
Automated Synthesis for Asynchronous FPGAs

Song Peng, David Fang, John Teifel,
∗

and Rajit Manohar
Computer Systems Laboratory

Cornell University
Ithaca, NY 14853, USA

{speng,fang,teifel,rajit}@csl.cornell.edu

ABSTRACT
We present an automatic logic synthesis method targeted for high-
performance asynchronous FPGA (AFPGA) architectures. Our method
transforms sequential programs as well as high-level descriptions
of asynchronous circuits into fine-grain asynchronous process netlists
suitable for an AFPGA. The resulting circuits are inherently pipelined,
and can be physically mapped onto our AFPGA with standard par-
titioning and place-and-route algorithms. For a wide variety of
benchmarks, our automatic synthesis method not only yields com-
parable logic densities and performance to those achieved by hand
placement, but also attains a throughput close to the peak perfor-
mance of the FPGA.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Programming—
Program Synthesis

General Terms
Design

Keywords
Asynchronous circuits, automated synthesis, programmable logic

1. INTRODUCTION
FPGAs are a popular technology for system prototyping due to

their short turnaround time and low cost. The generality of the logic
that can be implemented on an FPGA results in higher area, higher
power, and lower performance compared to an application-specific
design, but at greatly reduced cost. Interconnect delays in FPGAs
can be large, and the wide variation in interconnect lengths pos-
sible after the mapping process complicates the design of a high-
throughput FPGA. This problem is exacerbated by technology scal-
ing, which causes the ratio of wire to gate delay to increase.

∗John Teifel is now with the Advanced Microelectronics Depart-
ment at Sandia National Laboratories.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’05,February 20–22, 2005, Monterey, California, USA.
Copyright 2005 ACM 1-59593-029-9/05/0002 ...$5.00.

Asynchronous FPGA design was proposed as a way to combat
the problems of clock distribution in FPGAs, as well as to exploit
the data-dependent nature of circuit delays by not having to time
the circuit using the worst-case delay path [7]. However, mapping
asynchronous logic gates into a fixed set of standard gates from the
proposed FPGA architecture was a very complex task. Some chal-
lenging requirements imposed by the FPGA architecture that the
CAD tools had to deal with included: (i) the isochronic fork as-
sumption, which corresponded to ensuring a bound on the relative
interconnect delay between the endpoints of the fanout of a gate;
(ii) the hazard-free decomposition requirement, where a complex
logic gate had to be mapped to the fixed set of gates present in the
FPGA without creating any switching hazards.

Recently, we have developed a high-performance asynchronous
FPGA (AFPGA) architecture that is designed using different prin-
ciples [19, 20]. Instead of mapping a collection of asynchronous
gates to the FPGA, we map thefunctionalityof the asynchronous
logic to the FPGA directly. Essentially, our AFPGA corresponds to
an array of single-bit programmable asynchronous pipeline stages,
where the operation of the pipeline stages can be configured to im-
plement various functions. The AFPGA also has a pipelined in-
terconnect, which results in high-throughput operation even in the
presence of long routes.

In this paper we propose a complete CAD flow for automated
synthesis of asynchronous computations onto our pipelined AFPGA
architecture. The synthesized asynchronous computations are then
placed and routed usingvpr [2], and we show that the combina-
tion of our AFPGA architecture and synthesis flow results in high-
performance implementations of several asynchronous benchmark
circuits. Since a subset of our asynchronous design language in-
cludes sequential programs, we can also automatically translate
sequential programs to pipelined, high-performance implementa-
tions. To our knowledge, this is the first complete design flow for
rapid prototyping of pipelined asynchronous circuits with an asyn-
chronous FPGA.

Asynchronous Pipelines. Asynchronous systems are designed as
a collection of concurrent hardware processes that exchange mes-
sages with each other through communication ports. These mes-
sages consist of atomic data items calledtokens. Asynchronous
pipelines are constructed by connecting these ports to each other
using channels, and each channel is allowed only one sender and
one receiver.

Since there is no clock in asynchronous design, processes use
handshake protocols to send and receive tokens in channels. Most
of the channels in our asynchronous FPGA use three wires, two
data wires with dual-rail encoding and one acknowledge wire, and
implement a 4-phase handshake protocol to prevent data from be-
ing overrun or sampled more than once [20]. The cycle time of

a pipeline stage is the time required to complete one four-phase
handshake. Throughput, the inverse of the cycle time, is the rate at
which tokens enter and exit the pipeline.

Logical and physical pipelining are two separate concepts in asyn-
chronous pipelines. A new physical pipeline stage is created by
adding a circuit-level pipeline stage; a logical pipeline stage re-
quires the insertion of a data token. Sometimes inserting a physical
pipeline stage can cause an asynchronous circuit to malfunction.
When an asynchronous circuit operates correctly even if we change
the degree of physical pipelining, it is said to beslack elastic[15].
Our AFPGA is implemented with slack-elastic pipelines. The per-
formance of an asynchronous design often depends on the amount
of physical pipelining in the system.

Slack-elasticity allows a designer to locally add pipelining any-
where in the system without having to “retime” the entire system
to preserve functional correctness, as is required in any non-trivial
synchronous design. Slack-elasticity greatly simplifies logic syn-
thesis and physical mapping because it allows each channel to be
routed through an arbitrary number of pipeline stages in the inter-
connect without causing the circuit to misbehave.

Asynchronous Dataflow Computation. Logic computations in
asynchronous pipelines behave like fine-grained, static, data-driven
dataflow systems [4], where a token traveling through an asynchro-
nous pipeline explicitly indicates the presence or absence of data.
In this model, token values required by multiple destinations must
be explicitly copied. To simplify our AFPGA architecture, we re-
strict our computation model to deterministic dataflow computa-
tions, i.e. computations without arbitration. Such computations are
automatically slack-elastic [15]. Any deterministic asynchronous
dataflow graph can be built from the fundamental dataflow nodes
shown in Figure 1, and their functionality is summarized as fol-
lows:

• Copy: duplicates tokens ton receivers.

