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Abstract

We introduce the concept of energy index, a mea-
sure which can be used to estimate the power dissi-
pation of a standard implementation of the high-level
specification for an asynchronous circuit. This energy
indez is related to information-theoretic entropy mea-
sures. It is shown how these measures can be used to
design low-power circuits.

1 Introduction

In CMOS technology, energy is dissipated only
when a node of the circuit is switched—when a ca-
pacitor is charged or discharged.

Therefore, an energy model for VLSI computation
based on CMOS may assume that energy is dissipated
only when the state of the computation changes—the
process of waiting does not dissipate any power. This
assumption is satisfied by a CMOS asynchronous cir-
cuit, but is not in general satisfied by a clocked circuit.
This difference accounts for the important advantage
of asynchronous design over synchronous clocked de-
sign [6, 8, 11] as far as power is concerned.

According to this model, energy-efficient computa-
tions are those in which work is performed only when
necessary. But, then, how can we define and compute
the minimal amount of work necessary to carry out a
given computation? Can we achieve this lower bound
in an actual implementation?

Can we use knowledge about the lower bound to
direct the synthesis of an (asynchronous) circuit im-
plementing the computation? This paper proposes an
answer to these questions by introducing a model that
can predict the energy required for the execution of a
given sequence of actions.

We base the energy model on the CSP [3] specifica-
tion of an asynchronous circuit. The CSP description
for an asynchronous circuit is general, and can be syn-
thesized directly into a transistor network. Using what
we know about the synthesis procedure, we can pre-
dict the energy cost of CSP constructs, in particular
the cost of synchronization. This model can be easily
translated to other specification languages.
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The set of all possible sequences of input/output ac-
tions is used as an implementation-independent spec-
ification of an asynchronous circuit. We assume that
the circuit is finite and deterministic.

This paper is organized as follows: In Section 2, we
define an energy model based on the energy cost of im-
plementing synchronization in asynchronous circuits
derived from a CSP specification. In Section 3, we
relate this energy model to the information-theoretic
entropy of the sequences of input/output actions the
circuit has to execute, and derive a lower bound to
the energy cost of any circuit that has to perform the
same computation. In Section 4 we use trace theory
to derive similar results to section 3 in a way that is
independent of the specification language. Finally, in
Section 5 we apply these results to show how the syn-
thesis procedure can be directed so that we obtain an
energy-optimal circuit.

2 Energy Model for CSP Processes

In this section, we show how we can derive a simple
energy model from the CSP specification of a CMOS
asynchronous digital circuit. The CSP specification of
an asynchronous circuit corresponds very closely to its
implementation: for each assignment, communication
and function evaluation executed by the CSP program
there is a corresponding assignment, communication,
function evaluation computed by the CMOS imple-
mentation. In fact, one can syntactically transform a
CSP program into CMOS [1]. The CMOS implemen-
tation will dissipate energy only during the execution
of various parts of the CSP program; therefore, this
energy can be attributed to the energy required to
execute the corresponding CSP statement. To calcu-
late the energy required to execute a CSP program, we
add the energy required to execute each statement in a
“canonical” trace of that program; we can also use the
relative frequencies of occurrence of each statement in
the program on a reasonably large set of typical traces.

The purpose of the model presented here is to study
architectural trade-offs (e.g., comparison of bit-serial
and parallel implementations of a function) or to de-
termine architectural parameters (e.g., the optimal
width of a cache memory) with respect to energy con-
sumption. A detailed model with a large number of
parameters can be intractable without significantly in-
creasing the accuracy of the model, especially if the
parameters are layout-dependent (and, therefore, not
well known before the layout is complete). A simpler



model is desirable at the design stage; we will base
this model on the cost of communication, assignment,
and selection.

The model proposed is based on the energy perfor-
mance index. To each type of statement, we assign
an index that is representative of the energy that we
expect that operation to cost in a typical implemen-
tation.

2.1 Energy Index
CMOS circuits have three main sources of energy
dissipation: leakage currents, short-circuit currents,
and dynamic currents. The total energy dissipated
during the execution of one operation, Ep, can be cal-
culated as:
Er=E,+FE;+ E,,. (1)

where E; is the energy dissipated by the sub-threshold
leakage currents, Fy is the energy used for charging
and discharging capacitors, and F,, is the energy dis-
sipated by the short-circuit currents.

