
Fluid: An Asynchronous High-level Synthesis Tool

for Complex Program Structures
Rui Li, Lincoln Berkley, Yihang Yang, and Rajit Manohar

Computer Systems Lab, Yale University, New Haven, CT 06520, USA

rui.li@yale.edu, linc.berkley@yale.edu, yihang.yang@yale.edu, rajit.manohar@yale.edu

Abstract—Current high-level synthesis (HLS) tools that gener-
ate synchronous logic construct a state machine that schedules
program operations in each clock cycle. Rather than this central-
ized approach, we are developing an HLS methodology tailored
to high-performance asynchronous dataflow circuits building on
prior work in dataflow synthesis. We propose a new solution to
dataflow circuit generation needed when translating real-world
programs with complex control flow. We implement our approach
in the LLVM compiler framework, and show that our generated
circuits achieve better performance in throughput and energy
compared to a number of existing HLS tools. We also quantify
the benefits of dataflow graph optimizations on the quality of the
generated circuits.

Index Terms—asynchronous HLS, dataflow circuits

I. INTRODUCTION

Technology scaling has brought us to the sub-10nm era

and a regime of operation where single-thread performance

on general-purpose microprocessors has stagnated. As a

result, accelerating software programs using either field-

programmable gate arrays (FPGAs) or by using custom ac-

celerators has become an important area of investigation.

Using a traditional hardware description language to de-

scribe a computation is quite different from writing standard

software, so converting a software program directly into a good

FPGA/ASIC implementation is an arduous, time-consuming

task. The goal of high-level synthesis (HLS) tools is to

provide an automated method for translating conventional

software into a hardware description language. Using HLS

can significantly reduce the design time for accelerators that

are derived from pre-existing software [23].

There has been significant activity in translating behavioral

descriptions of asynchronous computations into asynchronous

circuits, and the majority of these efforts focus on translating

a concurrent, message-passing programming language into

asynchronous circuits [15], [19], [20], [26], [35], [39], [40].

There has also been previous work in translating software

programs into asynchronous circuits [9]. Furthermore, some

synchronous HLS tools also synthesize latency-insensitive

dataflow circuits [14], [21], [37]. Other tools use domain-

specific languages and special pragmas to simplify the high-

level synthesis problem [1], [4], [8], [13], [17], [24], [30]–[32].

The most complex aspect of generating dataflow circuits is

managing conditional execution and conditional generation of

tokens. Prior work either mostly avoids conditional tokens, or

only supports conditional tokens for simple control structures.

This paper presents Fluid, a HLS tool that translates C pro-

grams into asynchronous dataflow circuits. Our work extends

existing dataflow synthesis techniques to a wider class of soft-

ware programs by supporting complex control-flow structures

that naturally occur in software. This also permits us to use

optimizations that might create complex control structures.

We also incorporate optimizations that operate directly on the

dataflow graph structure, further improving our results.

Fluid goes through a number of steps to translate C pro-

grams to asynchronous dataflow circuits. Starting from C, we

use the LLVM compiler framework [2] to generate optimized

LLVM IR (Intermediate Representation). Fluid analyzes the IR

and modifies it to handle complex/irregular control structures.

After this, a dataflow graph is generated and further opti-

mized to improve the design, and then directly translated into

asynchronous bundled-data circuits. We also compare Fluid

against an academic HLS tool (LegUp [12]) and two different

commercial HLS tools on a combination of micro-benchmarks

and existing HLS benchmarks.

Our contributions are: (i) an asynchronous HLS tool that

translates C to an asynchronous dataflow circuit with results

that are significantly superior to an academic HLS tool, and

that outperform commercial HLS tools on throughput and

energy; (ii) a new technique for dataflow graph construction

in the presence of complex control flow; and (iii) a collection

of dataflow graph optimizations that improve the quality of

the final implementation. The remaining paper is organized

as follows: Section II introduces the prior work that we build

on. Section III presents how Fluid constructs dataflow graphs

based on the control-flow graph (CFG), including support

for irregular CFGs (Section III-D) Section IV describes the

dataflow optimizations currently in Fluid. Section V evaluates

Fluid against against three other HLS tools. We provide an

overview of the large body of related work in Section VI.

II. BACKGROUND

Our work builds on previous efforts to translate hardware

description languages to dataflow asynchronous circuits. In

particular, the static token form (STF) representation was intro-

duced to translate the CHP hardware description language into

a dataflow graph [36]. The CHP language was translated into

a CFG, and variables with multiple definitions (for example,

the left hand side of an assignment statement) and uses (for

example, the right hand side of an assignment statement) in

CHP were re-written into the canonical STF form. Informally,

STF guarantees that the conditions that cause a variable to be

defined match the condition under which it is used; this permits

variables to be replaced by channels, and values become tokens



in the dataflow graph [36]. STF combines concepts from both

static single assignment (SSA) [16] form and static single

information (SSI) [6] form into a unified analysis.

Consider the if example in Fig. 1a. In the true branch, x

is conditionally used and y is redefined, so STF in Fig. 1b

contains a split instruction which conditionally generates x0

under condition c, and a merge instruction which conditionally

selects y and y0 under condition c. In the true branch, x0 (not

x) is used and the result is assigned to y0 (not y).

int x;

int y=0; 

if(c){

y=x+1;

}

(a) if code

int x;

int y=0;𝑥0 = 𝑠𝑝𝑙𝑖𝑡𝑐 𝑥 ;
if(c){𝑦0 = 𝑥0 + 1;
}𝑦1 = 𝑚𝑒𝑟𝑔𝑒𝑐 0, 𝑦0 ;
(b) STF form

𝑥𝑐
+

10
𝑦𝑐

𝑥0𝑦0
(c) STF circuit

Fig. 1: If Example.