• Function: computes arbitrary functions ofn input variables.
It waits until all input tokens have arrived and then generates
a token with computed value at its output channel.

• Merge: performs a two-way controlled token merge and al-
lows tokens to be conditionally read on channels. It receives
a control token from channelG. If the control token has zero
value, it reads a data token from channelA, otherwise it reads
a data token from channelB. Finally, the data token is sent
on channelZ.

• Split: performs a two-way controlled token split and allows
tokens to be conditionally sent on different channels. It re-
ceives a control token on channelG and a data token on chan-
nel A. If the control token has zero value, it sends the data
token onto channelY , otherwise it sends that data token onto
channelZ.

• Sink: consumes the input data token unconditionally.

• Source:generates new data tokens with given constant value.
A new data token won’t be produced until the old one is con-
sumed by the consumer.

• Initializer: upon the AFPGA’s power-up, it resets with an
input data token with given constant value. During normal
operation, it operates like a copy node.

Our AFPGA implements bit-level asynchronous dataflow nodes.
By building multi-bit dataflow nodes from these bit-level FPGA

nodes, we can prototype arbitrary asynchronous computations with
an AFPGA.

The asynchronous FPGA design [20] uses a standard “island-
style” FPGA architecture as shown in Figure 2, which is composed
of logic blocks surrounded by programmable interconnect tracks.
Each logic block has four inputs and four outputs, and they are
equally distributed on the north, east, south and west edges. The
routing tracks are dual-rail encoded and go through switch boxes.

Each logic block contains a function unit, a conditional unit, two
output copy units, three local source units and a local sink unit (Fig-
ure 3). In other words, a function node, a merge or split node, two
copy nodes, three source nodes and a sink node can be mapped onto
one physical logic block at the same time, without any resource
conflict. The function block includes a 4-LUT, and the design re-
sembles the logic block in a Xilinx Virtex™ series FPGA [9]. In
addition, the function block contains special support for early-out
carry generation that can lead to improved performance in an asyn-
chronous design [20]. Carry chains can be routed using the normal
interconnect (thenormal carry chain) or using low latency carry
channels that run vertically south-to-north between adjacent verti-
cal logic blocks (thefastcarry chain).

With this asynchronous FPGA architecture, the automated syn-
thesis problem is to translate an asynchronous computation into bit-
level dataflow blocks, and place-and-route the resulting design onto
the AFPGA architecture.

The organization of this paper is as follows: Section 2 discusses
the automated synthesis method for the AFPGA in detail; Section 3
presents experimental results for the synthesis flow on a number of
benchmarks; Section 4 reviews the related work; Finally, we sum-
marize the paper and present directions for future investigations in
Section 5.

2. AUTOMATED SYNTHESIS
The input to our synthesis is a program written in CHP notation.

CHP is a hardware description language that is widely used for
asynchronous design, and is based on Hoare’s CSP language [16].
Apart from a sequential programming notation, the language also
includes communication primitives (send and receive) for message-
passing between concurrent processes. In addition to this input, our
synthesis flow also takes in a configuration file that specifies vari-
ous parameters. The result of the synthesis is a bit-level dataflow
implementation that is then placed and routed usingvpr [2]. Fig-
ure 4 depicts the major parts of the synthesis flow that are described
in detail below.

2.1 Canonical CHP Decomposition
A broad class of asynchronous circuits can be described abstractly

as canonical CHP programs [21]. We analyze the control flow of a

SB SBSB

SB

SBSBSB

SB

LBLB

SB

LBLB

Figure 2: Asynchronous FPGA island-style architecture

 Zn...Z1

Init

ASource

ZSink

A

ZY

G Split

A

Z

G

B

Merge

A

Z

An...

Function

A1

Zn...Z1

Copy

A

Figure 1: Dataflow graph nodes.

Token Copy (pipelined)

Sin

N, E, S, W

N, E, S, W, S1

N, E, S, W, S1

N, E, S, W, S2

N, E, S, W, S3

N, E, S, W

N, E, S, W

N, E, S, W, S3

N, E, S, W, S3

Co2

Y

Z

(to north cell)

S1

Cin
(from south cell)

Cout

S3

Win

Nin

W

S2

X

Ci2

A
B
C
D

A

B

G

S
X
Y

X
Z

X
Y
Z

Co2

Co2

B

A

Co2

low−latency copies

Nout
Eout
Sout
Wout

E

N

Ein

Input Pipelining and Routing Pipelined Computation Block

Conditional
Unit

Function
Unit

Sink

Output
Copy

Token

Output Pipelining and Routing

State Unit

Token
Source

Token
Source

Input
Buffer

Input
Buffer

Input
Buffer

Token
Source

Input
Buffer

Figure 3: Pipelined asynchronous FPGA logic block.

sequential canonical CHP program using Static Token (ST) form,
an intermediate representation which is an extension of the Static
Single Information (SSI) form used for compiler analysis [1]. The
key property of ST form is that the control-flow condition that de-
termines when each variable is defined isequalto the control-flow
condition under which that variable is used [21]. Once this property
is established, variable definitions can be treated as token produc-
ers, and uses as token consumers. As a side-effect, the transforma-
tion also removes false dependencies between computations.

As an example (using a C-like syntax), the program fragment

...
if (g) {

y=y+1;
}
...

translates to:

...
y0,y1= φ−1(g,y);
if (g) {

y2=y1+1;
}
y3= φ(g,y0,y2);
...

The pseudo-functionφ−1 uses the conditiong to generate two
conditional copies ofy — one for the case when the guard is false
(y0), and the other when the guard is true. At the end of the se-
lection statement, a conventional gatedφ-function is used to merge
the two possible paths wherey may be defined. The combination

of these two functions, with initializer and sink functions used to
create initial tokens as well as consume unused tokens suffices to
transform programs into dataflow graphs that can handle both if-
statements as well as while- or for-loops [21].

