be found in [6]), and a communication
action is translated into one of the following two protocols:

���� ����� ���� �����
����� ���� ������ ���

The first protocol is called an active four-phase protocol,
whereas the second is referred to as a passive four-phase
protocol. So, for instance, a simple buffer process ������
would be translated into the following HSE if � were pas-
sive and � were active:

�� ����� ���� ������ ���� ���� ����� ���� ����� �

At this point the relationship between the CHP program
������ and the HSE is clear since the HSE is obtained
from the CHP by syntactically replacing communication ac-
tions with handshake protocols. However, this handshaking
expansion need not lead to the most efficient circuit imple-
mentation (where the definition of efficient depends on the
design goals). Therefore, one might reshuffle the actions in
the handshaking expansion to overlap various parts of the
two handshake protocols in the interest of efficiency. The
reshuffling transformation changes the relative order of ac-
tions in the handshaking expansion while preserving the in-
dividual handshake protocols. For instance, consider the
following reshuffling:

	�
� � �� ����� ���� ���� ������ ���� ����� ���� ����� �

Since the components of the handshake protocol for the �
and � actions have been mixed, the relationship between
the CHP program ������ and this handshaking expansion
is no longer easy to determine. In the extreme case, we
could use the reshuffling

�� ���� ����� ���� ������ ����� ���� ������ ��� �

which would clearly not be a valid implementation of
������—it implements ������. The presence of multi-
ple actions as an implementation of a single synchronization
action makes the relation between reshuffled handshaking
expansions and CHP programs non-obvious.

Notation. In the rest of this paper, we use � and� to denote
synchronization actions. We use ��� � ��� and ��� � ��� to de-
note the variables used to implement the two synchroniza-
tion actions respectively. Unless otherwise stated, � will
be implemented using a passive four-phase protocol, and �
will use an active four-phase protocol.

3. Two Phase CHP

One of the difficulties in comparing the CHP to its
reshuffled handshaking expansion is that a four-phase hand-
shaking expansion comprises two synchronization actions.
Therefore, the first step in analyzing the relation between
CHP programs and reshuffled handshaking expansions is to
represent a four-phase communication action as two two-
phase communication actions. With this translation, we get

�� ��� �

� � �� ����� ������� �

�� ����������� �

where �� and �� represent the up-going and down-going
parts of the four-phase handshake respectively. For an ac-
tive four-phase protocol, we have:

�� � ���� ���� �� � ���� �����

and for a passive protocol we have:

�� � ����� ��� �� � ������ ���

Since �� and �� are both two-phase synchronization ac-
tions, we refer to the resulting CHP as two-phase CHP. Us-
ing this notation, the 	�
� process with � passive and �
active can be partially written in CHP:

	�
� � ������� ���� ���� ������ ���
� �� �

��

� ����� ���� �����
� �� �

��

�

� ������� ���� ������� ��������

We have replaced the fragments of the original computa-
tion that correspond to the up-going or down-going phase
of a four-phase synchronization action with the action itself.
The remaining actions are those that have been reshuffled
through other synchronization actions.
Consider the sequence ���� ���. Since ��� cannot be

blocked by the environment in any way, it would be se-
mantically equivalent to replace this fragment with ���� ���
because the two fragments have the same synchronization
behavior. With this observation, we can rewrite 	�
� as:

	�
� � ������� ���
� �� �

��

� ������� ��������

� �� ��� ������� ������� �

To analyze the rest of the handshaking expansion, we
make the following observation: we can determine the net
synchronization behavior of two reshuffled two-phase com-
munication actions by composing them with different envi-
ronments having known synchronization behavior. This can
be summarized as follows. Assume the two synchronization
actions are �� and��, and we are examining reshuffled ver-
sions of their handshaking expansions. Then the reshuffling
corresponds to:

	 ����� if it deadlocks with environment����� but not
with �����

	 ����� if it deadlocks with environment ����� but not
with �����

	 ��
�� if it does not deadlock with environments
����� or �����

	 ����� if it deadlocks with environments ����� and
�����

We use “�” to denote the last operator; it should not be
confused with the bullet operator introduced by Martin [8].
(The bullet operator composes two synchronization actions
so that their relative slack is zero.) Since the environment
corresponds to either ����� or�����, the handshaking ex-
pansion for the environment is always unreshuffled. Using

