
A Low Power Asynchronous GPS Baseband
Processor

Benjamin Z. Tang, Stephen Longfield, Jr., Sunil A. Bhave, Rajit Manohar
School of Electrical and Computer Engineering

Cornell University. Ithaca, NY, 14853, U.S.A.
Email: {bt48, slongfield}@csl.cornell.edu, sunil@ece.cornell.edu, rajit@csl.cornell.edu

Abstract—We present the design and implementation of an
asynchronous Global Positioning System (GPS) baseband pro-
cessor architecture designed with a combination of Quasi-Delay-
Insensitive (QDI) and bundled-data techniques, with a focus on
minimizing power consumption. All subsystems run at their
natural frequency without clocking and all signal processing
is done on-the-fly. Transistor-level simulations show that our
system consumes only 1.4mW with position 3-D rms error below
4 meters, comparing favorably to other contemporary GPS
baseband processors.

Index Terms—GPS, QDI, Bundled-Data, Asynchronous Cir-
cuits, Low-Power Receiver

I. INTRODUCTION

A. Motivation

Our lives are increasingly being affected by the use of
GPS technology. We rely on GPS to navigate from one place
to another, to locate a person or an object, to provide time
synchronization in our telecommunication networks and power
grids, and in many other every day applications.

Today, high power consumption of existing GPS receiver
chips can cause overheating issues, and can limit continuous
GPS operation in mobile devices. It is clear that the high power
consumption in GPS receivers must be addressed to pave the
way for advances in areas such as location-aware applications
and micro robotics navigation.

Asynchronous techniques enable very low-power designs,
especially in systems where the rate of required throughput
may vary over time [1], [2], [3]. As a GPS system involves
several different components, each of which compute at a
different natural frequency, an asynchronous design could lead
to benefits in power consumption for baseband processing.

A typical GPS receiver consists of an RF front end and
a digital signal processor (DSP). The RF front end receives
the GPS signal from the satellites, mixes it down to an
intermediate frequency, and samples it. The DSP acquires a
lock to multiple GPS satellite signals present in the front
end samples and tracks variations in the signals over time.
While the DSP tracks variations in the signal, it also extracts
information from it that can be used to compute the current
position and time—the “navigation solution.”

B. Related Work

Significant research effort has been devoted to reducing the
power consumption of the RF front end, with current designs

having power consumption of less than 10mW [4]. However,
more work needs to be done to lower the power consumption
of the GPS baseband processor.

A powerful DSP can perform all baseband processing in
software [5]. This approach is highly reconfigurable and easy
to develop and debug but not suitable for low power applica-
tions. An alternative is to use a hardware correlation engine
to handle the fast correlation operations and a microprocessor
to handle the rest of the signal processing tasks [6].

In applications where the user only requires infrequent
position updates, a possible solution is proposed in [7], where
the receiver is only powered intermittently. This approach does
not continually track satellites, but instead focuses on rapid re-
acqusition.

This work focuses on addressing the power consumption
issue in the baseband processor when continuous position
information is required. Instead of using a single DSP or a
correlation engine with software support to perform baseband
processing, we designed a hybrid architecture that decouples
crucial GPS receiver operations from other post-processing
that can either be managed locally by a co-processor or be
separately managed by the cloud or base station.

Our system performs all baseband processing on-the-fly in
hardware, leaving only initialization and navigation solution
computation to software. This approach not only provides an
optimized hybrid hardware and software solution but is also
ideal for applications that need to deploy ultra-low-power mo-
bile GPS receivers that transmit just enough information back
to a base station to compute its position and time information.
Moreover, our clockless data-flow driven baseband processor
can be paired with any conventional GPS L1 RF front end. It
is programmable to support different front end sampling and
intermediate frequencies and mixing scheme.

II. GPS SIGNAL STRUCTURE

The GPS uses spread-spectrum signaling to modulate a
carrier with ranging codes. This technique allows a GPS
receiver to use Code Division Multiple Access (CDMA) to
uniquely identify the signal from each satellite by the satellite’s
unique ranging code. Modern GPS satellites transmit signals at
the L1, L2 and L5 carrier frequencies with civil and military
codes. Since our system is designed to process the L1 civil
signal, we will describe its signal structure here.