The decomposition step maps the ST form of a CHP program
onto a concurrent dataflow graph. The decomposition uses a syn-
thesis technique for asynchronous logic known as projection [14],
which allows the partitioning of a deterministic asynchronous pro-
gram into concurrent entities that do not share any variables except
via communication channels. Theorems 1 and 2 from [21] show
that such a mapping guarantees both equivalence as well as cor-
rectness of the dataflow graph that is obtained from ST form, and
contain the details of the transformation.

The concurrent dataflow graph that is obtained from ST form is
composed of the seven types of fundamental nodes described in
Section 1: copy, function, split, merge, source, sink and initial-
izer. Token flow is represented by directed edges, which are imple-
mented as channels in asynchronous pipelines. With our AFPGA
architecture,initializer nodes can be fused into input buffers or
state units, while the other nodes can be mapped onto different units
in a logic block. The remainder of the synthesis procedure maps the
resulting concurrent dataflow graph onto the AFPGA blocks.

Physical AFPGA Placement and Routing

Bit-level Netlist Generation

Independent Node Clustering

Dependent Graph Node Clustering

Graph Node Decomposition

Dataflow Graph Optimization

Synthesis/CHP Configuration

Canonical CHP Decomposition

Canonical CHP

Figure 4: Automated synthesis flow.

2.2 Synthesis Configuration
In addition to the sequential canonical CHP program, the user

can also customize the configuration for the synthesis procedure.
Currently, we support customization of the following settings for
synthesis:

• Logic density level: Greater logic density can be achieved
by trying to merge unrelated dataflow nodes into a single
AFPGA logic block. However, high density may result in
difficult or infeasible routing, and possibly degraded perfor-
mance. Lower density levels often increase the chance of
successful routing.

• Copy tree structure: logarithmicor linear. Information that
has to be propagated to multiple destinations must be ex-
plicitly copied, as the AFPGA communication channels are
point-to-point. Logarithmic copying produces copies of to-
kens with balanced trees, whereas linear copying produces
copies with linear trees. Logarithmic copying is preferred in
bit-aligned datapaths, whereas linear copying is more appro-
priate for bit-skewed datapaths, which are common in feed-
forward signal processing applications. Linear copying also
results in easier place-and-routing. Choosing the appropriate
copy structure can result in significant differences in perfor-
mance.

• Carry chain structure: Our AFPGA architecture features both
fast and normal carry chains. Since fast carry chains use
low-latency dedicated channels, they greatly improve perfor-
mance of arithmetic operations. One current drawback is
that we have not integrated the automatic placement phase
of vpr for fast carry chains.

• Data width: In general, CHP channels or variables may have
arbitrary bit-width, especially for integer operations with un-
specified widths (e.g. “a+b ”). The configuration file can be
used to override default width values.

2.3 Concurrent Dataflow Graph Optimization
Once we have generated an initial dataflow graph using the tech-

niques described above, we use a sequence of optimizations to im-
prove the quality of the synthesis. Figure 5 shows some of the com-
mon dataflow optimizations we use in our synthesis method. The
optimization procedure is repeated until a fixed-point is reached.
Each optimization and its rationale is described below.

Dead Block Elimination

Copy Coalescing

Copy-Sink Elimination

Copy Elimination

Function Coalescing

Expression Reduction

Source Propagation

Figure 5: Dataflow graph optimization procedure.

Source Propagation. Source-propagation is similar to constant
propagation in dataflow analysis. Constant sources arise due to the
syntax-directed nature of the projection transformation that gener-
ates the initial dataflow graph [14]. Since source nodes repeatedly
communicate the same constant value, their values may be folded
into the function blocks that consume them. Reducing the num-
ber of inputs to functions may be result in fewer, simpler functions
blocks, which may then accommodate other inputs.

Expression Reduction. Functions with constant inputs can of-
ten be reduced to functions of lower arity, or even constant out-
puts. We apply common arithmetic and logical identities to reduce
expressions. (ex may be a multi-bit expression,b is a single bit
expression.)

1. Arithmetic:

b + 0 = 0 + b→ b ex + 0 = 0 + ex→ ex
b− 0→ b ex− 0→ ex

1− ex→∼ ex 0− ex→ −ex

2. Logical (any number of bits, all commutative):

b & 0 → 0 b | 0 → b b ⊕ 0 → b
b & 1 → b b | 1 → 1 b ⊕ 1 →∼ b
b & b → b b | b → b b ⊕ b → 0

b & (∼ b) → 0 b | (∼ b) → 1
b ⊕ (∼ b) → 1 ∼ (∼ b) → b

3. Logical shift:

ex � 0 → ex ex � 0 → ex
If N is greater thanex’s bit-width,
ex � N → 0 ex � N → 0

For arithmetic right-shifts, the result depends on the sign bit.

When all inputs of a function are constant (null-ary function), one
can replace the function with a source of its output value.

Function Coalescing. Composite functions may be coalesced
into one function as long as the arity of the resulting function does
not exceed the input capacity of a logic block (in our architecture,
the limit is 4). One example is shown in Figure 6. Not only does
function-coalescing result in increased logic density, but it also re-
duces the amount of communication over channels, thereby reduc-
ing energy significantly.

 FE

e | f

G

D

c⊕ d

CB

a & b

A

G

DCB

(a & b) | (c⊕ d)

A

Figure 6: Logic function merge example.

Copy Elimination. A copy block can be eliminated if it copies
to only one output. In this case the input channel is routed directly
to the single output channel. Eliminating a copy block results in
reduced pipelining on the channel that was routed through the copy
block. Since the AFPGA is slack-elastic, change in pipelining does
not impact the correctness of the implementation. Deadlock can-
not arise because the AFPGA logic block itself contains sufficient
pipelining to prevent it. This differs from a synchronous design,
where such a transformation (bypassing a value around a register)
would require global retiming.