Leakage currents come from the sub-threshold be-
havior of MOSFET’s, and constitute a small part of
the total power dissipation in modern CMOS pro-
cesses. Short-circuit currents originate in the short
transients that occur when both pull-up and pull-down
transistors conduct while the input signal switches be-
tween Vipn and Vpp — Vipp. We will assimilate this
switching energy to the dynamic energy dissipation,
that represents the bulk of the total energy dissipa-
tion in a standard CMOS circuit. Dynamic energy
dissipation, E4, comes from the energy used to charge
the capacitors in the circuit. The capacitors are then
discharged to ground, and the energy is not recuper-
ated. E4 can be computed as:

Ed = anClVDQD (2)
C;

where the C;’s are all the capacitors in the circuit, and
n; is the number of times capacitor C; is switched in
the execution of one operation. We rewrite Eq. 2 as:

Ed = I{LVI%D (3)

Based on these results, we use as an energy perfor-
mance index for an asynchronous CMOS circuit the
corresponding constant K. This index is indepen-
dent of the power-supply voltage and the speed of op-
eration; furthermore, K, is additive: we can calculate
the index corresponding to an operation by adding the
indices of all of its sub-operations.

2.2 Synchronization

We present next the part of the energy model that
relates to the cost of synchronization between CSP
stafer?ents. The cost of data operations is explained
in [10].

The synchronization primitives of CSP are par-
allel composition (‘||’), sequential composition (*;),
guarded choice (‘[’), repetition, and bullet synchro-
nization between communication actions (‘e’). Some
of these primitives have zero energy cost, such as par-
allel composition. Some of these primitives require

extra hardware to be implemented, such as guarded
choice.

Concurrency:

A basic postulate of this model is that parallel com-
position is free: no extra circuits are required in the
implementation. If there is no synchronization be-
tween the P; processes, we can write:

n

C(lliz1n: PY) =S C(P) @

i=1

where C() is the cost function that assigns an energy
index to a program.

If processes synchronize, we must first determine
the relative frequencies of their execution, and con-
sider the weighted sum of their individual costs. Given
these weights w;, we have:

C{|i:1.n: P)) = ZwiC(Pi) (5)

Example: Consider the concurrent composition of
the following CSP processes:

P= x[L?z; R!z]
Q= *[R?z;Rllz; R?z; R2!z]

Every execution of @ corresponds to two executions
of P. Therefore, when computing the energy cost of
P||Q, we weight P by 1 and @ by % This cost corre-
sponds to the cost of an execution when an L action
is executed once.

Sequencing:

Sequencing synchronizes the end of an action with
the beginning of the next action. If the previous action
is the parallel composition of several actions, the end
of those actions has to be synchronized with a tree,
which has a linear energy cost. If the next action is
the parallel composition of several actions, the start
signal has to be distributed to them (maybe with a
tree), which also has a linear cost (see Fig. 1). We can
express these costs with the following equation:

Cl{lli:1.m:BP);{|lj: 1.m : Qj)) =
C(join(n)) + C(fork(m)) + C(;) +
C(lli: Ln: P)) +C((|lj : 1.m : Qj))

= Kiln—1)+Ky(m—-1)+ K, +

>_CP)+ 3 C(Q;) (6)

where the P; and @Q; processes have no synchroniza-
tions between them, and the Kj;, Ky, and K,. are
technology-dependent constants. If n =1 and m =1,
then the fork and join circuits are not needed, and the
cost of sequencing is just the constant overhead K.



Figure 1: Extra circuits required to implement se-
quencing between two blocks of concurrent processes.
The fork and join trees can be configured in several
ways.

Choice:

Guarded choice can be implemented in a number of
ways. We consider the cost of selection as the differ-
ence in cost between the following two programs:

PAR=(|i:1.n: *[[ G; — A; 11)
and,
CHOOSE ==[[(0i:1.n: G, — A; )11

Program CHOOSE can be transformed into program
PAR using P and V operations on a semaphore:

CHOOSE =
(Ili:1.n:*[[ G — P; [Gi — A;
1; vV 11)

The cost of choice is, therefore, the cost of imple-
menting that semaphore. A number of implementa-
tions are possible and practical; the semaphore may
be implemented with a selection tree:

CHOOSE =
(| 4:1..N: *[[ G; — U;; A;; U; 11)

| *[0( 0 i:N/2+1.N:
U; — H; U; Ui; H )11
| *([ L— L;L 0 H— H;H 1]

We apply this transformation recursively, and we get
a cost of selection that is logarithmic in the number
of choices and can be expressed as:

C({li:1.m:G; — A4)]) =
K. 10g2n+ZP;’C([Gi];Ui;Ai;Ui) (7)
i=1

where p; is the probability of picking guard G;.
Arbitration does not affect the energy cost, since
two-way arbiters only have a constant energy cost on

average. To show this, observe that the probability of
a two-way arbiter taking time ¢ to arbitrate is propor-
tional to e~** for some constant k. Assuming that the
energy dissipated is proportional to time, the average
energy dissipation is [ Ate=*dt = A/k* for some
constant A. Since n-way arbiters can be constructed
by using a tree of two-way arbiters, the total energy
cost of an arbitrated choice is also logarithmic in the
number of alternatives.

3 Energy and Entropy

In this section we introduce a constrained version
of the CSP language, show how we can translate any
CSP process into this constrained CSP. We then de-
fine an energy model for the constrained representa-
tion of a process, and derive a lower bound to this
energy model based on the information-theoretic en-
tropy of the input/output behavior of the specification
of the CSP process. This lower bound does not depend
on the particular implementation of the process, only
on its expected input/output behavior, and therefore
applies to any circuit that implements that behavior.
The energy model measures the number of “elemen-
tary” transitions executed by the circuit assuming a
CMOS-style digital circuit.

3.1 Flat CSP
A CSP process P is called flat if it has the form:

P=x[[ Gy — Ag; SAg
I G — Ai; S4

I anl - Anfl; SAnfl
1]

where the guards G; are stable (that is, once they be-
come true, they remain true at least until the first
action of the guarded command is executed). Com-
mands A; are either data-less or boolean communica-
tions, and statements SA; are constant assignments
to state variables. This restriction is introduced so
that all the complexity of the computation is han-
dled by the selection mechanism, instead of the data-
assignment mechanism.

A CSP process can be transformed into flat form by
applying the following rules recursively. The variables
that are added when applying a rule are new; that
is, they did not appear in the original program and
are initially false. S, represents a sequence of state
variable assignments. The notation AprB is used to
give a transformation from program A to program B.

Sequencing. This transformation removes se-
quential composition. Other state assignments are
possible to enforce sequencing.

0 G— Ap;A1;... A, Sab
0 ~s¢gANG — sa,T;8aT

0 SG/\SAO — AO;SAOL;S/hT

0 sgAsa, — Apisa,lisal;Sa

Choice. This transformation removes choice com-
position.



0 G— [Gy— A4pl...0G, — A,]; Sar

0 -s¢gANG— sa7
0 saANGo— Ao; sal;Sa

0 s¢ NG, — An; sgl;Sa

Repetition. This transformation factors out rep-
etition.

0 G— *[Go— Aol...0G, — A,1; Sav

0 -s¢gANG— sa7
0 sa NGy — Ao

0 s¢ NG, — A,
0 s A\=GoA...AN=G, — sgl; Sa

3.2 Flat Process Decomposition

A single flat process is an inefficient implementa-
tion of a CSP program; all the guards have to be
evaluated every time a statement is executed. Hier-
archical evaluation of guards can improve the average
cost per statement by making the statements most fre-
quently executed cheaper at the expense of the more
infrequent ones.

Hierarchical decomposition transforms one flat pro-
cess into two, in the following way:

x[[Gy — Ao; SAg

1Gi — A1; SA;
i].énfl I Anfl; SAnfl
1]

>

*[[ GOVGl\/\/G],l—) H
0 Gj—> Aj; SA]

[I Gn—l_) An—1§ SAn—l
11

||*[|: F/\_‘GO/\_‘GI/\~-~/\_‘GJ'—1—’ H
[IF/\G()—> Ao; SAO

0 HA Gj_l — Aj_l; SAj_l
1]

where H is a new channel.

The two resulting processes are also flat, and we
can re-apply the procedure to each of them to obtain
a tree of flat subprocesses.

3.3 Entropy

We define the energy complexity of the hierarchical
decomposition of a flat process and relate this energy
complexity to the information-theoretic entropy of the
sequences of input/output symbols.