L Passive, R Passive
����� ���� ����� ��� � �����

��� � ���� ���� ��� � �����

����� ���� ����� ��� � �����

L Active, R Active
���� ����� ���� ���� � �����

���� ���� ��� � ��� � ��
��

���� ����� ���� ���� � �����

L Active, R Passive
���� ��� � ���� ��� � �����

���� ����� ���� ���� � ��
��

����� ���� ����� ��� � �����

����� ���� ���� ���� � �����

Table 1. Summary of all reshuffled two-phase communications.

this observation, we can determine the CHP for any two ad-
jacent synchronization actions. Table 1 contains all possible
reshufflings of two two-phase dataless communication ac-
tions with the corresponding CHP program fragments they
represent. Using this table, we can finally write the CHP
corresponding to 	�
� as follows:

	�
� � ����� ������� ����
� �� �

�����

����

� �� ��� ���
 ������ �

The only unfamiliar operator in Table 1 is “�”. This com-
position method is possible between an active and a passive
protocol, or between two passive protocols. When both ��

and �� are passive, the environment of ����� must use ac-
tive protocols on both � and�. Since there is no reshuffling
of an active �� and active�� action that leads to �����, the
environment must use ��
�� to ensure absence of dead-
lock.
Consider the case when reshuffling ����� is used with �

active and � passive. Observe that the reshuffling is asym-
metric. If the environment uses the same reshuffling for �
active and � passive, the computation deadlocks. Therefore,
we conclude that “�” is not the bullet operator introduced
by Martin [8]. The environment must permit the concurrent
execution of �� and �� to avoid deadlock.
An alternative to treating “�” as a new operator is to

rewrite ��� using probes [7]. Using the probe to describe
the “�” construct also exposes the asymmetry introduced
when composing an active and passive handshake using this
operator. For �� passive, �� passive, we get:

����� � ��� � ������
��

For �� active and �� passive, we get:

����� � ����������

The normal convention in choosing active versus passive
protocols for communication channels is that a probed
channel must use a passive protocol. Note that the above
construction preserves this convention—all probed chan-
nels are passive.

If the handshaking expansions contain internal concur-
rency, then additional reshufflings are possible. We can an-
alyze these by using the following simple rules. Let us write

the two synchronization actions being composed as ��
�
���

�

and ��
�
���

�
, where the two parts correspond to the two ac-

tions (a wait and an assignment) that implement the hand-
shake. If the reshuffling corresponds to ��

�
���

�

��

�
���

�
,

then the composition operator is clearly parallel composi-
tion. In all other cases, we must have a single action from
�� (or ��) in parallel with one or more actions of �� (or
��). In that case, we sequentialize the reshuffling as fol-
lows: if the single �� (or ��) action is a wait, we postpone
it to the end of the �� (or ��) actions it overlaps with; if
the action is an assignment, we prepone it to the beginning
of the �� (or ��) actions it overlaps with. Now we can use
Table 1 to determine the synchronization behavior.
The following Theorem on � composition follows di-

rectly from Table 1.

Theorem 1 (Active star-composition) A sequence of �
two-phase communication actions that are composed using
� can be implemented if and only if at most one of the �
actions uses an active protocol.

Proof: Follows from the fact that one cannot compose two
two-phase active protocols with a � operator.

3.1. Uniform Characterization of Synchronization
Behavior

An examination of Table 1 shows that the different syn-
chronization operators “�”, “
”, and “�” can be character-
ized in a simple way that does not depend on whether the
participating synchronization actions are active or passive.
Let � and � be two synchronization actions. Let a�

denote the assignment statement and w� denote the wait
statement in the two-phase synchronization action � . Fur-
thermore, let � � � mean that 	 occurs before � in the
handshaking expansion. The following assertions follow
from Table 1:

	 � and � are composed as��� if and only if: �w� �
a� � �a� � w� �

	 � and � are composed as �
 � if and only if:
�a� � w� � �a� � w��

	 � and � are composed as��� if and only if: �w� �
a� � �w� � a��

Note that this characterization is correct regardless of
whether � and � are implemented with active or passive
protocols. The protocol type determines how the two com-
ponents of action � (and �) are ordered. If w� � a� ,
then � uses a passive protocol; if a� � w� , then � uses
an active protocol.