[36] synthesizes two types of operators: MERGE and SPLIT

for the merge and split instructions respectively. MERGE

receives multiple inputs and sends one of them to the output

port. SPLIT receives one input and sends it to one of the

multiple output ports. The selection is controlled by the token

received from the control port. For both operators, the left

(right) port is selected under the false (true) condition. Fig. 1c

shows the synthesized circuit for the if example. Apart from

SPLIT and MERGE, a complete set of dataflow components

needed to translate CHP programs includes a token source,

token sink, copy, function computation component, and an

initial token buffer [36]. STF does no optimizations to the

synthesized dataflow circuits, and it only deals with simple

control structures since its input is a CHP program.

Another commonly used operator is the uncontrolled

MERGE (also called MIXER), which is similar to MERGE,

except it does not have a control token port. It waits for an

input token to arrive on any of its data ports and propagates

the first received input to the output port. If multiple input

tokens arrive, the output is non-deterministic; hence, circuits

using MIXERs often impose a mutual exclusion constraint on

input token arrival so as to preserve deterministic execution.

Compared with MERGE, the MIXER will decrease the circuit

pipelining. In our work, we only use controlled MERGE.

To translate C programs, we leverage the production-quality

LLVM open-source compiler framework [2]. The LLVM front-

end translates different programming languages into a common

intermediate representation (IR). LLVM also includes a large

number of optimization passes that re-write and improve the

quality of the IR from a software perspective [2].

The standard data structure used for optimizing software

programs is the control flow graph (CFG) [5]. Nodes in this

graph are basic blocks, which correspond to a collection of

consecutive sequential statements with a single entry point

and single exit point. Outgoing edges from a basic block

correspond to different potential successors, with the successor

chosen based on a specified condition. For-loops and while-

loops result in cycles in the CFG.

III. FLUID DESIGN

LLVM optimization passes read in an IR file, and modify the

IR and CFG to improve the quality. Fluid is implemented as

such pass. It reads in an optimized IR, applies new techniques

discussed below to modify the CFG and IR so that the resulting

program is equivalent to the original one and can be readily

converted into static token form. Then it applies dataflow

circuit optimizations to obtain the final circuit.

IR constructs that perform computation (e.g. addition, divi-

sion, etc.) can be translated into dataflow function blocks in the

usual manner [36]. The challenging part of STF generation is

creating the SPLIT and MERGE circuits correctly, along with

their control flow conditions. We focus on this aspect below.

As discussed above, STF requires that a variable definition

(a “def”) and use occur under the same condition. After

the CFG is constructed using standard techniques [5], Fluid

computes the def-condition and use-condition for each variable

in the program. If the def-condition and the use-condition

for a variable are different, Fluid constructs a delivery circuit

to create a conditional copy of the variable; symmetrically,

it constructs a collection circuit that conditionally selects

the correct version of the variable from multiple conditional

definitions of the variable. We detail this process below.

Our analysis uses the standard compiler notion of domi-

nators. A basic block A dominates B if every control flow

path from entry to B must pass through A. A basic block B

post-dominates A if every path from A to the exit must pass

through B. The immediate dominator for a basic block is its

closest dominator (apart from itself) in the control flow graph.

We impose a canonical form requirement on CFGs which

consists of two parts: (i) every loop has a single-entry and

single-exit point; and (ii) if a basic block has multiple prede-

cessors, then it must post-dominate its immediate dominator.

Section III-D provides techniques to handle a commonly

occurring class of non-canonical CFGs. The loop constraint

means we can handle all loop-carried dependencies (back

edges) using the technique in [36], and ignore those edges

in the CFG for condition extraction below.
A. Condition Extraction

Fluid first extracts the conditions between different ba-

sic blocks in a CFG. Since the canonical CFG has single-

entry/single-exit loops, we can safely divide the entire CFG

into smaller regions: inside each small region (corresponding

to an if/loop-block), it has one enter (exit) block that dominates

(post-dominates) all the internal blocks.
0

1

2

3 4

5

6

𝑐1 𝑐0
𝑐2 1st step

2nd step

3rd step

Fig. 2: CFG for condition extraction.
Fig. 2 shows a CFG that we will use as a running ex-

ample. This CFG can be divided into two smaller regions:

{B1,B2,B3,B4,B5} and {B0,B1,B2,B3,B4,B5,B6}. A block can be-

long to multiple regions, and Fluid assigns it to the smallest



region. The CFG has three branching variables c0, c1 and c2
in B0, B1 and B2 respectively.1

Given a block BB, Fluid uses reverse breadth-first-search

along its predecessors to explore all the paths into BB until it

encounters its immediate dominator. Consider B5 as a starting

point. In the first step, Fluid explores the direct predecessors

of B5: {B1,B3,B4}. The conditions for B3→B5 and B4→B5 are

both empty, and B1→B5 is {c1=1}. In the second step, Fluid

further explores {B3,B4}’s predecessor B2. B1 is the immediate

dominator of B5, so the search stops at it. Now Fluid records

the conditions for B2→B5: {c2=0},{c2=1}. In the third step,

Fluid explores B2’s predecessor B1, and updates the conditions

for B1→B5 to be: {c1=1}, {c1=0,c2=0} and {c1=0,c2=1}.

Since loops in a canonical CFG are single-entry/single-exit,

conditions involving loops are only considered internally for

continuing/exiting the loops as well as the first iteration of the

loop [36], and don’t affect outside basic blocks.

The merging operation. A CFG can have multiple paths

between two basic blocks, each corresponding to a chain of

conditions. However, two condition chains can be merged if

they differ in one condition which is complementary in the

two chains2. Fig. 2 has two condition chains from B2 to B5:

{c2=0} along B2→B3→B5, and {c2=1} along B2→B4→B5. c2 is

complementary in the two chains, so the merged chain has

condition {}, and we can collapse the two paths treating it as

a single virtual path B2→B5. We repeatedly apply this merge

operation, until no paths can be merged.

Theorem 1. In a canonical CFG, if there are multiple merged

paths for src→dst, then dst cannot post-dominate src.