Copy-Sink Elimination. If an output of a copy block is con-
sumed by a sink, then both the output and the sink can be elimi-
nated. Reducing the number of output copies may result in more
opportunities to eliminate copies, as described above.

Copy Coalescing. Cascaded copy blocks may be coalesced if
the number of final outputs does not exceed the output capacity of
each logic block (4 for our architecture). One example is shown in
Figure 7. Reducing the number of copy blocks may potentially im-
prove performance by shortening the forward path of tokens. This
is especially important in programs with long loop-carried depen-
dencies.

 DC

BCopy

ACopy

Copy

I

 DCBA

Copy

I

Figure 7: Copy block coalescing example.

Dead Block Elimination. Any block whose outputs are all unused
or connected to sinks is adead block, analogous todead-code elim-
ination. Dead blocks may be removed from the dataflow graph with
all of the block’s inputs redirected to sinks. Sinks can be placed on

the inputs to the dead block, and the process repeated to find further
opportunities for optimization.

Figure 8 illustrates an example of applying these optimizations
to a concurrent dataflow graph. In this particular example, the num-
ber of nodes is reduced from9 to 4 and the forward path length is
reduced from5 hops to1.

2.4 Graph Node Decomposition
Since nodes in an abstract dataflow graph may have arbitrary in-

degrees and out-degrees, it may be necessary to decompose over-
sized nodes to fit into a particular AFPGA architecture’s logic blocks.
While the coalescing transformations will not introduce new dataflow
blocks that have too many inputs, they may exist in the original
dataflow graph. Candidate nodes for graph node decomposition
are: function, split, merge, and copy.

Function Decomposition. We decompose function nodes recur-
sively and iteratively using the following guidelines:

• Since arithmetic operations require two operands, an arith-
metic subexpression must be factored out into its own func-
tion block.

• Any remaining function with greater than four input vari-
ables (for our architecture) must be decomposed until its com-
ponents have at most four inputs.

This process may introduce auxiliary copy nodes for variables that
appear in multiple decomposed subexpressions. For instance, the
example shown in Figure 9 requires the introduction of a copy for
variableb that now appears in two different function blocks.

G

EDCB

(a+b)|(b⊕c)|(d & e)

A

G

F1F0

f0 | f1

B1B0

E D

(b1⊕c)|(d & e)

CCopy

B

a+b0

A

Figure 9: Function decomposition example.

Split/Merge Decomposition. In general, split and merge nodes of
dataflow graphs may conditionally communicate with an arbitrary
number of other nodes. A split node withN receivers requires
log2 N bits of control to address a receiver. Since our AFPGA ar-
chitecture only supports 2-way splits and merges with one bit of
control, we must decompose large splits and merges into 2-way
components. Currently, we only support balanced decompositions
with log2 N stages. However, applications with non-uniform con-
ditional communication frequencies may benefit from Huffman-
encoded decompositions, which result in shorter token latencies for
the more frequent paths.

Copy Decomposition. Any copy node with more than4 outputs
will be decomposed into a copy tree. The resulting copy tree can be

sink

F O3O2MergeO1

Copy

G

Copy

A4

a4| e

E

DC

A3

a3| c | d

A2

a2+ a

A

A1

source(0)

b & a1

B

(a) Original program

sink

F O3O2MergeO1

Copy

G

Copy

A4

a4| e

E

DC

a | c | d

A

sink

B

(b) After source propagation
and expression reduction

sink

F

sinkO3O2

sinkO1

Copy

G

Copy

EDC

a | c | d | e

A

sink

B

(c) After logic function
coalescing and dead
block elimination

sink

F

O3O2

Copy

G

O1

EDC

a | c | d | e

A

sink

B

(d) After copy and copy-
sink elimination, the pro-
gram cannot be further
optimized without more
context.

Figure 8: Dataflow graph optimizations example.

logarithmic or linear, depending on the configuration file. For the
logarithmic tree structure, we guarantee that the number of hops
from the root to each leaf is equal.

2.5 Dependent Graph Node Clustering
After dataflow graph optimization and decomposition, each node

in the resulting graph has a fanin/fanout that is compatible with the
AFPGA architecture. However, a one-to-one mapping would result
in poor utilization of the AFPGA logic block. Each AFPGA logic
block is equipped with the following resources: three source units,
one function unit, one 2-way conditional split/merge unit, two 4-
way copy units, and one sink unit, as shown in Figure 3. Multiple
dataflow graph nodes may be clustered to a single logic block if
their resources (including total number of inputs and outputs) do
not conflict. Clustering results in increased logic density, which
may potentially improve performance by reducing latency on long
interconnect paths. We describe a heuristic for clustering depen-
dent graph nodes, nodes that are directly connected by dataflow
edges.

Given our AFPGA logic block architecture (Figure 3), we give
function units the highest priority because they are directly con-
nected to all other types of nodes in the same logic block. Con-
ditional merges and splits are also directly connected to all other
types of nodes, except that they cannot communicate directly with
function inputs. Copy nodes may only receive data from the func-
tion output, conditional output, and low latency copies from the
logic block inputs. Source and sink nodes only communicate di-
rectly with function and conditional units. Units that cannot com-
municate directly with each other must be synthesized by routing
them through other auxiliary units, which is less efficient. For ex-
ample, a source cannot communicate directly with a copy; it must
go through an auxiliary function unit first.