3.2. Bullets

If ��, ��, 	 	 	, �� are � communication actions, then the
bullet �� 	 �� 	 � � � 	 �� denotes the simultaneous com-
position of the � actions. Intuitively, this means that none
of the communication actions can complete until all others
have begun. We note that the “�” operator can only be used
to compose two-phase communication actions, whereas the
bullet can be used to compose two-phase as well as four-
phase communication actions. Also, if
 � � is connected
to a process that executes
 � � as well, the computation
will deadlock. It is not clear if this property is true for �	�
connected to � 	 � at the CHP level.
In an attempt to clearly define the bullet in terms of two-

phase CHP, we start from the the definition of the bullet.
Martin defines the bullet operator as follows: “For �� and
�� non-interfering communication commands, if the execu-
tions of both �� and �� in a certain state of the computation
terminate, then the execution of �� 	 �� in that state termi-
nates. Furthermore, the completion of �� coincides with
the completion of ��.” (from [9]). The notion of comple-
tion of a non-atomic action can also be defined following
Martin: “A non-atomic action � is said to be completed
when it is initiated and is guaranteed to terminate, i.e.,
when all possible continuations of the computation contain
the complete sequence of atomic actions of � .” Therefore,
a single non-atomic action can have multiple completion
points, thereby allowing the existence of a single point in
the computation that is a valid completion point for mul-
tiple actions. For the remainder of the discussion, we in-
terpret “continuations of the computation” to include com-
putations with arbitrary environments when examining the
bulleted actions in isolation. Otherwise any deadlock-free
computation by definition could have its initial state be the
completion point for all actions.
If �� and �� are two communication actions composed

using the bullet, we conclude that c�� � c��, where c�
denotes the number of completed � -actions for any action
� . Consider the following collection of processes:

���� 	 ���
 ���� 	 ���
 � � �
 ������ 	 ���

By definition of the bullet, we conclude that c�� � c�� for
all � � �� � �. We assume that these communications are
implemented with a four-phase protocol, as we can consider

the two-phase case as a four-phase protocol where the first
and second halves of the protocol are symmetric. We focus
our attention on the constraint c�� � c�� .
Let � and � be two four-phase communication actions

that are bulleted together. We first consider the case when
the various two-phase components of � and � are only
composed using sequential composition. We are left with
the following possible two-phase CHP implementations of
� 	� (together with the same implementations with � and
� interchanged):

� ��� �������

� ������ ����

� ��������� �

It should be immediately clear that the first possibility can
be discarded since it is an implementation of� �� . The sec-
ond can be discarded for the same reason; it cannot preserve
the constraint that c�� � c�� in the example above, since
c�� could be as large as c��� ���������. The third pos-
sibility does indeed prevent the difference c�� � c�� from
growing as a function of �. The reader can verify that this
reshuffling can be used to implement the bullet (details can
be found in [6]).
Normally when implementing � 	 � we know that the

environment will attempt to execute � and � concurrently.
In this case, we can use the � operator to compose the two-
phase components of � and � to implement the bullet.

Two-phase bullets. When implementing two-phase com-
munication actions, we are forced to use the �-operator to
compose them in order to implement synchronization be-
tween the two operations. However, in the strictest defini-
tion of operator 	, this is illegal because it does not permit
the bulleted action to be composed with itself. Therefore,
if � is an active two-phase communication and � is a pas-
sive two-phase communication, then there is no valid im-
plementation of � 	� under the interpretation that � 	�
connected to� 	� does not deadlock without the introduc-
tion of additional synchronization operations. However, if
we know that� and� will be executed concurrently by the
environment, then we can synchronize the two communica-
tion actions by implementing the bullet using �. Therefore,
we can think of � as a two-phase bullet operator.

4. Reshuffling Multiple Synchronization Ac-
tions

Consider the following fragment of a handshaking ex-
pansion with � passive and � active:

	 	 	 � ����� ���� ����� ���� ������ ���� 	 	 	

We cannot use Table 1 directly to determine the correspond-
ing CHP because action �� has been reshuffled across mul-
tiple synchronization actions (�� and ��). Instead, we ex-

amine each pair of synchronization actions independently.
The three pairs of synchronization actions are:

	 	 	 � ����� ���� ����� � � ���� 	 	 	
	 	 	 � ����� � � ���� ������ ���� 	 	 	
	 	 	 � � ���� ����� ���� ������ � 	 	 	

These correspond to the following CHP fragments:

	 	 	 ��� � ��� 	 	 	

	 	 	 ��� � ��� 	 	 	

	 	 	 ������� 	 	 	

The CHP that is consistent with these three fragments is

	 	 	 ��� � �������� 	 	 	

The reason this is program is consistent with the others is
that if we project the CHP onto the pairs of synchronization
actions, we get the CHP fragments shown earlier. There-
fore, this CHP corresponds to the original handshaking ex-
pansion.