Proof. For loop-free segments of the CFG, we prove the

result by contradiction. Suppose dst post-dominates src. Any

path from src that adds conditions of the form ci = 0 or ci = 1
must also have a branch that includes the other condition,

and they must all re-converge prior to/at dst since dst post-

dominates src. Hence, all possible conditions associated with

paths from src to dst exist, and they can be merged into one

path src→dst. This contradicts our multi-path assumption, so

dst cannot post-dominate src.

If src and dst are within the same loop, we can repeat

the argument above for the sub-CFG that only includes the

loop body. Otherwise suppose src belongs to loop1 and dst

belongs to loop2. Since all loops are single-entry-single-exit, we

divide src→dst into src→loop1exit→loop2entry→dst, and repeat

the argument for each segment. The case when only one of

src/dst belong to a loop is similar.
Lemma 2. If dst unconditionally connects 3 to dst2, then the

number of merged paths for src→dst equals that for src→dst2.

Proof. Since dst connects to dst2 unconditionally, dst is the

1For all of the CFGs in this paper, we assume the left branch is the false
branch, and the right branch is the true branch.

2In if-statements and loops, we have two-way branching so this is naturally
satisfied. To simplify our presentation, we assume multi-way branches like
those from switch statements are transformed into two-way branches. The
extension to multi-way branches is straightforward.

3If there is a path between src and dst, then we say src connects to dst.

immediate dominator of dst2. We can divide src→dst2 into

src→dst and dst→dst2. The condition for dst→dst2 is {}, so the

conditions and the number of merged paths for src→dst2 match

that for src→dst.

Our main result that is the basis for generating static token

form is the following:

Theorem 3. Given two basic blocks src and dst in a canon-

ical CFG, there is at most one merged path from src to dst.

Proof. If dst is not reachable from src, then there is no path

between them and we are done. If dst has one predecessor,

then we traverse the CFG backward until we reach a basic

block with multiple predecessors, or we reach src. If we reach

src, the result trivially holds. Otherwise, call the new basic

block dst′. By Lemma 2, the merged path count from src to

dst matches src to dst′.

dst′ has more than one direct predecessor and is reachable

from src. Suppose its immediate dominator is iDom. By the

canonical form assumption, dst′ post-dominates iDom. Also,

any path from program entry that contains src and dst′ must

include iDom. If that path has iDom before src, then iDom must

also dominate src; otherwise we would have found a path from

program entry to src to dst′ without iDom—a contradiction.

Hence, there are two cases:

Case 1: iDom dominates src, then dst′ post-dominates src as

well. According to Theorem 1, there exists only one merged

path for (src, dst′), and the proof is done.

Case 2: iDom does not dominate src, in which case iDom must

be on any path from src to dst′; we divide src→dst′ into two

parts: src→iDom and iDom→dst′. There is one merged path for

iDom→dst′, so we truncate src→dst′ to src→iDom. By repeating

this, we eventually reduce Case 2 to Case 1.

B. Delivery and Collection Circuit Construction
For a token defined in src block and used in dst block,

Fluid construct a delivery circuit to conditionally propagate it.

Calculating the delivery conditions. In Section III-A, Fluid
records the entering conditions into dst from its predecessors

that are dominated by its immediate dominator iDom. If src→

dst can be found, we can directly get the delivery conditions.

Otherwise, we divide src→dst into src→iDom and iDom→dst.

The conditions for iDom→dst is known, so we just need to

calculate the conditions for src→iDom by applying the same

rule iteratively. Based on Theorem 3, there exists only one

condition chain for any src→dst, so we can simply append

these conditions together to form the final conditions.

Synthesizing the delivery circuit. Fluid synthesizes SPLITs

for each unique condition variable in the delivery conditions

and connects them following the same order.

Fig. 3a shows the same CFG as in Fig. 2. x is defined

in B0 and used in B2, and the delivery condition for B0→B2

is {c0=0,c1=0}. In Fig. 3b, Fluid synthesizes SPLIT0 (in B0)

to generates x1 for B1 when {c0=0}, and SPLIT1 (in B1) to

generate x2 for B2 when {c1=0}.

Collection Circuit Construction.

If token y in dst has multiple reaching definitions

y1, y2, ..., yn in dst’s n predecessors, Fluid synthesizes the



collection circuit to pick the right token. Suppose dst’s im-

mediate dominator is iDom. Starting from iDom, the program

will traverse through different paths into dst’s predecessors

before entering into dst. The conditions associated with each

traversal are the collection conditions for the corresponding

predecessor. Then, Fluid synthesizes MERGEs for each unique

condition variable in the collection conditions and connects

them in the reverse order of the collection conditions.

0

1

2

3 4

5

6

𝑥, 𝑐0
𝑐2

𝑦

𝑐1, 𝑦2
𝑦0 𝑦1

𝑥1𝑥2

(a) CDFG

0

𝑥𝑥1
𝑥2

𝑐0𝑐11

(b) Delivery circuit for B0→B2

0

1

𝑐2 𝑐1
𝑦0 𝑦1 𝑦2

𝑦
(c) Collection circuit for B5

Fig. 3: Delivery and collection circuits.
In Fig. 3a, B5 receives {y0,y1,y2} from {B3,B4,B1}, and

assigns the final value to y. The collection conditions are:

B3→B5:{c1=0,c2=0} B4→B5:{c1=0,c2=1} B1→B5:{c1=1}

Fig. 3c shows the synthesized MERGE tree in B5.

C. Control Token Generation
The delivery and collection circuits consist of MERGEs and

SPLITs that require the control tokens, which could also need

delivery/collection circuits if used/defined conditionally.

0 𝑐0𝑐1
𝑐1′

(a) c
′

1 generation

𝑐2′

0 𝑐0𝑐1′
𝑐2

1

(b) c
′

2 generation

𝑥2

0

𝑥𝑥1
𝑥2

𝑐0𝑐1′1

(c) New delivery circuit

0

1

𝑐2′ 𝑐1′
𝑦0 𝑦1 𝑦2

𝑦
(d) New collection circuit

Fig. 4: Control token generation.