Hierarchical decomposition of a flat process can
drastically reduce the average energy cost of executing
a CSP process. Two mechanisms are at play: first, we
can choose the decomposition so that the more fre-
quently executed statements are “higher up” in the
decomposition tree, and, second, the state of the tree
of processes stores information about the history of

the computation, modifying the cost of each statement
according to this history.

Given a hierarchical decomposition of a flat process,
an execution of that process corresponds to a path in
the tree of subprocesses. This path can be encoded by
giving the sequence of cardinals of the guarded com-
mand selected within each subprocess. Given this se-
quence and the program text, we can reconstruct the
computation.

Example: Consider the program

Pl =

*[[ Gt — H [ Go— A1 I Gz — Ay 11
P2 =

*[[ Fl/\G4—> A3 uﬁl/\G5—> H1 ]]
P= P1| P2

where the A;’s are input/output symbols. The exe-

cution begins in process P1 (since H; is false). The
execution of As, A;, Ay corresponds to the following
sequence of selections: first guard in P1; first guard
in P2; second guard in P2; second guard in P1; third
guard in P1. Therefore, the cardinal sequence 1, 1, 2,
2, 3 corresponds to the sequence Az, Ay, As; similarly,
the cardinal sequence 1, 2, 2, 2, 3 corresponds to the
sequence Aq, Ay, As.

We have already shown that the cost of executing
a guarded command from a one-of-n selection scales
with log, n. To simplify the notation and the proofs in
this section, we use [log, n]! as the energy complexity
of one-of-n selection.

To formalize, let P be a process, FP be the flat
representation of that process, HP be a hierarchi-
cal decomposition of FP, and a1, ., = a1,...,am, be
the first m statements executed by process P. Let
81,5 Sk(HP,a,..,) Pe the sequence of cardinals of the
selected guarded commands required to reconstruct
ay..m from HP, and k(HP, a; . ,,,) be the length of that
sequence. This sequence can be encoded as a list
of [(HP,ay. ) bits, Ki,..., Kyup,qe, ,,)- Finally, let
C(HP,a;..,s) be the cost of running process HP until
a1..m has been executed.

We can relate the energy cost to the length of the
code with the following theorem:

Theorem 1 C(HP,a;. ,,,) = I(HP,a;. 1,).

Proof: Given n;, the number of guarded commands
in the i*" selection and [log, n;] the cost of that se-
lection, we have:

k(HP,al_m)

C(HP,a1.m)= Y

i=1

[log, ni]

We need [log,n;] bits to encode the it" cardinal;

LTz represents the ceiling function of z, the smallest integer
that is at least x.



therefore,
k(HP,a1..m)
I(HP, a1 ) = Z [log, n;] = C(HP, a1..m)
i=1
|

From Theorem 1 we conclude that optimizing the
energy cost of a CSP process requires finding the HP
that best encodes the statement sequence aq, ..., G-
First we compute a lower bound of the optimum en-
coding, using some results from information theory.

Let A; be a random variable that takes as value
the i*" statement executed by process P. The state-
ment sequences of length m have a probability distri-
bution Pr(A4;_,,), which can be calculated either de-
terministically (for example, assuming that all input
sequences are possible and equiprobable), or statisti-
cally, by looking at actual traces of the execution of
the program. Let S;, be the set of all statement se-
quences with non-zero probability.

To define the cost per statement, we take an average
of the energy cost of the process over a very large
number of statements. The limit of the average cost
when the number of statements goes to infinity may
not exist, or be unbounded (as would be the case in a
busy-waiting loop). To avoid those problems, we use

the limsup 2 in the following definition:

Definition 1 The cost per statement of a process HP,
C(HP), is defined as:

. 1
C(HP) = lﬁlniiuog( > Pr(a ) —C(HP, a1..m)
(8)

a1.m)ESm
The following theorem gives a sufficient, though not
necessary, condition for the convergence of this limit:

Theorem 2 If every loop of HP (that is, every se-
quence of statements from HP that has the same initial
state and final state) contains at least one statement
from P, then C(HP) converges.