50bps navigation data, D(t)

1.023MHz C/A code, x(t)

1575.42MHz L1 carrier

GPS satellite
transmitted signal,

sL1(t)

Fig. 1. GPS L1 C/A signal structure

The GPS L1 Coarse/Acquisition (C/A) signal consists of
a 1575.42MHz L1 carrier signal modulated by a periodic
1023-chip C/A ranging code at 1.023Mbps, which in turn is
modulated by the 50bps navigation data as shown in Fig. 1.
The C/A ranging code has a period of 1ms and is selected
from a special class of pseudorandom noise (PRN) sequences
known as Gold codes. Each satellite can be identified by
its unique Gold code. The navigation data is a sequence of
bits that carries satellite orbital information, satellite time and
error correction parameters [8]. The L1 C/A signal, transmitted
with an average power of PL1, from a GPS satellite can be
represented mathematically as

sL1(t) =
√

2PL1D(t)x(t) cos (2πfL1t + θTx) (1)

where D is the navigation data; x is the C/A code and fL1

the L1 carrier frequency.
The signal from a particular satellite reaches the receiver’s

RF front end after some transmission delay. This difference
in time of flight of the signals from different satellites to
the receiver forms the fundamentals of radio-navigation on
which the GPS system is based. Additional uncertainties in
the received signal are introduced by the receiver’s front end
oscillator error, and the Doppler frequency shift due to the
relative movement of the satellite and the receiver. The receiver
must compensate for these uncertainties so that a correct
navigation solution can be computed.

The GPS baseband processor’s role is to first acquire a rough
estimate of the transmission delay and Doppler frequency
shift for each available satellite and then refine the estimates
through tracking loops. A delay-locked loop (DLL) tracks
deviations in the estimate of the transmission delay whereas
a frequency-locked loop (FLL) or a phase-locked loop (PLL)
tracks deviations in the Doppler frequency estimate.

It is important to realize that the signal in (1), after
conditioning by the front end, consists of several signals with
different intrinsic frequencies, the fastest of which is the RF
front end ADC sampling rate, followed by the chipping rate of
1.023MHz with a 1ms PRN code period in x, and finally the
50Hz navigation data rate in D. In subsequent sections, we
will describe how our system exploits these properties when
processing the signal to produce navigation solution, with the
objective of minimizing power consumption while optimizing
performance.

MAG output
MAG
input

rL1

Overflow

Shift

Carrier NCO step n

Code NCO step n

Front
end
samples,
rL1

GPS
time

CST

Frame
lock

Fllplldll updates

CST
bus

Fllplldll
bus

QP, fll -pll

IP, fll-pll

Carrier NCO step n-1

Code NCO step n-1

C
A

 e
po

ch

Ctrl
Dump

rL1sin

rL1cos

xLxPxE

Muxing-demuxing circuits

Muxing-demuxing circuits

Acquisition-track
control

Carrier
NCO

Code
NCO

Early,
Prompt,

Late code
replica

generator

Accumulators

FLL-PLL
update buffer

DLL
update
buffer

FLL-
PLL

switch

FLL-
PLL-
DLL

control

FLL-
PLL-
DLL
math

Data
extractor

CST
math

E P L

Count
1023

Channel 0
Channel 1
Channel 2

Channel 3
Channel 4
Channel 5

Demux control

IP, acq
QP, acqIE

QE

IP

QP

IL

QL

IE, dll

QE, dll

IL, dll

QL, dll

IP, fll

QP, fll

IP, pll

QP, pll

IP, extract

CST updates

Muxing-demuxing
circuits

MAG
math

Fig. 2. System block diagram

III. SYSTEM OVERVIEW

Our dataflow-driven system expects 1-bit samples from an
RF front end which it uses to acquire, track, and extract crucial
data. It then sends the extracted data to a co-processor or
base station for navigation solution computation. In order to
solve the four unknowns corresponding to the receiver time,
X, Y and Z coordinates, a GPS receiver needs to track at least
four satellites. To allow for redundancy and the flexibility to
compute an over-determined least-squares solution, our system
is capable of tracking up to six satellites simultaneously. This
is accomplished with six GPS channels, where each channel
is responsible for processing the signal from one particular
satellite. We optimize the system to have all channels share a
single tracking loop.