In Fig. 3a, suppose c0, c1 and c2 are all defined in B0. Then

Fluid will conditionally generate c′
1

for B0→B1 (Fig. 4a) and

c′
2

for B0→B2 (Fig. 4b) as well as the new delivery circuit for

B0→B2 (Fig. 4c) and the collection circuit for B5 (Fig. 4d).

D. Handling Non-canonical CFGs
Multi-Path problem. We handle the case where there are

multiple merged paths for src→dst.

Fig. 5a shows a CFG with four basic blocks, and c0 and

c1 are the condition variables for B0 and B1 respectively. x0

is defined in B0 and used in B2, so and needs a delivery

circuit. Fig. 5b shows the delivery circuit for B0→B2. We would

create SPLIT0 (in B0) to conditionally generate x1 (for B1)

and x2 (for B2). We also need SPLIT1 (in B1) to conditionally

generate x3 (for B2). B2 has two incoming tokens: x2 with

collection condition {c0=1}, and x3 with collection condition

{c0=0,c1=1}. Hence a MERGE0 and MERGE1 are needed to

select them. However, c0 and c1 are defined in B0 and B1

respectively, so MERGE0 and MERGE1 (in B2) cannot directly

use them. In Fig. 5c, we attempt to introduce split2 to

0

1

2

𝑐1
𝑥0, 𝑐0

3

𝑥1
𝑥
𝑥2𝑥3

(a) CFG.

𝑥0
𝑥1

𝑥2𝑥3
𝑐0𝑐1

𝑐1
𝑐0 𝑥

0

0

1

1

Delivery circuit:𝐵0 → 𝐵2

(b) Strawman delivery
circuit.

0

𝑥0

0

1

𝑥1
𝑥2𝑥3

𝑐0𝑐1
𝑐0 Delivery 

circuit:𝐵0 → 𝐵2
𝑐1

𝑥
2

1

Delivery circuit:𝐵0 → 𝐵2

(c) Dilemma in building
the delivery circuit.

Fig. 5: Multi-Path Example.

conditionally propagate c1 to B2. However, c0 is defined in

B0 and used in B2, and it requires the delivery circuit for

B0→B2—the same circuit we were attempting to construct for

x! Hence, the standard approach to constructing a dataflow

graph fails if there are multiple paths after the merging

operation. Fig. 6a illustrates the multi-path problem in a

src

dst

{𝑝𝑟𝑒𝑑𝑚+1, … , 𝑝𝑟𝑒𝑑𝑛}{𝑝𝑟𝑒𝑑1, … , 𝑝𝑟𝑒𝑑𝑚}
iPdom

{𝑃𝑅𝐸𝐷𝑚+1, … , 𝑃𝑅𝐸𝐷𝑛}
(a) Illustration.

src

fakeBB

{𝑝𝑟𝑒𝑑𝑚+1, … , 𝑝𝑟𝑒𝑑𝑛}{𝑝𝑟𝑒𝑑1, … , 𝑝𝑟𝑒𝑑𝑚}
{𝑃𝑅𝐸𝐷𝑚+1, … , 𝑃𝑅𝐸𝐷𝑛}

iPdom

dst

flag

1 1 0

(b) Solution.

Fig. 6: Multi-Path Problem and Solution.

CFG. A broken line means there exist paths between two

blocks, and the solid line is a direct connection. Assume

there are multiple paths for src→dst which cannot be merged

into one path. By Theorem 1, dst cannot post-dominate src,

so it cannot post-dominate its n direct predecessors between

src→dst either.4 We partition these n predecessors into two

sets: {pred1,...,predm} which are post-dominated by dst, and

{predm+1,...,predn} which are not post-dominated by dst. Let

iPdom be the immediate post-dominator of src. Then there

exist paths 5 between {predm+1,...,predn} and iPdom without

passing through dst. Among these paths, suppose the direct

predecessors of iPdom are {PREDm+1,...,PREDn}.

Fig. 6b is our proposed solution. The main idea is to modify

the CFG and introduce a new basic block that post-dominates

src. This new block fakeBB replaces dst, i.e., all of dst’s

predecessors {pred1,...,pedn} now point to fakeBB directly. In

addition, we also modify {PREDm+1,...,PREDn} to point to

fakeBB directly. Thus, fakeBB now post-dominates src, and

there will be only one merged path for src→fakeBB.

4Note that dst could have other predecessors that do not belong to the
paths for src→dst, and they are not relevant to the multi-path problem.

5The paths between a set and a node dst are the collection of paths between
each node in the set and dst.



To preserve the correctness, we add edges from fakeBB

to iPdom and dst respectively, and a fresh condition vari-

able flag which takes inputs from its direct predecessors

{pred1,...,predn,PREDm+1,...,PREDn}. If flag is true, fakeBB

jumps to dst; if flag is false, fakeBB jumps to iPdom.

{pred1,...,predn} have direct connections to dst, so these

blocks will propagate token 1 to flag following the

same conditions, making fakeBB jump to dst. Similarly, if

{predm+1,...,predn} jumps to {PREDm+1,...,PREDn}, they will

propagate 0 to the flag, making fakeBB jump to iPdom. The

modified CFG has the same behavior as the original one.

The above transformation reduces the number of (src,dst)

pairs that cause the multi-path problem in a CFG. As Fig. 6b

shows, we added a new block fakeBB, and three groups of new

connections: {PREDm+1,...,PREDn}→fakeBB, fakeBB→iPdom

and fakeBB→dst. Since fakeBB post-dominates src, there

exists only one merged path for src→fakeBB. Furthermore,

fakeBB directly connects to iPdom and dst, which does

not change the post-dominance relationship between dst and

iPdom, so fakeBB does not introduce new multi-path pair.

Therefore, our solution can eliminate one multi-path pair

(src→dst in Fig. 6a).

Note that the fakeBB does not add any additional com-

putation instructions; instead, it just serves as a intermediate

step when transferring tokens for src→dst, and the overhead is

minimum.