It is important to note that different logic block and interconnect
architectures may be better suited with different clustering heuris-
tics. For example, logic blocks with more fully connected inter-
nal components (e.g. full-crossbar connection) will naturally have

fewer restrictions on direct communication between the compo-
nents. Our primary objective is to minimize communication over-
head through the pipelined interconnect by coalescing as many con-
nected (dependent) graph nodes into each logic block as possible.
A secondary objective is to minimize the use of auxiliary interme-
diate units. Given the constraints of our logic block architecture,
we describe our simple greedy heuristic for clustering dependent
graph nodes:

Step 1. Allocate one logic block for each function node, ten-
tatively directing each function’s output to its logic block’s output.
Try the following until each block’s resources or I/O are exhausted:

1. For each input of the function block that comes from a source
unit, place its source unit into the same cluster.

2. For each function’s output that is an input to a conditional
(merge or split) node, place the corresponding conditional
unit into the same cluster. Redirect the function’s output
through the conditional unit and back out to the logic block’s
output.

3. For each block output that sends to a copy node, merge that
copy node into the same cluster.

4. For any block input that is sunk, merge its sink node into the
same cluster.

Step 2. Allocate a logic block for each remaining un-clustered
conditional node. Try the following until each block’s resources or
I/O are exhausted:

1. For each input of a conditional node that comes from a source
node, then place its source in the same cluster.

2. For each output of a conditional node that is sent to a copy
node, place the copy node in the same cluster.

3. For each output of a conditional node output is that is sent to
a sink node, place the sink node into the same cluster.

Step 3. Allocate a logic block for each remaining un-clustered
copy node. If its input comes from a source node, merge its source
into the same cluster.

Step 4. Allocate a logic block for each remaining un-clustered
source node.

Step 5. Allocate a logic block for each remaining un-clustered
sink node.

Other graph covering techniques [5] can also be applied to de-
pendent node clustering. However, the above greedy heuristics is
simpler while achieving high density of clustering.

2.6 Independent Graph Node Clustering
After clustering dependent graph nodes together, there may be

opportunities to combine independent graph nodes—unrelated nodes
where their resource demands fit within a logic block. The logic
density level configuration determines how aggressively indepen-
dent nodes are clustered together. Increased logic densities may
result in more difficult (sometimes infeasible) placement and rout-
ing.

Each decision whether to cluster independent nodes is based on
two characteristics: (i) Whether or not the two nodes are on the
same path, i.e. if they are indirectly connected through other parts
of the whole dataflow graph; (ii) Whether or not the two nodes
communicate variables of the same bit-width. Currently, our im-
plementation supports three logic density levels: (a) low: no inde-
pendent nodes are clustered; (b) normal: attempt to merge clusters
only if they lie on different paths in the graph and they commu-
nicate variables of the same bit-width; (c) high: in addition to the
normal criteria, also try to merge nodes that lie on the same path
regardless of their respective bit-widths.

Attempting to cluster nodes on different paths first may be more
appropriate for computation flow graphs that are mostly feed-forward
because it reduces the number of artificial cycles formed in the
physical mapping (place-and-route). However, computation graphs
with feedback loops may benefit from combining nodes that lie
on the same path by imposing physical locality on closely related
nodes. Comparing these slight variations in independent node clus-
tering heuristics requires more thorough experimentation with com-
putation graphs with different topologies.

One example of independent node clustering is shown in Fig-
ure 10. After dependent node clustering, we initially have clusters
numbered (1) through (5), where cluster (3) is already a collection
of dependent nodes. Nodes (1) and (4) include only a split unit,
and nodes (2) and (5) include only a function unit. With the lowest
density configuration, clustering would stop at this point. With the
normal logic density level, nodes on different paths may be coa-
lesced, which could result in nodes (1) and (2) being grouped into
cluster (1+2). With the high logic density level, nodes on the same
path may be merged, logic blocks on the same path may be coa-
lesced, which could result in nodes (4) and (5) being grouped into
cluster (4+5).

2.7 Bit-level Netlist Generation
Up to this point, the data representation of variables and chan-

nels in the dataflow graph has been abstract; variables are in gen-
eral multi-bit values, and the aforementioned transformations can
be applied regardless of operand bit-width. To generate the final
bit-level AFPGA netlist, we must decompose multi-bit components
into their single-bit constituents. This is relatively straightforward,

I6

I5 I4I3 I2

I1 I0

O3O2

N2

Copy

N0

source

O4

n2 | i6

O0

N1

n0 + n1

Split

i4 & i5

O1 Merge

Split

(3)

(5) (4)

(4+5)

(2)(1)

(1+2)

Figure 10: Node cluster and block merge example.

with the carry chain configuration being used during synthesis of
arithmetic operations. The resulting AFPGA netlist can be mapped
onto our AFPGA architecture usingvpr [2] for place-and-route.

2.8 Time Complexity
SupposeV is the number of nodes andE is the number of edges

in original concurrent dataflow graph. The time complexity of con-
structing the canonical CHP decomposition isO(V + E). For our
dataflow graph optimizations, the number of iterations is loosely
bound byO(V + E) because each iteration monotonically de-
creases the number of edges or nodes. The time spent on each
iteration isO(V + E), and thus the total cost of the optimizations
is O((V + E)2). The number of dependent and independent node
clustering isO(V) and time cost for each such operation is loosely
O(E), so the clustering complexity isO(V · E). Netlist gener-
ation, given a constant maximum bit-width, is proportional to the
number of nodes and proportional to the number of edges, and thus
hasO(V · E) complexity.

The time complexity of the whole synthesis procedure is polyno-
mial with respect to the number of graph nodes and edges,O((V +
E)2).

3. EVALUATION
We evaluate the automated synthesis method using several asyn-

chronous circuit benchmarks. Our benchmark inputs are high-level
sequential CHP descriptions, which we automatically synthesize
into low-level AFPGA netlists. The resulting netlists are given
to vpr for placement and routing. Our AFPGA was designed
using conservative SCMOS design rules in TSMC0.18µm tech-
nology. We obtained delay values fromspice simulations of
the extracted layout and used them to back-annotate an asynchro-
nous switch-level simulator to quickly and accurately (within 5%
of spice) evaluate the performance of benchmarks. The peak op-
erating frequency of our AFPGA is690 MHz for applications that
use any function units, and830 MHz for applications without func-
tion units.