A comprehensive description of GPS baseband processor ar-
chitectures can be found in [9], [10], [11]. In what follows, we
summarize the choices we have made in our implementation
of a GPS baseband processor.

A. Acquisition

Before a receiver can begin to track a satellite, it needs to
know which satellite to track, and an estimate of the Doppler
frequency and code offset of the signal for that particular
satellite. Therefore, during signal acquisition, a typical receiver
searches the expected Doppler frequency space and code offset
space of candidate satellites.

First, for each candidate satellite, the input signal from the
RF front end undergoes a carrier-wipeoff with a candidate
Doppler frequency f̂D and a code-wipeoff using a locally-
generated code replica, XP , with a candidate code offset, τ̂ .

This (f̂D, XP , τ̂) candidate hypothesis is tested by correlating
the anticipated signal with the received signal over a 1ms
code period (N front end samples) to yield an in-phase
accumulation, I and the quadrature accumulation, Q. Denoting
the kth sample from the RF front end by rL1(tk), and the
intermediate frequency to which the satellite signal has been
mixed down by the RF front end by fIF , we can write:

I =
N∑

k=1

rL1 (tk)XP (tk − τ̂) cos
{

2π
(
fIF + f̂D

)
tk

}
(2)

Q =
N∑

k=1

rL1 (tk)XP (tk − τ̂) sin
{

2π
(
fIF + f̂D

)
tk

}
(3)

If the correlation power, I2 + Q2, exceeds a threshold, then
we have validated our (f̂D, XP , τ̂) hypothesis and completed
acquisition for one satellite. Our system implements an as-
sisted acquisition approach where the system is provided with
the satellite number to acquire as well as their respective
correlation power threshold and slowly-varying Doppler fre-
quency estimate f̂D. We will describe this feature further in
Section IV.

In each channel shown in Fig. 2, two 32-bit numerically
controlled oscillators (NCO) are driven by the data-flow from
the front end. The code NCO controls the chipping rate of the
code replica generator. Every time the code NCO overflows,
a new code replica is generated and every 1023rd overflow
of the code NCO marks the end of a 1ms code period,
forming our accumulation interval. The carrier NCO consumes
data bit whenever one is available, and correlates this against
replicated sinusoids to create a 3-bit output for both the
in-phase and quadrature components. Together, these signals
form the correlator summands from (2) and (3).

B. Tracking

After acquisition, the receiver channel has enough knowl-
edge of the code offset and Doppler frequency to roughly
align its code and carrier replicas to the received signal. The
receiver channel then enters tracking mode to continuously
track deviations in code offset and Doppler frequency.

Besides the prompt correlators that produce the prompt in-
phase accumulation in (2) and quadrature accumulation in
(3), each channel uses early correlators with the replica PRN
code advanced by a 1

2 chip to produce the early in-phase and
quadrature accumulations, and likewise, late correlators with
the replica PRN code delayed by a 1

2 chip to produce the late
in-phase and quadrature accumulations. These early and late
accumulations are needed to implement a DLL which is used
to update the chipping rate for the channel’s code NCO to
correct for misalignments in phase between the replica PRN
code and the received PRN code.

Other than tracking the code phase, the system uses an
FLL and a PLL to track the Doppler frequency. The FLL
is more robust to noise, has better dynamic performance, and
has a wider pull-in range than the PLL but its measurements
are noisier. Hence, the FLL is only used to obtain a more

accurate estimate of the Doppler frequency immediately after
acquisition before handing the task over to the PLL.

The transition from FLL tracking to PLL tracking happens
after a programmable delay (400ms was used in testing). The
PLL locks the phase of the in-phase portion of the carrier
replica to the incoming signal. It is important to realize that all
DLL, FLL and PLL tracking loops are only called into action
at the end of an accumulation period which occurs once every
1ms in each channel. More details on our tracking loops can
be found in Appendix A.