Irregular Loops. We handle the case where a loop has

𝐿𝑜𝑜𝑝𝑒𝑛𝑡𝑒𝑟𝐵𝐵𝑑𝑖𝑣𝑒𝑟𝑔𝑒
𝐵𝐵𝑒𝑥𝑖𝑡1 𝐵𝐵𝑒𝑥𝑖𝑡2
{𝑠𝑢𝑐1} {𝑠𝑢𝑐2}𝒍𝒐𝒐𝒑𝑽𝒂𝒍

(a) Illustration.

𝐿𝑜𝑜𝑝𝑒𝑛𝑡𝑒𝑟𝐵𝐵𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝐵𝐵𝑒𝑥𝑖𝑡1 𝐵𝐵𝑒𝑥𝑖𝑡2𝑓𝑎𝑘𝑒𝑒𝑥𝑖𝑡
𝑓𝑎𝑘𝑒𝑠𝑢𝑐{𝑠𝑢𝑐1} {𝑠𝑢𝑐2}

𝒍𝒐𝒐𝒑𝑽𝒂𝒍; 0
1; 1

𝒇𝒍𝒂𝒈𝟏
𝒇𝒍𝒂𝒈𝟐

(b) Solution.

Fig. 7: Irregular loop and Solution.

more than one exit block. Fig. 7a shows the irregular loop.

When the loop condition variable loopV al is 1, the loop exit

block BBexit1 exits the loop and jumps to its successor set

{suc1}; otherwise the loop continues. However, starting from

BBdiverge, there is a second exit block BBexit2. Fig. 7b shows

the solution. We create two new blocks fakeexit and fakesuc.

The new loop condition variable is flag1. If BBexit2 is executed,

flag1 becomes 1 and the loop exits; otherwise flag1 equals

to loopV al. Therefore, the new CFG has the same behavior

of running/exiting the loop as the original. When the loop

exits, fakeexit jumps to fakesuc. If the loop exits from BBexit1,

flag2 equals to 0 and {suc1} will be executed. If the loop exits

from BBexit2, flag2 equals to 1 and {suc2} will be executed.

Therefore, the new CFG has the same behavior after exiting

the loop as the original one.

Note that Fluid cannot handle the loops with more than one

entry blocks, which could be generated from goto statements.

A canonical CFG—an assumption implicit in previous work

like [36]—requires that each if statement and loop statement

has exactly one exit block. Unfortunately, it is easy to write

software programs that violate this requirement. Examples of

violations include loop statements that include a break, or

a return inside any if or loop statement, both of which are

common programming patterns. With the method proposed

above, Fluid can process arbitrary goto-free programs.

IV. DATAFLOW GRAPH OPTIMIZATIONS

Fluid converts the optimized LLVM IR into STF form,

which is essentially a dataflow graph. In this section, we focus

on optimizing the dataflow graph.

A. Operator clustering

LLVM encodes expressions into three-address IR instruc-

tions, and Fluid maps each of them into a dataflow operator,

which is an independent pipelined process. For complex

expressions, Fluid generates many dataflow operators and

misses opportunities for logic optimizations across expres-

sions. Therefore, it is desirable to group them together.

The control nodes (i.e., MERGE and SPLIT ) will divide

the whole graph into distinct control regions, and operator

clustering is only applicable to nodes within the same control

region. To identify them, we assign colors to the graph edge

based on the condition it is activated. The in/out edges to a

function node have the same color, but the MERGE and SPLIT

node will update the output edge color from the input edge

color. The function nodes whose output edges have the same

color can now be safely clustered.

B. MERGE and SPLIT Tree Flattening

In Section III-B, Fluid synthesizes MERGEs and SPLITs

for each unique condition variable in the collection and

delivery conditions, potentially generating a tree of 2-way

MERGEs and SPLITs. Fluid further flattens them into the N-

way MERGE and SPLIT , which reduce the delay, area and

energy consumption. The control for the flattened block is

generated by tracing the original control tokens to regions

that have the same color as the single data input (SPLIT )

or output (MERGE) and computing the appropriate multi-bit

control value.

0𝑐0𝑐1 1

(a) Edge coloring

0{𝑐2; 𝑐1}
𝑦0 𝑦1 𝑦2

𝑦
(b) 3-way MERGE

Fig. 8: Dataflow optimizations.

Fig. 8a shows the edge coloring for the delivery circuit

(Fig. 3b). Fig. 8b shows the 3-way MERGE synthesized for

the collection circuit (Fig. 3c).

V. EVALUATION.

A. Control Circuit Synthesis

Each dataflow graph component is translated into a unique

pipeline stage, and the data transfers between pipelined stages



TABLE I: Performance of LegUp 4.0 and two commercial HLS tools

Commercial 1 Commercial 2 Legup

Benchmark Delay Area Energy Leak. Throu. Delay Area Energy Leak. Throu. Delay Area Energy Leak. Throu.

adpcm-u 6000 9846 81 4616 167 3750 6825 22 2123 267 6000 8013 66 3405 167
dfadd-a 6000 8780 55 3282 167 6250 12154 54 3241 160 9000 10941 77 2964 111

differential 130000 8771 1861 4208 8 217778 25491 6732 8907 5 203333 15948 3451 5061 5
gsm-d 20667 2349 55 776 48 23333 9502 175 2813 43 28750 9682 176 2934 35

mpeng-d 6000 4096 28 1651 167 45000 11305 470 3587 22 42222 6327 267 2565 24

arith 5500 8584 83 4512 182 6250 13026 88 4106 160 11250 13156 204 5074 89
if 4000 3128 25 1273 250 3750 10482 41 3006 267 10000 15342 153 4342 100

for0 10500 2082 22 800 95 6250 4396 25 1376 160 16667 3974 47 1237 60
for1 25600 3447 149 1421 39 6250 3949 23 1245 160 35000 4065 127 1220 29

if-loop 11000 4699 86 1960 91 7500 14034 105 4119 133 13750 18772 257 5432 73

Ratio1 0.53 0.61 0.43 0.73 1.87 0.83 1.22 0.95 1.10 1.20 1 1 1 1 1
Ratio2 0.59 0.43 0.42 0.59 1.69 0.38 0.89 0.34 0.86 2.65 1 1 1 1 1

use the bundled data protocol [25]. The control for each

pipelined stage uses micro-pipelines [34].