Many of our asynchronous benchmarks are taken from compo-
nents of larger complex asynchronous designs, such as micropro-
cessor units. The first two benchmarks are ALU-type circuits: an
integer full-adder and a function block that evaluates boolean func-
tions of two input integer variables based on a two-bit control input.
The next two benchmarks are bit-level circuits: a bit-sifting array
(called “pop-sifter”) and two linear feedback shift-registers (LFSR)
with different numbers and positions of the feedback taps. The reg-
ister bypass benchmark is a controlled router between two inputs
and two outputs. The writeback unit is a control-intensive process
from a full-custom asynchronous implementation of a MIPS pro-
cessor [17] that is used for precise exception handling. The PC unit
is the core of the instruction fetch of an asynchronous processor de-
signed in a class project, and it calculates the sequence of program
counter (PC) values based on decoded instructions.

Due to the absence of asynchronous FPGA synthesis flows for
asynchronous FPGAs, it is difficult to compare the results of our
synthesis to standard design flows. Asynchronous circuits oper-
ate differently from their synchronous counterparts, and even the
logical behavior of a block as simple as an adder differs in syn-
chronous and asynchronous logic. Keeping the inherent limitations
of comparing synchronous and asynchronous synthesis approaches
in mind, we attempted to create “equivalent” synchronous bench-
marks for comparison purposes.

We used Verilog to implement synchronous versions of our bench-
marks. (The “pop-sifter” was omitted because its synchronous im-
plementation would incur a large amount of overhead unless it were
hand-tuned to be implemented as a systolic array.) The following
rules were used in the conversion: (i) The functionality in terms of
data-dependencies or data-flow must be preserved; (ii) If an asyn-
chronous benchmark had zero or one input to the entire module, the
synchronous version would always assume that inputs were avail-
able at each clock edge; (iii) Otherwise, the inputs and outputs were
augmented with a full/empty bit. This bit is checked before inputs
are read and set when an output is produced on each cycle. These
rules would allow a synchronous circuit to process one data item
per cycle if its inputs were always available. The rules result in
limited flow control, because a block cannot produce an output un-
til all its inputs are ready.

The synchronous benchmarks were mapped to the Xilinx Vir-
tex XCV150 (speed grade 6) FPGA (5-layer-metal0.22µm) using
the Xilinx™ ISE Foundation tools. We chose this FPGA because
our AFPGA targets implementation in terms of 5 metal layers at
0.18µm, and its function unit was designed with many of the same
features and resources as the blocks in the XCV150. The results
from the synchronous syntheses are shown in Table 1, wherefre-
quencyis the expected clock frequency as reported by the synthesis
tools. (We also give approximately scaled frequencies for a hypo-
thetical Virtex manufactured in a0.18µm technology.) For each
benchmark, we also list the FPGA resources required in terms of
registers and 4-LUTs.

For each of the aforementioned benchmarks, we used our CAD
tools to synthesize and then place-and-route the AFPGA. For each
benchmark, all three logic density levels were used: low (l), nor-
mal (n), high (h). For comparison with the automatic synthesis
results, we also generated hand-synthesized and placed netlists for
all benchmarks, except for the PC unit (due to its complexity). The
hand-placed netlists were generated with placement macros that
simply expanded patterns suitable for each benchmark. Many of
our benchmark programs are relatively small so they could be fea-
sibly hand-synthesized for comparison purposes. The results for
our syntheses are shown in Table 2. For each benchmark, we re-
port the following information: (i) “LB,” the number of AFPGA

0 01 1

0 1

0

1

G1

G0

Z

A B C D

(a) 4-way merge

0

1

0 1 0 1

10

ZYXW

A

G0

G1

(b) 4-way split

Figure 11: 4-way conditional dataflow blocks, where G is a two-
bit control channel (G0 is the lower bit of the control channel,
and G1 is the upper bit).

logic blocks used; (ii) “Func,” the number of function units used;
(iii) “Cond,” the number of condition units used; (iv) “Copy,” the
number of copy units used.

Comparison With Hand-Synthesis. For all benchmarks, the au-
tomated synthesis achieved logic densities and performances com-
parable to those of the hand-placed versions. The majority of bench-
marks attained at least 95% of the peak performance of the AFPGA.
The PC unit is the only benchmark that suffers because the program
contains a long feedback loop. The throughput of the AFPGA is not
limited by local circuit performance but by data-dependencies. In
fact, this is a real performance problem not just for the AFPGA but
for the specific PC unit implementation due to the lack of a branch
delay slot in the asynchronous design.

With the high density configuration, our synthesis method was
able to use as little as 40% fewer logic blocks than with hand-
placed versions. Although macro-placement makes for easy hand-
synthesis, it generally under-utilizes the available resources. For
some benchmarks, such as the PC units, synthesizing with the high-
est logic density resulted in infeasible routes. For some bench-
marks, the synthesis results with higher logic density resulted in
higher throughput, while others resulted in lower throughput. This
is caused by the fact that our place-and-route is currently blind to
the issues that impact the performance of asynchronous logic. As
a result, there need not be any correlation between logic density
and performance. We have not attempted to assistvpr with infor-
mation about the cost of routes that constitute long latency loops.
Thus, the physical mappings produced are by no means optimal.