C. Data Extraction

From (1), the GPS satellite’s signal contains a 50bps
navigation data stream. This data stream is modulated with the
satellite’s PRN code which has a period of 1ms. As a result,
20 periods of the satellite’s PRN code contain information
for the same data bit. Since a PLL is used for tracking, the
accumulation power is concentrated in the in-phase accumu-
lation. Hence, at the end of a 1ms accumulation period, we
can extract one raw data bit from just the sign of the prompt
in-phase accumulation.

To remove the redundant data bits, we down-sample the raw
data bits by 20 to 1. From the down-sampled data, the system
attempts to lock onto the GPS message frame. Each 300-bit
subframe begins with the preamble sequence of “10001011”,
so the system initially simply searches for this pattern.

However, as our PLL discriminator has a 180-degree phase
ambiguity, the extracted data bits may be inverted. Thus, a
search for both the normal and inverted preamble bit sequence
is required. To ensure that the detected bit sequence is indeed
the preamble bits instead of a string of navigation data message
bits that happens to match the preamble bit sequence, the
system extracts the GPS satellite time information and checks
that it correctly increments from one subframe to the next
before announcing frame lock.

Our system uses a code phase accumulator for each channel,
hereafter called Code Start Times (CST), as time stamps in
units of sample counts to mark the start of the C/A PRN code
period. Every time the DLL updates (approximately 1ms),
the CST is incremented by the number of samples in that
approximate 1ms time lapse. At an interval of 1s, determined
by counting 1000 raw data bits from the start of a subframe,
each channel reports its frame lock status, GPS satellite time
and its corresponding 64-bit CST time stamp.

With these three pieces of information from at least four
satellites, an external co-processor or a base station can com-
pute the navigation solution. First, relative pseudoranges are
computed from the CST values of each channel using the first
channel as the reference [9]. From the relative pseudoranges
and corresponding GPS times, we can then compute the X, Y
and Z receiver position and receiver clock error [9], [10].

IV. OPTIMIZATIONS

A. Natural Frequency Operation of All Sub-systems

The structure of the GPS signal allows for signal processing
at different rates. By designing the system with asynchronous

circuit techniques, we can enable each sub-system–fast and
slow–to run at its natural frequency.

Tokens are passed down through handshakes from fast
sub-systems to slower sub-systems to enable on-the-fly sig-
nal processing without the use of memory. The correlators
comprising accumulate and dump modules, code and carrier
NCOs and their controls operate at the RF front end sampling
frequency of several MHz. This is the fastest rate the system is
expected to handle. The next signal processing step involving
the tracking loops is three orders of magnitude slower as each
channel’s correlators only dump their accumulations at the end
of a 1ms accumulation period.

Furthermore, only 1 in every 20 raw data bits extracted from
the sign of the 1KHz stream of prompt in-phase accumulations
is used for navigation message extraction. From this 50bps
data stream, the system derives frame lock and satellite time
information and finally outputs CST measurements at 1Hz.
Other than the complicated fixed-point arithmetic circuits
implemented with bundled data techniques [12], we implement
all modules in the system using QDI techniques.

B. Adder and Increment-Decrement Accumulators

Accumulators operate at the RF front end sampling fre-
quency and are one of the more power-hungry components in
the whole system. Moreover, there are six accumulators per
channel to produce early, prompt and late pairs of in-phase
and quadrature accumulations.

The 3-bit accumulator inputs which are represented by the
summands in (2) or (3) and their early and late variants, are
accumulated over one accumulation period to produce 16-bit
sum outputs. It follows from (2) and (3) that when the system
is tracking well, the iterative cross-correlation of the replica
and received signals will either trend towards +∞ or -∞,
depending on the sign of the encoded navigation data bit.

As the 3-bit summand is iteratively added to the 16-bit sum,
the bits of higher significance do not switch frequently. Based
on these observations, we introduce an increment-decrement-
based accumulator design to reduce transistor switching activ-
ity and hence the dynamic power consumption of this critical
module.

Instead of using a standard 16-bit accumulator consisting
of an adder with its output fed back to one of its inputs
via a register, we implement a standard 3-bit accumulator
coupled with an increment-decrement-dump unit (IDD). Only
a minimal number of low order bits (three because of the 3-
bit input) are required to cycle in an out of the adder in the
standard 3-bit accumulator. The rest of the higher order bits
are handled by the IDD.