Example. Consider the following process in which � is
passive and � is active.

���� �� �����

We provide some of the reshufflings of the handshaking ex-
pansions for this process derived using the method outlined
above. (The interested reader is referred to [6] for an ex-
haustive list.)

������� ���� ������ ���� ���� ����� ���� ������

� ��������������

������� ���� ���� ������ ���� ����� ���� ������

� ����� ���
�������

������� ���� ���� ����� ���� ������ ���� ������

� �������� ���
����

An important point illustrated by these examples is that al-
though it may look like a handshaking expansion is sequen-
tial, it may not actually order synchronization actions be-
cause of the particular reshuffling used.
In the remainder of this section, we formalize the intu-

ition above into a technique for constructing the CHP that
is consistent with a general handshaking expansion. In the
process, we identify and discuss some of the limitations of
the technique.

4.1. The Construction

In this section we will formalize the observations we
made above by providing a method to construct the CHP
corresponding to a reshuffled handshaking expansion. Ob-
serve that the CHP notation is a concise, textual way to
specify how different operations in a computation are or-
dered. In this section, we use a graph-based approach for

depicting the ordering among actions, and then reconstruct
the CHP program from the graph for the handshaking ex-
pansion.
In order to gain some insight into the procedure and its

limitations, consider the following handshaking expansion
with � active, � active, and � passive:

	 	 	 � ���� ����� ���� ���� ����� ������ ���� ����� 	 	 	

Applying the technique outlined above, we get the follow-
ing operators between pairs of synchronization actions:

��
�� ����� ��
� �

���� � ����� � �
��

After some thought, it is evident that there is no CHP pro-
gram that can simultaneously represent all six synchroniza-
tion constraints. The problem here is that we have a reshuf-
fling that contains improperly nested parallelism—the � �

action begins before �� completes, but �� completes before
� � completes. Consider the following handshaking expan-
sion:

		� ����� ���� ����� ����� ���� ����� ���� ���� ����� ���� 		

Applying the technique outlined above, we get the follow-
ing operators between pairs of synchronization actions:

����� ����� ����� ���� � �����

����� ���� � ����� ���� � ���� �

Examining a subset of the synchronization actions, it be-
comes apparent that the CHP must contain fragments of the
form ������������ � and ����������� ��, which is not
possible. Once again, the problem is that we have a reshuf-
fling that contains improperly nested star-operators.
We can show that in the absence of improperly nested

synchronization actions, we can represent the handshaking
expansion at the CHP level. In what follows, we only con-
sider straight-line handshaking expansions. To simplify the
treatment, we consider multiple occurrences of the same
synchronization action to be labelled as distinct.

Definition 1 (Ordering Relation) Given a handshaking
expansion ����, we define an ordering relation � on two-
phase synchronization actions in the body � as follows: if
� and � are two synchronization actions, then � � � just
when � projected on the actions � and � is equivalent to
��� according to Table 1.

For example, if the handshaking expansion of interest was:

������ ����� ���� �� �� ���� ����� ������ ���� ��� � ����

then we would have the following relations:

�� � �� �� � � �� � ��

where � denotes the two-phase synchronization on
��� � ���.

D

B

A C

�

�

�

�

�

�

�

�

������ ����� ���� �� �� ���� ��� � ����� ���� ��� � ����

��
�

�
�

�
�

������ ����� ���� ����� ���� ������ ���� ������

�
�

�
�

������� ���� ����� ���� ���� ������ ���� ������

�
�

�
�

�
�

�
�

�
�

�
�

������� ���� ���� ������ ���� ����� ���� ������

��� � ���� ������ ���� ��� � ����

���� �� ���� ����� ���� �� �� ����

�
�

�

� �
�

Figure 1. Flow graphs for various handshaking expansions.

Theorem 2 (Partial Order) The relation � is a strict par-
tial order, and � defined by � � � � �� � �� �� � �� is a
partial order.

Proof: Follows from the definitions given above.

From the partial order �, we can draw a graph that repre-
sents the ordering of synchronization actions in the hand-
shaking expansion.