Comparison With Synchronous Benchmarks. In spite of the

Table 1: Benchmark statistics for Xilinx Virtex XCV150 (0.22µm)
Frequency (0.18µm)

Benchmark Registers LUTs (MHz) (MHz)

16-bit adder 0 18 178 218
8-bit function block 0 10 267 326
register bypass 0 10 160 196
16-bit LFSR with 4-tap 1×16-bit 1 218 266
16-bit LFSR with 6-tap 1×16-bit 2 220 269
writeback unit 1×32-bit 13 104 127

8-bit PC unit 2×1-bit
3×8-bit

25 153 187

16-bit PC unit 2×1-bit
3×16-bit

49 145 177

Table 2: Benchmark statistics for automated synthesis and hand placement (0.18µm)
Throughput % of Peak

Benchmark LBs Func. Cond. Copy (MHz) Performance

16-bit adder (synthesis(l,n,h)†) 16 16 0 0 674 97.7%
16-bit adder (hand) 16 16 0 0 674 97.7%
8-bit function block (synthesis(l,n,h)) 8 8 0 0 688 99.7%
8-bit function block (hand) 8 8 0 0 688 99.7%
6-bit pop sifter (synthesis(l,n)) 36 30 0 30 672 97.3%
6-bit pop sifter (synthesis(h)) 30 30 0 30 655 94.9%
6-bit pop sifter (hand) 42 30 0 32 688 99.7%
16-bit LFSR with 4-tap (synthesis(l,n,h)) 16 16 0 16 678 98.2%
16-bit LFSR with 4-tap (hand) 16 16 0 16 689 99.9%
16-bit LFSR with 6-tap (synthesis(l,n,h)) 17 17 0 16 689 99.9%
16-bit LFSR with 6-tap (hand) 17 17 0 16 689 99.9%
register bypass (synthesis(l)) 39 0 16 23 824 99.2% ∗
register bypass (synthesis(n,h)) 30 0 16 23 824 99.2% ∗
register bypass (hand) 32 0 16 32 824 99.2% ∗
writeback unit (synthesis(l)) 60 5 40 18 688 99.7%
writeback unit (synthesis(n)) 57 5 40 18 537 77.8%
writeback unit (synthesis(h)) 53 5 40 18 656 95.0%
writeback unit (hand) 54 6 38 19 658 95.3%
8-bit PC unit (synthesis (l)) 138 35 85 55 293 42.5%
8-bit PC unit (synthesis (n)) 123 35 85 55 218 31.6%
16-bit PC unit (synthesis (l)) 254 67 165 91 270 39.1%

∗ Peak performance is relative to690 MHz for benchmarks that use any function units and relative to830 MHz for benchmarks that use no
function units.
† l - low density level; n - normal density level; h - high density level

limitations of comparing synchronous and asynchronous versions
of our benchmarks, it is instructive to examine Tables 1 and 2 in
terms of frequency of operation and resource utilization. The fre-
quency in Table 1 corresponds to the maximum performance attain-
able. In all the benchmarks except the PC unit, this would be the
steady-state performance of the system. However, due to stalls on
the valid bit, the PC unit would operate at 50% of the frequency of
the synchronous FPGA.

The differences in performance are compelling. Not only does
the AFPGA outperform the synchronous FPGAs by nearly a fac-
tor of three (even accounting for technology scaling), but our syn-
thesis flow results in physical mappings that achieve close-to-peak
throughput on AFPGAs. As opposed to this, synthesis methods
for synchronous FPGAs have difficulty attaining peak clock fre-
quencies, and there have been studies of fixed-frequency FPGAs to
combat this limitation [23].

In terms of logic density, the adder and function block bench-
marks have essentially the same 4-LUT utilization in both the syn-
chronous and asynchronous case, as expected. When examining
benchmarks such as the LFSR, writeback, or PC unit, a resource
comparison becomes complicated because the Xilinx FPGA tools
identify macros whereas our current AFPGA architecture does not
have any dedicated macros. However, the large number of condi-
tion and copy units in the 16-bit PC unit indicate that a future re-
optimized AFPGA logic block might include additional resources
for handling control-intensive benchmarks. The large number of
condition units is also caused by the limitations of a two-way split/merge
as the condition unit. Decomposing a four-way split into two-way
splits not only requires a tree of splits, but the control inputs to the
second-level splits also require additional splits. This situation is
illustrated in Figure 11, which shows a 4-way split and a 4-way
merge implemented with 2-way splits and merges. Modifying the

condition unit to support 4-way split/merges could drastically re-
duce the number of condition units required by the AFPGA.

4. RELATED WORK
Early asynchronous FPGA architectures [6, 13, 18] were largely

based on clocked FPGA circuits, which made them hazard-prone
and inefficient at prototyping asynchronous logic. While later de-
signs [12, 8, 22] concentrated on implementing programmable cir-
cuits more optimized towards asynchronous logic, their performance
failed to match clocked FPGAs. More recent work [19, 20, 24]
has demonstrated that asynchronous dataflow FPGAs, whose logic
blocks provide both computation and high-speed pipelining, can
compete with synchronous FPGA architectures. In an orthogonal
direction of research, asynchronous circuits have been investigated
for use in course-grain reconfigurable architectures [10].

Previous tools developed for asynchronous FPGAs have concen-
trated on removing timing hazards that are introduced in asynchro-
nous logic when they are mapped onto circuits that are either purely
synchronous or based on synchronous designs. JBits is a Xilinx
programming tool that has been used to adjust delays in small asyn-
chronous circuits that have been mapped onto clocked FPGA de-
vices [11]. The place-and-route tool for the Montage AFPGA [7]
forced asynchronous signals with fanout to have equal delay along
their branches to prevent timing hazards. Since the Montage FPGA
used circuits derived from a clocked FPGA, the logic mapper tool
also had to guarantee that only one LUT input changed at a time
to prevent glitches from appearing on its output. Some of synthe-
sis optimizations in this paper were also used in PipeBench com-
piler [3] for a synchronous pipelined FPGA. In contrast to previous
tools, the synthesis tool described in this paper is targeted towards
a high-performance dataflow AFPGA [20].

Our synthesis tool specifically addresses the problem of effi-
ciently synthesizing asynchronous logic for the AFPGA architec-
ture, by translating high-level descriptions of circuits into optimized,
bit-level dataflow graphs suitable for physical mapping to the AFPGA.
Furthermore, our AFPGA can use clocked place-and-route tools to
route data channels rather than individual signals, and the circuits
guarantee correct operation of the AFPGA regardless of the delays
on the channel signals [20].