Referring to Fig. 3, an encoder issues the command to
increment or decrement based on the polarity of the input
summand and the carry out from the adder. If the input to
the accumulator is positive, the encoder issues an increment
command if there is a carry out from the standard accumulator.
Note that the negative of a 2’s complement number a (a >0)
represented with n bits is written as: −a = 2n − a, where a
“borrow” is obtained from the virtual (n+1)th bit. Therefore,

Standard accumulator
output

Command

Carry out bit

MSB

Standard
accumulator

Encoder IDD

{b,a}

DUMP

IN

OUT

3

16

3

13

a

b

Fig. 3. Increment-decrement based accumulator

if the input to the accumulator is negative, the encoder issues a
decrement command if there is no carry out from the standard
accumulator as it would otherwise cancel out the “borrow”
loaned from the higher order bits in the IDD. If neither of
these cases hold, the encoder issues no command and triggers
no transistor switching activity at all in the entire IDD.

We design the 13-bit IDD with 13 cells, each of which
implements a need-based command propagation structure. If
the IDD receives a command to increment, the LSB cell will
increment its own value and will only propagate the increment
command to the next higher-order cell if the LSB cell has
a carry out; otherwise the higher-order cells experience no
switching activity at all. Other than the MSB cell which does
not need to propagate any commands further, all higher-order
cells have the same need-based command propagation behav-
ior as the LSB cell. Likewise, each IDD cell only propagates
the decrement command if it needs to “borrow”. The dump
command which the accumulator receives once every 1ms is
propagated throughout the IDD from the LSB to the MSB
cell. The full accumulation result is just a concatenation of
the result from the standard 3-bit accumulator and the result
from the 13-bit IDD.

C. Memoryless Code Phase Acquisition

Acquisition is typically done either using frequency domain
search techniques with an FFT engine or using time domain
search techniques with a bank of parallel correlators. For our
assisted system that is provided with a PRN number of a
satellite, a rough Doppler frequency estimate, and acquisition
power threshold at start up, each channel proceeds to search
the code offset space on-the-fly without the use of memory.
This design exploits the fact that the PRN code sequence in the
signal is periodic with a period of 1ms, and that the Doppler
frequency is relatively stable over short time periods.

Each channel scans the in-coming front end samples for
the correct code offset by performing 1ms-long accumulations
and dropping one front end sample and incrementing an offset
counter by 1 at the end of each accumulation period. When
the acquisition power exceeds the threshold, that channel has
found the correct code offset, τ̂0,m, where m is the channel
number. The value of τ̂0,m is indicated by the value in the
offset counter.

As different satellite signals have different code offsets,
different channels will finish acquisition at different times. To
handle this problem, the channels re-synchronize at strategic
reference points determined by their respective code offsets,
acquisition time lapses and Doppler frequency estimates.

Specifically, each channel ignores front end samples until the
sample count equals the code start index CST0,m shown in
(5). Upon doing so, the channel initializes its CST value
as CST0,m, resets its NCOs and begins tracking. The time
needed for the mth channel to acquire, rounded to the next
second, is simply:

tm =
⌈

τ̂0,m

1000

⌉
(4)

CST0,m is calculated by adding τ̂0,m with the Doppler-
adjusted number of samples over tm seconds as follows:

CST0,m = N0

(
1 + sm

fD,m

fL1

)
tm + τ̂0,m (5)

where N0 is the nominal number of front end samples per
second; sm is the front end mixing sign where sm = 1
corresponds to a low-side mixing scheme and sm = −1 high-
side; fD,m is the rough Doppler frequency estimate for the
mth channel and fL1 is the L1 carrier frequency.

Our asymmetric acquisition design precludes the need for
a bank of correlators dedicated to acquisition. The same
code and carrier NCO’s and accumulators are used both in
acquisition mode and tracking mode. As shown in Fig. 2,
a demultiplexer in each channel routes the outputs of the
accumulators either to the acquisition threshold detector in
acquisition mode or to the tracking loops and data extractor
in tracking mode.