Proof:  Let K be the length of the longest loop,
counted as the number of selections made in that loop,
and n be the number of statements in P. Then we can
write k(HP,a;. ) < K x m; therefore, C(HP,a;_ )
is bounded above by K[log,n], and the lim sup con-
verges. Details of this proof can be found in [10]. &

The entropy of the statement sequences of length
m, H(Ay,...,An), is defined in the usual way [9):

2

limsupa, = lim sup(a;)
n——+o0o n—+0o j>p

Definition 2 Let (Ai,...,A,) be a sequence of
random variables.  The entropy of this sequence,
H(Ay,...,An), is defined as:

1
H(A)...Ap) = ZPr(al...am)log2 Py

(a1..m)ESm m

(9)
We use the following theorem to define the entropy
of a process P:

Theorem 3 The limit,
1
limsup —H(A1,...,An)
m—+4oo MM
always exists.

Proof: If A; can take n different values, we have

0 < iH(Al...Am)
m
1
< (H(A) + -+ H(Ap)
< logym

The sequence is bounded by a constant; therefore, the
lim sup exists. N

Definition 3 The entropy of a process P, H(P), is
defined as:

H(P):limiup %H(Al,...,Am) (10)

Now we are ready to prove the basic theorem that
gives a lower bound to the energy complexity of a hi-
erarchical decomposition of a process P:

Theorem 4 For every process P, and every hierar-
chical decomposition HP of P, we have:

H(P) < C(HP) (1)

Proof: Ki,...,Kupm 1is a prefix-code® for
Ay, ..., Apy; therefore we know that the average length
of the code is at least the entropy of the source of sym-
bols [9], and we can write:

Am) <) Pr(as, ...,
= ZPr(al,...,

Dividing by m and taking lim sup on both sides of the
inequality, we get the thesis.

H(Al,... am)l(HP7a/1..m)

(lm)C(HP7 al__m)

Theorem 4 gives a lower bound to the energy cost
of a hierarchical decomposition. The next question to
be answered is under what conditions the lower bound
can be reached. The following theorem gives a partial
answer:

3A prefix-code is a code such that no codeword is a prefix of
another codeword.



Theorem 5 If for every sequence of statements
ai,.-.,a; evecuted by a hierarchical decomposition HP
of a process P and for a constant K, the following con-
ditions hold:

1
Nk(HP, a1, ;)

1. Pr(sgp,a, )|815- -+ Sk(HP,01 1)—1) =

2. Pr(si,...,8pup,a, ) = Prlas, ..., a;)
3. k(HP,a1.;) < K xi
then H(P) < C(HP) < H(P) + K holds.

Theorem 5 can be interpreted as follows. The first
condition means that all choices in a computation of
HP are equally probable. The second condition is au-
tomatically verified if, for each sequence of statements
from the original process P, there is a unique sequence
of choices from HP. The third condition puts a fixed
bound to the overhead introduced by the hierarchical
decomposition. It is satisfied if each loop contains at
least one statement from P. This condition excludes
busy-waiting.

Proof: ~ The proof of this theorem can be found in

[10]. W

The entropy H(P) of a program P was defined
based on the entropy of the sequences of statements
from the original program P. We can restrict this def-
inition to the input symbols or the output symbols,
exclusively, and all the theorems proved so far hold as
well.

4 Trace Entropy

So far we have related the energy index of a CSP
program to the energy dissipated by a standard VLSI
implementation of the program. The energy index of
a flat CSP program was shown to be related to the
average length of an execution sequence.

We now propose an alternative method for com-
puting the entropy of a program. The approach is
based on trace theory [2, 12]. Traces can be used to
describe asynchronous circuits that are designed by
various methods. A set of traces can be considered to
be the specification of a circuit. Therefore, entropy
measures on trace sets are not dependent on any par-
ticular design technique. The measure is related to
the specification rather than the implementation of the
circuit.

4.1 Closed Programs

A circuit is said to be closed if it does not have any
dangling inputs. In a closed VLSI computation, all
possible behaviors of the circuit are known apriori. As
a result, a computation can be considered to be a set
of traces, where a trace consists of a sequence of state
transitions. We assume that assignment to boolean
variables is the only atomic action. Therefore, a state
transition can be described in terms of the transition
of a single boolean variable. The transition of boolean
variable x can be described by the assignment x :=
—x, which we abbreviate by z. As a result, a trace
structure [12]—a pair (T, A), where T is a set of traces

and A is an alphabet—can be used to describe the
computation.