Definition 2 (Flow Graph) The flow graph ����� is ob-
tained from the partial order � as follows. The set � is the
synchronization actions in �, along with two special labels
� (the start symbol) and � (the end symbol). Let � be the
transitive reduction of the relation �. Given two synchro-
nization actions �� � � � , there is an edge from � to � just
when ���. Finally, we introduce edges from� to � for all �
with no incoming edges from synchronization actions, and
edges from � to � for all � with no outgoing edges to syn-
chronization actions.

Figure 1 shows a number of handshaking expansions along
with their flow graphs. Note that the flow graph does not
distinguish between� �� and�
� ; in both cases, the ac-
tions � and � are not totally ordered. Therefore, multiple
handshaking expansions could have identical flow graphs.
A node in a flow graph is said to be a fork node if it has

out-degree greater than one; a node is said to be a join node
if it has in-degree greater than one. For each vertex � we
define the set ������� to be the set of vertices � such that
��� �� � �.

Definition 3 (Expanded Flow Graph) The expanded flow
graph ����� of flow graph �� �� ��� is defined as fol-
lows. For each maximal set of vertices ���� 	 	 	 � ��� � � �

such that �������� � �������� � � � � � �������� and
���������� � �, we apply the following transformation: (a)
A new dummy vertex � is introduced; (b) The set of edges
is modified by replacing each edge ��� ��� with edge ��� ��;
(c) The edges ��� ���, ��� ���, 	 	 	, ��� ��� are introduced.
This transformation is repeatedly applied until no such ver-
tex set is possible.

In the examples shown in Figure 1, the only graph whose
expanded flow graph differs from its flow graph is graph �.
The expanded flow graph for � is shown in Figure 2. In
what follows, we use flow graph to mean the expanded flow
graph of a handshaking expansion.
If a CHP process is entirely sequential, there are no fork

or join nodes in its flow graph. Fork nodes correspond to
points in the CHP process where actions that are composed
with
 or � are initiated; join nodes correspond to points
where these actions terminate. We can use this intuition to
determine when an flow graph corresponds to a CHP pro-
cess.

Definition 4 (Properly Nested Flow Graphs) A flow
graph is said to be properly nested if it can be reduced to
graph �� � ������� �������� by repeatedly applying
the following transformation:

	 (EDGE-ELIM). If vertex � has both out-degree and
in-degree 1 with corresponding edges ��� ��, ��� ��,
delete � from the graph and introduce edge �����.

�

�

������ ����� ���� ����� ���� ������ ���� ������

�
�

�
�

������� ���� ����� ���� ���� ������ ���� ������

�

�
�

�
�

Figure 2. An expanded flow graph.

If we examine the flow graphs given in Figure 2 and Fig-
ure 1, graphs labelled � and � are properly nested, while
 and ! are not. Properly nested flow graphs correspond
to CHP programs. We capture this fact by the following
theorem, whose proof is constructive. Before proceeding,
we restrict our attention to programs where pairs of syn-
chronization actions are not composed with �; we extend
the construction to this class of programs at the end of this
section.

Theorem 3 (Graph-CHP) If a flow graph is properly
nested, then there exists a CHP program that corresponds
to the ordering relation specified by the flow graph.

Proof: Let ����� be a properly nested flow graph. We
construct a labelled flow multigraph by attaching program
fragments to edges of the flow graph. Therefore, there
could be more than one edge between two pairs of vertices,
but the edges would have different labels. Initially, each
edge is labelled with skip. Since the flow multigraph is
properly nested, repeated application of EDGE-ELIM results
in graph ��. When applying transformation EDGE-ELIM,
edge ��� ��with label � and ��� ��with label " are replaced
with edge �����with label �� ��" when � is a synchroniza-
tion action, and with label ��" when � is a dummy vertex.
If EDGE-ELIM can no longer be applied and vertex � and �
have multiple edges between them with labels ��, ��, 	 	 	,
��, then the edges are replaced with a single edge with la-
bel ���
 ��
 � � �
 ���. The reader can verify that this
CHP program contains the ordering relations specified by
the flow graph (details can be found in [6]). Figure 3 shows
this process for the flow graph in Figure 2.

Theorem 4 (CHP-graph) Every straightline CHP pro-
gram has a properly nested flow graph.

Proof: By structural induction on CHP programs [6].