D. Bundled Data Math

Each channel needs to be able to carry out the math
functions involved in the FLL, PLL and DLL tracking loops
and in CST computation. To acquire the requisite levels of ac-
curacy, these arithmetic circuits involved have wide datapaths.
Although these arithmetic functions are highly complicated,
each channel only performs such computations once every
1ms. Based on these observations, and to save design time, we
implement these math functions in single-rail combinational
logic blocks using fixed-point arithmetic, and do so in such a
way that they are synthesizeable by commercial tools. All of
the channels share these blocks using arbitrated muxing and
de-muxing circuits. Data is communicated back and forth be-
tween the asynchronous QDI modules and the combinational
logic blocks using a hybrid dualrail-bundled data interface.

Fig. 4 illustrates how six receiver channels share a sin-
gle combinational logic math block. Through arbitration, the
muxing circuit sends data from the asynchronous QDI domain
through its dualrail channel M into the combinational logic
math block. The true rails of channel M drive the single-rail
inputs of the combinational logic block.

The arbitration control signal derived from the validity of
M drives a matched delay line larger than the computation
delay of the combinational logic block. Using asymmetric C-
elements, the normal and inverted forms of the outputs from
the combinational logic block are gated with the output of
the delay line and the acknowledge of the output dualrail

r[0]

r[1]

_r[0]

_r[1]

a[0]

a[1]

M.d[0].t

M.d[0].f

M.d[1].t

M.d[1].f

Arbitration
tree

Arbitration control

Asynchronous
modules (QDI)

Channel 0
Channel 1

Channel 2
Channel 3

Channel 4
Channel 5

Combinational logic block (bundled data)

r=f(a)a r

...
Delay line

aC

aC

aC

aC

P.e

P.d[0].t

P.d[0].f

P.d[1].t

P.d[1].f

.

.

.

Asymmetric
C-element

Wrapper (QDI)

M.e

.

.

.

Demuxing
circuits

Channel 0
Channel 1

Channel 2
Channel 3

Channel 4
Channel 5

.

.

.

.

.

..
.
.

Asynchronous
modules (QDI)

Fig. 4. Sharing of a combinational logic block and the use of a hybrid
dualrail-bundled data interface

channel P to generate the requisite true and false rails. Once
the signal is back in the asynchronous QDI domain, the data
is distributed to the corresponding receiver channel through
de-muxing circuits.

E. Optimized Tracking Loops

At the end of a 1ms accumulation period, a channel dumps
its accumulations and uses the shared FLL, PLL and DLL
tracking loops to update its code and carrier NCOs step sizes.
Due to the complexity of the math involved, the tracking loops
cannot have high levels of throughput as simple combinational
blocks. The slowness of the tracking loop affects the entire
asynchronous system because the NCOs will not obtain their
step size updates fast enough to process the next data sample
received from the RF front end.

To meet the system throughput requirements, the channel
defers the application of the tracking loops outputs to the
next accumulation period. At the end of the nth accumulation
period, the NCOs update their step sizes immediately with
the tracking loops outputs computed from the (n - 1)th

accumulation period. By doing so, we not only can afford
to implement slower and more power efficient tracking loops,
but also can afford to allow all channels to share the same
tracking loops. The tracking loops parameters are analyzed
and tuned accordingly.

Some software GPS systems use floating point math to get
the accuracy required for their tracking loops. However, since
floating point arithmetic circuits would consume more power
and increase circuit complexity, we implemented all math
circuits in the bundled-data blocks with fixed point arithmetic.
The bit widths of the computation sub-blocks were designed
in such a way that the transformation does not degrade the
final position accuracy significantly.

As shown in (7) in Appendix A, the DLL implements a dis-
criminator with computationally expensive vector magnitude
functions, involving both square and square-root operations.
To reduce the complexity of the this operation, we apply a
modified version of the Robertson approximation [13] where

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000 5000
−3000

−2000

−1000

0

1000

2000

3000

In−phase accumulations

Q
ua

dr
at

ur
e

ac
cu

m
la

tio
ns

Software receiver
ASIC
45−degree lines

Fig. 5. In-phase and quadrature accumulations phasor compared to software
receiver’s

A =
√

I2 + Q2 ≈ max
(
|I|+ 1

4 |Q| , |Q|+
1
4 |I|

)
(6)

Though the largest approximation error is about 10% at a
phasor angle of 45 degrees, the typical approximation error
is less than 3% because the system’s PLL drives the phasor
angle to zero, as shown in Fig. 5.