5. CONCLUSION
We described an automated synthesis method for an asynchro-

nous FPGA (AFPGA) architecture. With dataflow graph repre-
sentation and a variety of optimizations, the high-level asynchro-
nous circuit description can be transformed into low-level AFPGA
netlist correctly and efficiently. The experimental evaluations show
that our synthesis method can achieve both good logic density and
high throughput compared to hand-placed counterparts. To the best
of our knowledge, this is the first automated synthesis method that
can map asynchronous designs to pipelined asynchronous FPGAs.
The results we have obtained can serve as the basis for future in-
vestigations into asynchronous FPGA architectures and synthesis
flows. Comparisons with larger and more complex benchmarks
would greatly improve the evaluation of our synthesis.

In the future, we will incorporate arbitration support to our syn-
thesis method so that non-deterministic systems can also be syn-
thesized automatically. This requires more than an extension to the
synthesis algorithm; non-determinism can destroy the property of
slack elasticity, and new theory is required to safely handle transfor-
mations with non-determinism. User-interface improvements that
could be implemented include non-canonical form support in se-
quential program decomposition. The heuristics for optimization

could be improved by incorporating dataflow graph topology anal-
ysis and routing resource budget scheduling to improve indepen-
dent node clustering. Finally, the place-and-route tools could be
improved by incorporating asynchronous pipeline dynamics into a
timing-driven optimization phase.

6. REFERENCES
[1] C. S. Ananian. The static single information form. Master’s

thesis, Massachusetts Institute of Technology, 1999.
[2] V. Betz and J. Rose. VPR: A new packing, placement, and

routing tool for FPGA research. InProceedings of
International Workshop on Field Programmable Logic and
Applications, September 1997.

[3] M. Budiu and S. C. Goldstein. Fast compilation for pipelined
reconfigurable fabrics. InProceedings of International
Symposium on Field Programmable Gate Arrays, February
1999.

[4] J. B. Dennis.The Evolution of ‘Static’ Data-Flow
Architecture. Prentice Hall, 1991.

[5] Y. Guo, G. J. M. Smit, H. Broersma, and P. M. Heysters. A
graph covering algorithm for a coarse grain reconfigurable
system. InProceedings of the 2003 ACM SIGPLAN
conference on Language, Compiler, and Tool for Embedded
Systems, June 2003.

[6] S. Hauck, G. Borriello, S. Burns, and C. Ebeling. Montage:
An FPGA for synchronous and asynchronous circuits. In
Proceedings of International Conference on Field
Programmable Logic and Applications, Vienna, August
1992.

[7] S. Hauck, S. Burns, G. Borriello, and C. Ebeling. An FPGA
for implementing asynchronous circuits.IEEE Design and
Test of Computers, 11(3):60–69, 1994.

[8] D. L. How. A self clocked FPGA for general purpose logic
emulation. InProceedings of of the IEEE Custom Integrated
Circuits Conference, May 1996.

[9] Xilinx Inc. Virtex™ 2.5V field programmable gate arrays.
Xilinx Data Sheet, 2002.

[10] H. Kagotani and H. Schmit. Asynchronous piperench:
Architecture and performance estimations. InProceedings of
Symposium on Field-Programmable Custom Computing
Machines, April 2003.

[11] E. Keller. Building asynchronous circuits with JBits. In
Proceedings of International Conference on Field
Programmable Logic and Applications, August 2001.

[12] R. Konishi, H. Ito, H. Nakada, A. Nagoya, K. Oguri, N .
Imlig, T. Shiozawa, M. Inamori, and K. Nagami. PCA-1: A
fully asynchronous self-reconfigurable LSI. InProceedings
of International Symposium on Asynchronous Circuits and
Systems, March 2001.

[13] K. Maheswaran. Implementing self-timed circuits in field
programmable gate arrays. Master’s thesis, U. C. Davis,
1995.

[14] R. Manohar, T.-K. Lee, and A. J. Martin. Projection: A
synthesis technique for concurrent systems. InProceedings
of International Symposium on Asynchronous Circuits and
Systems, April 1999.

[15] R. Manohar and A. J. Martin. Slack elasticity in concurrent
computing. InProceedings of the Fourth International
Conference on the Mathematics of Program Construction,
June 1998.

[16] A. J. Martin. Synthesis of asynchronous VLSI circuits.
Technical Report CS-TR-93-28, Caltech, 1993.

[17] A.J. Martin, A. Lines, R. Manohar, M.Nyström, P. Penzes,
R. Southworth, U. V. Cummings, and T.-K. Lee. The design
of an asynchronous MIPS R3000. InProceedings of the
Conference on Advanced Research in VLSI, 1997.

[18] R. Payne. Asynchronous FPGA architectures.IEEE
Computers and Digital Techniques, 143(5):282–286, 1996.

[19] J. Teifel and R. Manohar. Programmable asynchronous
pipeline arrays. InProceedings of International Conference
on Field Programmable Logic and Applications, September
2003.

[20] J. Teifel and R. Manohar. Highly pipelined asynchronous
FPGAs. InProceedings of International Symposium on Field
Programmable Gate Arrays, February 2004.

[21] J. Teifel and R. Manohar. Static tokens: using dataflow to
automate concurrent pipeline synthesis. InProceedings of
International Symposium on Asynchronous Circuits and
Systems, April 2004.

[22] C. Traver, R. B. Reese, and M. A. Thornton. Cell designs for
self-timed FPGAs. InProceedings of of ASIC/SOC
Conference, 2001.

[23] N. Weaver, J. Hauser, and J. Wawrzynek. The sfra: A
corner-turn FPGA architecture. InProceedings of
International Symposium on Field Programmable Gate
Arrays, February 2004.

[24] C. Wong, A. J. Martin, and P. Thomas. An architecture for
asynchronous FPGAs. InProceedings of International
Conference on Field Programmable Technology, December
2003.