Theorem 3 shows how a CHP program can be con-
structed from a flow graph when the only composition oper-

ators among pairs of synchronization actions are semicolon
and parallel composition. The same argument can be used
when the only composition operators permitted are semi-
colon and star.

If we examine the proof of Theorem 3, we observe that
the only point of difficulty in extending it to arbitrary com-
position operators occurs when we reduce multiple edges
between two vertices into a single edge. As an example of
this problem, consider the handshaking expansion:

�� ���� ����� ���� ����� ���� ����� ����� ���� 			 �

where “			” denotes the reset part of the handshaking expan-
sion where the second half of the two-phase protocols are
completed. Figure 4 shows the flow graph for this hand-
shaking expansion. The problem is that while � � and � �

can execute in parallel, � � and � � are �-composed, and
there is no CHP program that corresponds to this particular
flow graph. Therefore, the only cases when we can con-
struct a CHP program are those when, given a flow graph
of the form shown above, the composition operator among
elementary synchronization actions in parallel branches are
unique. If this is the case, then we say that the correspond-
ing HSE satisfies the unique-operator constraint.

Theorem 5 (Reshuffling Theorem) A handshaking ex-
pansion corresponds to a CHP program if the flow graph
generated from its partial order relation is properly nested
and satisfies the unique-operator constraint.

Proof: A constructive proof of this theorem is provided
in [6]. The proof is similar to Theorem 3.

5. Applications

The techniques we have presented for the analysis of
handshaking expansions can be used to check the correct-
ness of reshuffled handshaking expansions, and to estimate
the performance of the circuit before its final CMOS imple-
mentation is synthesized.

. . .

�
�

�
�

�
�

�
�

Figure 4. A problematic case for HSE to CHP
conversion.

��� � ���� ��� � ���

�

�

�
� � ��

�
� � ��

�

�

�

�
�

�
�

�

�

�

�
�

�
�

�
�

�

�
�

skip

skip skip

skip

skip

skip

�

�

�
�

�
�

skip

skip

skip

skip skip

skip

skip

skip

�

�

�
�

�
�

�

�
�

�
�

Figure 3. Transforming a flow graph into its CHP program.

5.1. Analysis of Deadlock

Consider a simple ring with three processes, as shown in
Figure 5. Process � is the initiator, and it begins by send-
ing a value on channel �. Processes � and � are buffers,
and they simply copy values received on their input to their
output. The three processes can be described as follows:

� � �� �� �� �

� � �� �� � �

� � �� � � �

This collection of processes is clearly deadlock-free. We
annotate the channels with their protocol types (subscript
� indicating active, and subscript � indicating passive) to
obtain:

� � �� � �� � ��� �

� � �� �� � �� �

� � �� �� � � �

Suppose we implement processes � and � using the follow-
ing reshufflings:

� � ���� ����� ���� ������
���!�� "��� ���� ��� � �!�� "��� ���� ������

� � ������ ����� "��� �!�� ���� ������ "��� ��!��

In both cases, the body of the handshaking expansion uses
standard buffer reshufflings that are commonly used. Sup-
pose buffer � was implemented using the following reshuf-
fling:

� � ����� � ���� ���� ���� ���� � ����� ���� ����

I B
R S

F

A

Figure 5. A ring of processes containing a
single token.

which corresponds to a buffer that is implemented with a
C-element. At first glance, these seem to be a reasonable
reshuffling choices. However, this choice leads to deadlock.
Using the techniques previously outlined, we can write the
two-phase CHP for the three processes as:

� � ������ �� ����� �����

� � �� ��� �� ��� � �

� � �� �� � ����� � �� �

A quick glance shows that the system deadlocks after exe-
cuting�����. Observe that even if we introduce additional
buffer processes that use the same reshuffling as � , we do
not eliminate the deadlock.
This technique was put to use in the analysis of an early

version of the divider used in the MiniMIPS processor [10].
A subtle deadlock problem was eliminated by changing the
reshuffling of a single process in the iterative datapath for
the divider. Other solutions such as the introduction of
buffers would have degraded the performance of the divider
by increasing the loop latency.
Checking handshaking expansions for deadlock by ex-

amining the corresponding two-phase CHP has some lim-
itations because, as we have seen, not all handshaking ex-
pansions correspond to CHP programs. However, we can
use the flow graph for the handshaking expansion to directly
determine whether the reshuffling is deadlock-free. Intu-
itively, the reshuffling will be deadlock-free when the flow
graph for the complete system is cycle-free. We also have
to introduce additional undirected edges in the flow graph
that correspond to the case when two synchronization ac-
tions are composed using �. Details of this transformation
can be found in [6].