Additionally, the arctangent functions shown in (8) and (9)
can be simplified with a Taylor series small angle approxima-
tion where tan−1θ ≈ θ. This arctangent approximation is valid
for our application because the FLL and PLL discriminator
values are small and the carrier phase errors alone only
correspond to centimeter level errors in the navigation solution.

For the sake of modularity, the system’s programmable
hardware tracking loops allow them to be tailored to different
tuning parameters and RF front end frequency plans. There-
fore, the tracking loops parameters must be initialized from
an external source on power-on.

V. SIMULATION RESULTS

A. Receiver Performance Simulations

We first described the GPS system in the CHP language, a
variant of CSP that is widely used when describing QDI asyn-
chronous circuits. The CHP simulation was verified against
a GPS software receiver written in MATLAB. Through the
process of Martin synthesis [1], this high-level CHP descrip-
tion was translated into a gate-level description of our system.
There are about 240K transistors per receiver channel and
about 100K of which are in the fast-rate modules; the shared
bundled-data math modules on the other hand are made up of
about 580K transistors.

The correctness of the gate-level implementation is verified
with a co-simulation involving Synopsys VCS and an in-
house asynchronous circuit simulator. The detailed simulation
results—sequences of values transmitted on all communication
channels in the system—from the gate-level co-simulation
were found to match that of the CHP simulation.

We simulated the system with 60 seconds of satellite
signals generated from the Spirent GPS simulator without

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

East(m)

N
or

th
(m

)

Software receiver error
ASIC error

5m

10m

Fig. 6. Position accuracy using 6 satellites

0 10 20 30 40 50 60
0

20

40

60

Time (s)

C
/N

o
(d

B
-H

z)

C/No vs time

0 10 20 30 40 50 60
1100

1200

1300

1400

Time (s)

P
LL

 D
op

pl
er

 f
re

qu
en

cy
 (

H
z)

PLL Doppler frequency vs time

Fig. 7. Tracking sensitivity test

atmospheric, ionospheric or multipath errors. The signal from
the Spirent GPS simulator is fed into the Zarlink GP2015
front end providing digital samples with a sampling period
of 175ns. These datapoints are recorded in a binary file that is
subsequently fed into the CHP and gate-level simulations of
our system. The receiver position is computed from 6 satellites
and compared to the actual simulated position.

A comparison of position error between our system and
a reference Matlab software receiver developed by a leading
GPS research group is shown in Fig. 6. Our system has a
larger error spread because of the use of a single-bit RF front
end samples, longer acquisition, fixed point arithmetic and the
arithmetic approximations.

We tested tracking sensitivity with the Spirent GPS simu-
lator using a graded reduction in carrier to noise ratio (C/No)
every 10 seconds starting from the 30th second. Fig. 7 shows
that for C/No above 35dB-Hz, the PLL experiences no loss
of lock. Hence, the PLL performs well in normal conditions

2880 2900 2920 2940 2960 2980 3000

1280.2

1280.4

1280.6

1280.8

1281

1281.2

1281.4

Time (ms)

D
op

pl
er

 fr
eq

ue
nc

y
(H

z)

Software receiver
ASIC

Fig. 8. Tracking of Doppler frequency by the PLL compared to software
receiver’s

but in weak-signal environment, longer accumulation intervals
would be needed to boost tracking sensitivity. If we were to
increase our accumulation interval, we would need to change
the width of the accumulators, and the design of the bundled-
data math. As widening the accumulators corresponds to
adding additional bits to the IDD unit, this will only marginally
increase switching power. Additionally, as the frequency of
the bundled-data arithmetic circuits is low, we can increase
the width of this with only minimal cost to power.