An infinite computation dissipates infinite energy.
An interesting measure of energy is the amount of en-
ergy dissipated per action executed by the computa-
tion. To this end, given a trace structure that speci-
fies a computation, we examine the entropy per sym-
bol of that trace structure. This entropy is the aver-
age amount of information necessary (per symbol) to
specify the computation. However, a trace set speci-
fies more than just a single computation. It specifies a
set of possible computations that implement the spec-
ification. Therefore, a valid implementation of a trace
set would be any nonempty subset of the trace set.

A trace set specifies a subset of the set of all traces
of an alphabet. We can specify an implementation of
the trace set by specifying a single trace from the set.
The amount of information required to specify more
than one element from a set is at least as much as that
required to specify a single element from it. There-
fore, to obtain the minimum amount of information
necessary, we need to compute the average informa-
tion necessary to pick a single trace from a trace set.
Abstracting away from traces and trace sets, we can
reformulate this problem as follows: how much infor-
mation is necessary to specify a single element from a
subset of a set? To compute this quantity, we assume
that the set of possible traces—the specification—is
chosen using a uniform distribution.

Theorem 6 Let S be a nonempty subset of U of car-
dinality N/a, where N is the cardinality of U. Let
Hy be the amount of information necessary to pick a
single element from U that is contained in S. Then,

lim HN =aH <l>
N —oco (8%
where H(p) = plog, % + (1 —p)log, ﬁ-

Proof: The proof of this theorem can be found in [5].

Notice that the amount of information necessary to
specify an element from an infinite trace set is con-
stant, if the cardinality of the set is a fixed fraction of
the set of all traces.

A VLSI circuit is a finite component, and as such,
can only have finite history. In fact a VLSI circuit
can be modeled as a repetitive computation, in which
each iteration has no information about the previous
one. Let us examine Theorem 6 in the context of this
observation. Let T be the set of all possible traces
after one iteration of the computation. For simplicity,
we assume that all the traces are of the same length.
(If not, one can consider a larger number of iterations.)
Let ap be the ratio of the cardinality of the set of all
possible traces (which have the same length as those in
T') to the cardinality of T'. If we consider two iterations
of the execution, the ratio of cardinality of the two sets
of interest will be 2. In general, the ratio will be o
after NV iterations.



Lemma 7 Let ag > 1 be a fized constant. Then,

1 1
lim —ad"H <—N> =log, ap
=)

Proof: Simplifying a(I)VH(O%N), we get log, ad +(ady —
0

N
1)log, % As N — o0, the second term tends to

log, e which tends to zero after division by N. The
first term is NV log, ap, which when divided by N yields
the necessary limit. N

Therefore, the average energy per iteration depends
on the fraction of the traces that describe one itera-
tion of the computation. We can interpret this as fol-
lows. As the number of possible execution sequences
decreases, we have to restrict the behavior of the cir-
cuit. In other words, we have to sequence a larger
number of transitions. In the extreme case, we have
to sequence every transition in the circuit. As a re-
sult, we have to dissipate more energy to enforce this
sequencing.

A VLSI circuit consists of a number of gates, each
controlling the value of a single boolean variable. The
entropy measure in Lemma 7 assumes that we can
pick a single trace out of a set of possible traces. Con-
sider the model in which each symbol in the alphabet
is treated as an independent quantity [7]. This corre-
sponds to the assumption that an individual gate does
not store information about execution history. We
compute the probability of occurrence for each sym-
bol in the alphabet for one iteration. The entropy of
the trace set is now defined to be the traditional en-
tropy measure of the ensemble* (A, Pr), where Pr(a)
is the probability of the occurrence of symbol a € A
in the trace set.

Property 1 Let (A, Pr) be an ensemble, and let AN
be the ensemble that consists of N independent, iden-
tically distributed occurrences of A. Then,

1

—H(AY)=H(A

FH(AY) = H(4)

Therefore, we can conclude that the energy per iter-
ation is, on average, H(A). However, this measure of
entropy is not very accurate.

Example: Let T1 = {a*,b>,c*} and T2 =
{(abc)>°} be two trace sets® over the alphabet {a, b, c}.
Now the measure H(A) would indicate that these two
sets are equivalent as far as energy is concerned.

This is clearly false, since we could implement 7'1 by a
gate that repeatedly executed a. What we have failed
to take into account is the fact that certain traces can
occur more frequently than others. The probability of
traces and probability of individual transitions form a
joint distribution.