5.2. The Lazy-Active Protocol

A standard reshuffling of the four-phase active protocol
is what is referred to as the lazy-active protocol. In this
protocol, the final wait of the four-phase communication is
postponed to the next occurrence of the handshake. The
protocol on wires ��� � ��� is typically written:

������ ���� ����� ���
What happens when we replace an active protocol with a
lazy-active one? Intuitively, it is clear that the circuit will
have better performance characteristics because we have
postponed the final wait until the last possible moment. If
we examine this transformation at the CHP level, the net
effect of introducing the lazy-active protocol is to replace
what was a semicolon at the CHP level with parallel com-
position. To illustrate this, consider a simple one-place
active-passive buffer with the active part implemented us-
ing a lazy-active protocol. The reshuffling is:

�� ������ ���� ����� ���� ����� ���� ������ ��� �

Since we are using a lazy-active protocol, the wait ����� is
the last part of the communication action on � in the previ-
ous loop iteration. Simply put, this handshaking expansion
is equivalent to

�� ���� ����� ���� ����� ���� ������ ���� ����� �

and the resulting two-phase CHP is:

�� ��� ���
 ������ �

If �were implemented with an active protocol, the resulting
two-phase CHP would be:

�� ����������� �

Given a deadlock free CHP computation, the unreshuffled
handshaking expansion derived from it will also be dead-
lock free. It should now be immediately obvious that re-
placing any active protocol with a lazy-active protocol will
keep the computation deadlock-free, because the net effect
(at the CHP level) of the transformation is to permit the sec-
ond half of the synchronization protocol to execute concur-
rently with whatever follows it. Also, since all probes only
depend on the first half of the communication, this transfor-
mation does not affect the values of probes.

5.3. CRT Reshufflings

A collection of CHP processes is said to exhibit constant
response time (CRT) if the time between successive com-
munications on their inputs or outputs is bounded by a con-
stant, independent of the number of processes. If the col-
lection of processes under consideration is a linear array of
identical processes, we can use Lee’s result to determine
if the CHP computation exhibits CRT [5]. To determine
if CHP computations exhibit CRT, let the CHP for the re-
peated process be given by:

�� $��$�� 	 	 	 �$��� �

where each $� is a synchronization action. Let the set
� � �$�� 	 	 	 � $����

� describe the set of matching syn-
chronization actions. (Two actions match if they are con-
nected in adjacent processes.) Lee’s CRT criterion states
that a CHP computation is CRT if and only if the following
two conditions hold [5]:

1. Deadlock freedom:
���� %� ��� % � � �$�� $� �� �$�� � $� �� � � �

� & �� � % & % ��

2. CRT:
���� % � �$�� $� � � � � � � %�

���� % � �$�� $� � � � � � & %�

(The reader is referred to [5] for a discussion of these con-
ditions as well as the proof.) Therefore, given a straightline
handshaking expansion, we can determine if the reshuffling
exhibits CRT by constructing the two-phase CHP for the
HSE and using Lee’s criterion. We can extend the CRT
and deadlock-freedom criteria to allow for concurrent exe-
cution of synchronization actions by noting that all that is
necessary is that there should exist an interleaving of the
concurrent operations that satisfies Lee’s criterion.

5.4. Control-data Decomposition

Control-data decomposition is a transformation that
eliminates operations on data items with dataless com-
munication actions coupled with standard datapath pro-
cesses. The transformation replaces communication ac-
tion � 	� with a dataless communication � , along with
the process ��� 	 � 	��. Communication action �
� is
replaced by a dataless communication � , along with the
process ��� 	 �
��. The two-phase CHP for the im-
plementation of datapath process ��� 	 � 	�� is given by
��� � ���
� �� � ����, and the CHP for datapath process
��� 	 �
�� is given by ��� � � ��	� �� � � ���. Note
that control-data decomposition guarantees that the control
action � and data action � are attempted in parallel, since
the � -action is introduced to replace the original matching
synchronization action on channel � .

6. Summary

We presented a new technique for reasoning about the
correctness and performance of handshaking expansions.
The technique introduces the notion of “decompiling” a
handshaking expansion into a CHP program that has the
same synchronization behavior. We showed several appli-
cations of the analysis technique and also discussed its lim-
itations.