Fig. 9 shows a standard bundled data circuit template that

we use in our evaluations [33]. The control path is the upper

part in bold lines, and the data path is within the dashed boxes.

The stage logic implements the function in the dataflow node,

and the control circuity implements the four-phase handshake

using a Muller C-element (C). When the input token is ready

(in.rdy signal is high), and the successor stage is empty

(out.ack is low), C’s output signal s becomes high, which

triggers data capture using a pulse generator G and latch, and

then the execution of the stage logic. When the output token

is ready, the out.rdy signal is set to high. After the next stage

captures this data, it will set the acknowledge signal out.ack

to high, allowing the current stage to reset. Delay lines (15%

slower than the worse-case delay of the stage logic) are added

to ensure successful data capturing and processing.

B. Simulation methodology

In order to simulate and measure the performance of

synthesized asynchronous circuits, we built a discrete-event

simulator that can simulate the execution of the bundled data

circuits in Fig. 9. Each pipelined process fetches data from

the predecessors and sends out result to its successors, and

the simulator simulates the 4-phase handshake for process

communication. Performance numbers for different circuit

components are extracted using commercial tools, and used

to annotate the discrete event simulator. Specifically, we use

HSPICE to simulate the control circuit in a 28nm process

technology. For the stage datapath logic (combinational), we

used commercial logic synthesis tools and a commercial 28nm

standard cell library to determine performance/power/area.

The delay of each stage is the sum of the delay of the control

circuit and the stage logic (as shown in Fig. 9). Synchronous

results were obtained using the same cell library and same

commercial logic synthesis tool.

𝑖𝑛. 𝑟𝑑𝑦

𝑖𝑛. 𝑎𝑐𝑘

𝑜𝑢𝑡. 𝑟𝑑𝑦

𝑜𝑢𝑡. 𝑎𝑐𝑘

C

𝑜𝑢𝑡𝑝𝑢𝑡

𝑑𝑒𝑙𝑎𝑦

𝑖𝑛𝑝𝑢𝑡

𝑠

G

𝐷 𝑄

𝑑
𝑒
𝑙𝑎
𝑦

Stage

LogicL
at
ch

Fig. 9: Bundled-data circuit template.

C. Experimental setup and results

We synthesize the following microbenchmarks: (i) arith,

which calculates y = (x0 + x1) × (x2 + x3) + (x4 × x5) ×
(x6 × x7); (ii) if, with the true branch does addition and the

false branch does division. The true branch will be triggered;

(iii) for0 and for1. for0 has a single loop and for1 has two

nested loops. Both count the number of iterations; (iv) if-loop

which has an if statement: the true branch has a one-layer loop

(does counting) and the false branch does division. The true

branch is triggered.

We also extract five kernel functions from five applications

which are mostly taken from an HLS benchmark suite [3]

or used in synchronous ASIC synthesis benchmarking [28]:

(i) differential, a differential equation solver [28]; (ii) adpcm-

u, the uppol2 function from adpcm [3]; (iii) dfadd-a. The add

function from dfadd [3]; (iv) gsm-d. The gsm div function

from gsm [3]; (v) mpeg-d. The decode function from mpeg [3].

We compare our tool with LegUp v4.0 which is a commonly

used academic HLS tool, and two commercial HLS tools

Commercial 1 and Commercial 2. Furthermore, we have Fluid

(vanilla version of Fluid) and Fluid-opt (Fluid with dataflow

optimizations). We use the following performance metrics:

Delay (ps), Area (µm2), Energy (pJ), LeakPower(nW ) and

Throughput (MHz). We run each benchmark twenty times

with random data and use averages across the runs to report

benchmark statistics. We use the same methodology to collect

results for both Fluid and the other HLS tools.

Table II shows the performance of our system, and Table I

shows other tools. Each table has three sections: the first shows

the performance of HLS benchmarks, and the second shows

microbenchmarks. To summarize across benchmarks, we use

the geometric mean of normalized performance compared

to LegUp; Ratio1 corresponds to the HLS benchmarks, and

Ratio2 corresponds to microbenchmarks.

Delay. Fluid has longer delay for two reasons: 1) it fails to

do logic optimizations for operator clusters; 2) it synthesizes

MERGEs and SPLITs which contribute to the extra delay.

Fluid-opt can avoid the extra delay from reason 1. For if

benchmark, Fluid and Fluid-opt perform well because they

generate asynchronous circuits whose actual delay depends on

the activated processes during runtime (i.e., the addition). The

other tools, however, are limited by the worst-case scenario

(e.g. division). Fluid-opt reduces delay by 1.64X and 1.92X

for HLS benchmarks and microbenchmarks respectively.

Area and Leakage. Fluid has overhead for control and

MERGEs and SPLITs, but it avoids constructing a global state



TABLE II: Fluid and Fluid-opt Performance

Fluid Fluid-opt

Benchmark Delay Area Energy Leak. Throu. Delay Area Energy Leak. Throu.

adpcm-u 11104 33814 84 10331 367 4588 7381 10 2424 560
dfadd-a 9445 132021 31 35081 212 7415 64258 8 18905 278

differential 226516 19051 1545 6217 4 165814 11180 1007 3365 6
gsm-d 41378 6301 95 1721 25 26861 5274 51 1607 39

mpeng-d 15844 22233 24 7147 99 7523 7285 5 2231 193

arith 4378 10872 20 3634 563 3548 9268 29 3058 289
if 1858 8506 2 2926 854 1566 1650 1 639 1754

for0 19680 2596 55 755 52 13628 2080 18 714 80
for1 40079 4927 175 1410 26 30843 4356 61 1341 36

if-loop 19946 10428 56 3469 52 14458 3410 18 1252 81

Ratio1 1.03 2.68 0.41 2.35 1.63 0.61 1.19 0.12 1.08 2.50
Ratio2 0.68 0.73 0.21 0.74 1.99 0.52 0.38 0.11 0.42 2.54