4 A pair (X, p) where X is a set of events and p is a probability
measure on X is known as an ensemble.

552 is the trace that consists of infinite repetitions of se-
quence §.

4.2 Open Programs

Considering closed programs assumes that a de-
signer has full information about the environment.
This assumption is not realistic for large designs. To
make the entropy calculation more realistic, we must
treat computations as open programs—programs in
which the environment is not completely specified.

The major distinction between open and closed pro-
grams is that the set of traces that describe an open
program are all potential execution sequences. As a re-
sult, one cannot discard any trace from the trace set.
We assume that an execution corresponds to repeat-
edly selecting a trace from a trace set and executing
it. The selection is performed once per iteration of the
computation.

We assume that associated with a trace structure
is a probability distribution—a joint distribution that
describes the probability of each trace in the trace set
and the probability of each symbol in the alphabet.
This probability distribution can be used to compute
the entropy of the set of traces in the usual way. We
extend the concept of a trace structure to include the
probability distribution of the set of all traces.

Definition 4 (Trace Structure) A trace structure
is the tuple (T, Pr, A), where

o T is a set of strings on the alphabet A;

o A is a set of symbols denoting state transitions;
and

e Pr is a probability measure on T.

We extend Pr to a joint distribution on T and A by
considering the frequency of occurrence of each symbol
in each trace of T'.

Given two different traces in 7', one must be able to
determine which trace is to be executed in a particular
instance of the computation. Since the environment
selects the trace to be executed, we will assume that,
given a choice in execution, there are certain condi-
tions which one can use to select the appropriate trace
for execution. These conditions, or guards, are predi-
cates on state variables from A.

Definition 5 (Trace Entropy) The entropy per
symbol of trace structure T = (T,Pr, A) is defined to
be the entropy of the joint distribution Pr, i.e.,

1 1
H(T)= —Pr(at)logy ——
( ) : |t| ( ) g2 Pr(at)
eET
aEA
where |t| is the length of the trace. For infinite traces,
the quantity is to be computed by considering the lim

sup as the length of the trace tends to infinity.

Notice that this definition is equivalent to the en-
tropy of a process H(P), if each trace has exactly one
symbol. Since VLSI computations are repetitive, we
can simplify the trace structure to only include finite
computations. The set of computations will then be
repetitions of the finite traces. For simplicity, we as-
sume that the length of each iteration of the compu-
tation is the same.



5 Low Power Synthesis

The trace entropy defined in the previous section
can be used to guide the design of low-power programs.
In this section we relate the entropy of traces to the
energy index of CSP programs.

A finite trace structure describing a repetitive com-
putation has a discrete probability measure associated
with it. We can think of a CSP program as an encod-
ing technique that is used to generate the set of pos-
sible traces. We can construct a CSP program that
achieves an average energy cost equal to the entropy
of the set of traces by using an optimal coding tech-
nique. One such optimal coding technique is known
as Huffman coding, which satisfies the following prop-
erty:

Property 2 The average codeword length for a Huff-
man code is the smallest possible amongst all possible
uniquely decodable codes.

The following definition constructs a CSP program
from a trace structure which has a cost that is close
to the entropy of the trace structure.

Definition 6 Let 7 = (T,Pr, A) be a trace structure.
Then CSP(T), the canonical CSP program associated
with T can be recursively defined as follows.

Let S = {{t} | t € T}. We extend Pr to sets
of traces by the definition Pr(X) = >, x P(t). Let
CSP({t}) = t. Repeatedly apply the following steps
until S = {T}.

1. Pick T1 and T2 from S such that they
have the lowest probabilities of occurrence,
i.e., T1 = argminpesPr(T), and T2 =
argminres, 21 Pr(T).

2. Define CSP(T1UT?2) to be the program [G1 —
CSP(T1)1G2 — CSP(T2)1, where G1 and G2

are the guards that can distinguish between traces
m T1 and T2.

3. Replace S by (S —{T1,T2})u{T1UT2}.
Finally, CSP(T) = *[CSP(T)].

The definition given above constructs a Huffman tree
[4] to select a particular trace for execution. We illus-
trate the definition given above with the help of the
following example.