Acknowledgments

The author did initial work on two-phase CHP when he
was part of Alain Martin’s group at Caltech (specifically,
the first part of section 3), and would like to thank members
of the group for various discussions.

The research described in this report was supported
in part by the Defence and Advanced Research Projects
Agency and monitored by the Office of Army Research.
The work was also supported in part by the Multidisci-
plinary University Research Initiative (MURI) under the
Office of Naval Research Contract N00014-00-1-0564, and
in part by a National Science Foundation CAREER award
under contract CCR 9984299.

A. Summary of CHP Notation

The notation we use is based on Hoare’s CSP [4]. A full
description of the notation and its semantics can be found
in [9]. What follows is a short and informal description of
the notation we use.

	 Assignment: � �� �. This statement means “assign
the value of � to � .” We also write �� for � �� ��#�,
and �� for � �� "����.

	 Selection: �$� � �� �� 			 ��$� � ���, where $� ’s
are boolean expressions (guards) and �� ’s are program
parts. The execution of this command corresponds to
waiting until one of the guards is '���, and then exe-
cuting one of the statements with a '��� guard. The
notation �$� is short-hand for �$ � �%���, and de-
notes waiting for the predicate� to become true. If the
guards are not mutually exclusive, we use the vertical
bar “�” instead of “��.”

	 Repetition: ��$� � �� �� 			 �� $� � ���. The
execution of this command corresponds to choosing
one of the '��� guards and executing the correspond-
ing statement, repeating this until all guards evalu-
ate to "����. The notation ���� is short-hand for
����#� � ��.

	 Send: � 	� means send the value of � over channel � .

	 Receive: �
& means receive a value over channel �
and store it in variable & .

	 Probe: The boolean expression � is ��#� iff a com-
munication over channel � can complete without sus-
pending.

	 Sequential Composition: � �'

	 Parallel Composition: �
 ' or � �' .

	 Simultaneous Composition: � 	 ' both � and ' are
communication actions and they complete simultane-
ously.

References

[1] J. Brzozowski and C.-J. H. Seger. Asynchronous Circuits.
Springer-Verlag, 1995.

[2] Steven M. Burns and Alain J. Martin. Performance analy-
sis and optimization of asynchronous circuits. In Carlo H.
Séquin, editor, Advanced Research in VLSI: Proceedings of
the 1991 UC Santa Cruz Conference, pp. 71–86, 1991.

[3] Marcel van der Goot. The Semantics of VLSI Synthesis.
Ph.D. thesis CS-TR-95-08, California Institute of Technol-
ogy, 1996.

[4] C. A. R. Hoare. Communicating Sequential Processes. Com-
munications of the ACM, 21(8):666–677, August 1978.

[5] Tak-Kwan Lee. Communication Behavior of Linear Arrays
of Processes. M.S. thesis, Caltech technical report CS-TR-
89-13, June 1988.

[6] Rajit Manohar. Two-phase CHP: Analyzing Handshaking
Expansions by Decompilation. Cornell Computer Systems
Laboratory technical report CSL-TR-2000-1006, September
2000.

[7] Alain J. Martin. The Probe: An addition to communica-
tion primitives. Information Processing Letters, 20:125–130,
1985.

[8] Alain J. Martin. Programming in VLSI: From communicat-
ing processes to delay-insensitive circuits. In C.A.R. Hoare,
editor, Developments in Concurrency and Communication,
UT Year of Programming Series, pp. 1–64. Addison-Wesley,
1990.

[9] Alain J. Martin. Synthesis of Asynchronous VLSI Circuits.
Caltech Computer Science technical report CS-TR-93-28.

[10] Alain J. Martin, Andrew Lines, Rajit Manohar, Mika
Nyström, Paul Penzes, Robert Southworth, Uri V. Cum-
mings, and Tak-Kwan Lee. The Design of an Asynchronous
MIPS R3000. Proceedings of the 17th Conference on Ad-
vanced Research in VLSI, September 1997.

[11] S.F. Smith and A.E. Zwarico. Correct Compilation of Spec-
ifications to Deterministic Asynchronous Circuits. Formal
Methods in System Design, 7:155–226, 1995.

[12] Ted Eugene Williams. Self-Timed Rings and their Appli-
cation to Division. Ph.D. thesis, Stanford University, May
1991.