adpcm

0.63 1.24 1.85

0.85

2.54

4.22

0.15

0.71

1.27

0.62

1.82

3.03

0.30

0.65

1.00

D

A

E

L

1/T

Fluid

Fluid-opt

LegUp

Comm1

Comm2

dfadd

0.67 0.86 1.05

0.80

6.44

12.07

0.11

0.55

1.00

1.00

6.42

11.84

0.40

0.70

1.00

D

A

E

L

1/T

Fluid

Fluid-opt

LegUp

Comm1

Comm2

differential

0.64 0.88 1.11

0.55

1.08

1.60

0.29

1.12

1.95

0.66

1.21

1.76

0.64

0.87

1.10

D

A

E

L

1/T

Fluid

Fluid-opt

LegUp

Comm1

Comm2

gsm

0.72 1.08 1.44

0.24

0.62

1.00

0.29

0.65

1.00

0.26

0.63

1.00

0.72

1.06

1.41

D

A

E

L

1/T

Fluid

Fluid-opt

LegUp

Comm1

Comm2

mpeg

0.14 0.60 1.07

0.65

2.08

3.51

0.02

0.89

1.76

0.64

1.72

2.79

0.12

0.59

1.06

D

A

E

L

1/T

Fluid

Fluid-opt

LegUp

Comm1

Comm2

geometric mean

0.53 0.78 1.03

0.61

1.65

2.68

0.12

0.56

1.00

0.73

1.54

2.35

0.40

0.70

1.00

D

A

E

L

1/T

Fluid

Fluid-opt

LegUp

Comm1

Comm2

Fig. 10: Normalized per-benchmark performance: delay (D), area (A), energy (E), leakage power (L), and throughput-inv (1/T)

machine to control program execution. Fluid-opt significantly

improves area compared to Fluid due to operator clustering.

Fluid-opt increases HLS benchmark area by 1.19X, while

reducing it by 2.63X for microbenchmarks. The area penalty is

particularly severe for dfadd-a, which has many nested if and

loop statements, increasing control overhead. Leakage power

results are qualitatively similar to those for area.

Energy. Our tool pays extra energy for control circuits, but it

saves energy by only triggering the processes that receive the

input data. Fluid-opt reduces energy by 8.33X and 9.09X for

HLS benchmarks and microbenchmarks compared to LegUp.

Throughput. Our tool synthesizes pipelined circuits, increas-

ing throughput. Note that operator clustering could increase

throughput by reducing loop latency, but also reduces pipelin-

ing which harms throughput. The result shows that Fluid-opt

has higher throughput than Fluid for most benchmarks. Fluid-

opt increases the throughput by 2.5X for HLS benchmarks,

and 2.54X for microbenchmarks compared to LegUp.

Overall performance Fig. 10 shows per-benchmark spider

plots of normalized performance as well as the geometric mean

of the normalized performance of HLS benchmarks. We plot

the inverse of the normalized throughput, so for all metrics

lower is better. Fluid-opt achieved a good balance among the

five metrics for most of the benchmarks. Note that Fluid by

itself rarely compares favorably against commercial HLS tools,

so the dataflow graph optimizations are an essential ingredient

of the overall flow.

VI. RELATED WORK

Asynchronous synthesis. [7], [11], [18] are based on syntax-

directed translation of the syntax of a message-passing hard-

ware description language (HDL) into an asynchronous circuit.

[40] uses Petri-net based synthesis of timed circuits from a

message-passing HDL. [26], [27] use scheduling analysis sim-

ilar to synchronous HLS tools, and emit a HDL program that

is mapped to asynchronous circuits via syntax-directed trans-

lation. Unlike these tools, Fluid directly generates dataflow

graphs and circuits.

[19] proposes a source-to-source transformation with con-

currency optimizations. [20] proposes a new scheduling algo-

rithm for generating asynchronous design out of synchronous

one by removing the discrete time assumption. [36], [39] syn-

thesizes circuits in a data-driven manner using CFGs, targetting

pipelined processes. [35] allows designers to explicitly express

the data-flow. Fluid can create dataflow graphs from software

programs for a larger class of CFGs compared to them.

[9], [38] compiles C programs to Pegasus [10] IR, which is

later synthesized to bundled data circuit. This work only uses

conditional tokens to implement loops, while if-statements

compute both branches and select the result. Fluid uses condi-

tional execution for if-statements as well to save energy, and



handles more complex CFGs as detailed in Section III.

Dataflow HLS. Some synchronous HLS tools generate elastic

dataflow circuits. [14], [21], [22], [37] directly map software

programs to dataflow circuits. Fluid synthesizes controlled

MERGE (instead of MIXER) to control circuit execution,

which enables better circuit pipelining. Besides, Fluid can

handle more complex program control structures when us-

ing controlled MERGE. Some other works propose domain-

specific languages [1], [4], [8], [13], [31], [32] and special

directives/pragmas [17], [24], [30] to help the synthesis. Fluid,

however, does not require any changes to the source code or

language-level support.

[14] propose a protocol for implementing elastic commu-

nication channels for synchronous systems. [37] uses syntax-

directed translation to map functional programs into dataflow

circuits leveraging the functional programming model. [21]

generates elastic circuits, and optimizes for memory access.

CAPH [32] is a domain-specific language for streaming appli-

cations. [31] extends [32] for CGRA. CAL [1] is designed for

dataflow programming with actors, and OpenDF [8] converts

CAL code to HDL. [13] generates elastic circuits for stencil

computation. Fluid uses standard C as input, includes opti-

mizations for SPLITs/MERGEs, and handles complex CFGs.

[17] uses directives to control array partitioning, inlining

options, etc. for mapreduce programs. [24] generates HLS

directives to partition the program into different clock do-

mains. [30] uses LLVM to generate IR from C programs,

applies optimizations such as vectorization and loop unrolling

based on resource models. After that, these works [17], [24],

[30] rely on the commercial tools to generate the circuits.