Example: Consider a trace set with symbols
{ap(0.1),a1(0.1),a2(0.3),as(0.5)}, with probabilities
given in parentheses. The CSP program constructed
by applying the steps above is

*[[a3 — a3
la VarVay — [ag — ap
lao VvV ay — [ag — ao
oy — o

]
1]

The cost C associated with this program is 0.5(1) +
03(1+1)+0.1(1+1+1)+01(1+1+1)=1.7. The
entropy H(7) is given by —0.11og, 0.1 —0.1log, 0.1 —
0.3log, 0.3 — 0.510g, 0.5 = 1.685.

Definition 7 Given a trace structure T = (T, Pr, A),
the error E(T) is the difference between the entropy
of the ensemble (T,Pr) and the average length of a
Huffman tree that is derived from the ensemble.

One of the properties of Huffman codes is that the
error function £ is the smallest possible, and that
E(T) < 1. Therefore, this loss in entropy is entirely a
result of the fact that codewords are of integer length.
We formalize the connection between the cost and en-
tropy in the following theorem.

Theorem 8 Let T = (T,P,A) be a trace structure
where each symbol in a single trace is distinct. Let N
be the length of the traces in T'. Then,

1 B E(T) log, N +1
FC(OSP(T)) = H(T) + 1+ == — =

Proof:  The proof of this theorem follows from the
definition of CSP(7), and H(7). 1

Consider the example given above. The correction
factor 1 — % is zero (since N =1 in this exam-
ple), and the cost C is in fact H(7') plus the discretiza-
tion error.

Note that given a specification, the parameter NV
is usually fixed. What Theorem 8 tells us is that the
measure H(7) is in fact a measure that can be used
to compare specifications with some accuracy. The
specification can then be used to design a program
which achieves the cost given above.

Example: Consider the cost of a simple buffer and
an alternator. The buffer can be described by the
following CSP:

*[L7z; Rlz]

The trace set corresponding to this is {LR(1)},

which has entropy per symbol 1(—0.5log,0.5 —

0.5log, 0.5) = 0.5. An alternator can be described
by the following CSP specification:

x[L?x; R1'z; L7z, R2'x]

However, the trace L R1 L R2 contains repeated in-
stances of L. A better CSP description of an alterna-
tor is given by

*[[s — L?z; R1!z
0-s — L?z; R2!z
1; s:=-s

]



This corresponds to the fact that we need an extra
state variable, s, to indicate the current “phase” of the
alternator. The trace set corresponding to this CSP
specification is {L R1 s(0.5), L R2 5(0.5)}, and satisfies
the conditions of Theorem 8. The entropy of this spec-
ification (per symbol) can be computed by applying
definition 5, and is equal to 0.86. This indicates that
an alternator has a higher energy cost than a buffer
(per symbol).

The concurrent composition of alternators, alter-
nating merges, and buffers can be used to construct
linear and binary tree buffers. It is easy to see (and
calculate) that an alternating merge

*[L17z; Rlz; L27x; Rlx]
has the same cost as an alternator.

Example: A linear buffer stage has a cost of 0.5 per
symbol. The total cost of a single buffer stage is 2 x
0.5 = 1.0 (there are two symbols executed). The cost
of an alternator (and a merge) is 0.86 per symbol,
corresponding to a total cost of 3 x 0.86 = 2.58 per
execution. Counsider a 4-place binary tree buffer and
a 4-place linear buffer. The latter has a cost of 4 x
1.0 = 4.0, whereas the former has a cost of 2.58 +
2(1.0 + 1.0) + 2.58 = 6.16. The linear buffer is more
energy efficient than its binary tree counterpart for
small buffer sizes. As the size of the buffer increases,
the binary tree buffer will eventually be more energy
efficient than the linear buffer.

6 Conclusion

In this paper, we have shown how to estimate the
energy dissipation of an asynchronous circuit based on
the CSP specification of that circuit. This energy dis-
sipation model can be used to compute a lower bound
to the achievable energy dissipation for a given spec-
ification. This lower bound does not depend on the
choice of implementation, rather it is derived from the
expected input/output behavior of the circuit.

We have related the results derived from the CSP-
based energy model to results derived from trace-
theory. Trace theory was used to generalize the theo-
rems presented in Section 3 to other design methodolo-
gies. Finally, we have shown how to use trace-theory
and the statistics of the computation to derive energy-
optimal CSP programs.
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