Fluid is orthogonal to these approaches and can serve as an

alternative back-end for asynchronous circuit generation.

Without the complex CFG support in Fluid, dfadd, adpcm,

gsm cannot be synthesized into dataflow circuit. Fluid also has

several dataflow optimizations, including that for SPLIT and

MERGE nodes. Lastly, Fluid compares favorably with several

HLS tools (including commercial tools).

VII. SUMMARY
We propose a new solution to dataflow circuit genera-

tion that can handle complex control structures with several

dataflow optimizations. We compare against other HLS tools

and show improvements in terms of energy and throughput. In

future work, we plan to incorporate additional dataflow graph

optimizations to further improve the quality of results. Also,

we plan to explore synchronous implementations (e.g. [29]) to

evaluate synchronous/asynchronous trade-offs.

ACKNOWLEDGMENT
The research in this paper was supported in part by DARPA

IDEA grant FA8650-18-2-7850, and in part by DARPA POSH

grant HR001117S0054-FP-042.

REFERENCES

[1] https://ptolemy.berkeley.edu/papers/03/Cal/.
[2] https://llvm.org/.
[3] http://www.ertl.jp/chstone/.
[4] M. Abid et al. System level synthesis of dataflow programs: Hevc

decoder case study. In Proceedings of the 2013 Electronic System Level

Synthesis Conference, 2013.

[5] A. V. Aho et al. Compilers: Principles, Techniques, and Tools. Addison-
Wesley series in computer science / World student series edition.

[6] C. S. Ananian and M. Rinard. Static single information form. Technical
report, M.S. thesis, MIT, 1999.

[7] Berkel et al. Handshake Circuits: An Asynchronous Architecture for

VLSI Programming. Cambridge International Series on Parallel Com-
putation. Cambridge University Press, 1994.

[8] S. S. Bhattacharyya et al. Opendf: a dataflow toolset for reconfigurable
hardware and multicore systems. SIGARCH Comput. Archit. News.

[9] M. Budiu et al. Spatial computation. In ASPLOS 2004.
[10] M. Budiu et al. Pegasus: An efficient intermediate representation.

Technical report, Carnegie Mellon University, 2002.
[11] S. M. Burns and A. J. Martin. Syntax-directed Translation of Concurrent

Programs into Self-timed Circuits, pages 35–50. 1988.
[12] A. Canis et al. Legup: high-level synthesis for fpga-based proces-

sor/accelerator systems. In FPGA 2011.
[13] Y. Chi et al. Soda: Stencil with optimized dataflow architecture. In

ICCAD, pages 1–8, 2018.
[14] J. Cortadella et al. Synthesis of synchronous elastic architectures. In

DAC 2006.
[15] J. Cortadella et al. Desynchronization: Synthesis of asynchronous cir-

cuits from synchronous specifications. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 2006.
[16] R. Cytron et al. Efficiently computing static single assignment form and

the control dependence graph. ACM Trans. Program. Lang. Syst., 1991.
[17] D. Diamantopoulos et al. High-level synthesizable dataflow mapreduce

accelerator for fpga-coupled data centers. In SAMOS, 2015.
[18] D. A. Edwards et al. Balsa: An asynchronous hardware synthesis

language. Comput. J., 45(1):12–18, 2002.
[19] J. Hansen et al. Concurrency-enhancing transformations for asyn-

chronous behavioral specifications: A data-driven approach. In ASYNC

2008.
[20] J. Hansen et al. A fast branch-and-bound approach to high-level

synthesis of asynchronous systems. In ASYNC 2010.
[21] L. Josipovic et al. Dynamically scheduled high-level synthesis. In FPGA

2018.
[22] L. Josipovic, A. Guerrieri, and P. Ienne. Synthesizing general-purpose

code into dynamically scheduled circuits. IEEE Circuits and Systems

Magazine, 21(2):97–118, 2021.
[23] D. Koch et al., editors. FPGAs for Software Programmers. Springer.
[24] T. Liang et al. Hi-clockflow: Multi-clock dataflow automation and

throughput optimization in high-level synthesis. In ICCAD, 2019.
[25] C. Mead et al. Introduction to VLSI systems. Addison-Wesley, 1980.
[26] S. F. Nielsen et al. A behavioral synthesis frontend to the haste/tide

design flow. In ASYNC 2009.
[27] S. F. Nielsen et al. Towards behavioral synthesis of asynchronous circuits

- an implementation template targeting syntax directed compilation. In
DSD 2004.

[28] P. G. Paulin et al. Force-directed scheduling for the behavioral synthesis
of asics. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 8(6):661–679, 1989.
[29] A. Peeters et al. Synchronous handshake circuits. In ASYNC 2001.
[30] F. Peverelli et al. Oxigen: A tool for automatic acceleration of c functions

into dataflow fpga-based kernels. In IPDPSW, 2018.
[31] C. Rubattu et al. Dataflow-functional high-level synthesis for coarse-

grained reconfigurable accelerators. IEEE Embedded Systems Letters.
[32] J. Sérot et al. CAPH: A Language for Implementing Stream-Processing

Applications on FPGAs. 2013.
[33] J. Sparso et al. Principles asynchronous circuit design. Springer.
[34] I. E. Sutherland. Micropipelines. Communications of the ACM, 1989.
[35] S. Taylor et al. Automatic compilation of data-driven circuits. In ASYNC

2008.
[36] J. Teifel et al. Static tokens: using dataflow to automate concurrent

pipeline synthesis. In ASYNC 2004.
[37] R. Townsend et al. From functional programs to pipelined dataflow

circuits. In Proceedings of the 26th International Conference on

Compiler Construction, 2017.
[38] G. Venkataramani et al. C to asynchronous dataflow circuits: An end-

to-end toolflow. In IWLS, 2004.
[39] C. G. Wong and A. J. Martin. High-level synthesis of asynchronous

systems by data-driven decomposition. In DAC 2003.
[40] T. Yoneda et al. High level synthesis of timed asynchronous circuits. In

ASYNC 2005.