The front end’s ADC quantization noise also plays a part in
tracking sensitivity. Fig. 5 shows the in-phase and quadrature
accumulations distribution when tracking with the PLL where
the correlation power is concentrated in the in-phase portion
of the signal and the data bit flips in the signal contribute
to the 2 blobs on each side of the vertical axis. The Matlab
software receiver which uses 2-bit ADC samples has a higher
correlation power than ours which uses only 1 bit. Despite us-
ing fixed-point arithmetic and approximations, our PLL tracks
Doppler frequency relatively well, albeit noisier compared to
the Matlab software receiver as shown in Fig. 8.

B. Power Simulations

We performed HSIM simulations on our system in a
90nm (Vdd=1V and T=25oC) technology. To account for
wire capacitance, we added wire load in the simulations to
provide a more realistic account of our power numbers. The
added wire capacitance is based on estimates from post-layout
simulations of a portion of our system. Table I shows the
power consumption of various modules in the system for 1 and
all 6 receiver channels in acquisition and continuous tracking
modes.

Note that since the acquisition and tracking modes in our
architecture share almost all of the fast-rate modules that make
up the correlators, the power consumption in both modes are
close to each other. Since the implementation of a 6 receiver
channel system involves duplicating the channel-dependent
modules in a single channel six times, we can derive the
power consumption of the full 6-channel system by adding the
power consumption of the multiplexed shared math modules
with 6 times the power consumption of the channel-dependent

TABLE I
POWER BREAKDOWN BY MODULE FOR A SINGLE CHANNEL AND FOR SIX

CHANNELS

Acq (µW) Track (µW) Acq (µW) Track (µW)
(1 Chan) (1 Chan) (6 Chan) (6 Chan)

Acq control 12.8 10.1 77.0 61.0
Code Generator 6.96 6.66 41.8 39.9

Carrier NCO 79.6 73.8 477 443
Code NCO 73.2 66.7 439 400

6 Accumulators 61.2 59.9 367 360
Bundled-Data 3.95 4.09 5.90 6.38

Other 14.1 17.2 81.6 102.8
Total 252 µW 238 µW 1.49 mW 1.41 mW

TABLE II
COMPARISON WITH STATE-OF-THE-ART

Name This Work [6] [14] [15]
Process (nm) 90 110 180 90
Voltage (V) 1.0 1.2 1.6 1.4

Number of Channels 6 22 12 -
System Power (mW) 1.4 34 56 84

RF Power (mW) - 19.5 20 -
Baseband Power (mW) 1.4 14.5 36 -

Baseband Power/Channel (mW) 0.2 0.7 3 -
3-D rms Error (m) 3.9 - 3 -

modules in a single channel. The total power consumed by our
6-channel system is 1.5mW during acquisition and 1.4mW in
continuous PLL tracking mode.

Table II provides a comparison of our system with other
contemporary GPS receivers. [6], [14] and [15] are system
on chip (SOC) GPS receivers with integrated RF front end
and digital baseband processing. To compare the per channel
baseband processing power of our system with these SOCs,
we subtract the power consumed by their RF front ends from
their system power, the result of which is then divided by
the number of channels tracked. Note that these SOCs have
the ability to compute position estimates whereas our system
stops short of doing that but provides measurements that can
be used to derive position estimates in a host processor or base
station. Nevertheless, the power consumed in position estimate
computation is negligible for typical position update rates on
the order of 1Hz. Taking all these into consideration, our per
channel baseband processing power is about 3 times lower
than [6] and about 12 times lower than [14]. Our position
estimates, computed offline, have a 3D-RMS error below 4m
which is comparable to [14] and is typical for receivers used
in mobile devices. The higher number of satellites tracked by
[14] however does improve its position accuracy due to the
effects of Dilution of Precision (DOP) [10].

VI. CONCLUSION

The design and implementation of an asynchronous low
power GPS baseband processor has been presented. The sys-
tem implements an assisted acquisition scheme with sequential
code phase search, a continuous tracking mode optimized
for low power consumption and a data extraction scheme to
provide synchronized Code Start Time measurements. The
system achieves low power by allowing each subsystem to

operate at its natural frequency, by reducing switching activity
in the accumulators with an increment-decrement based design
and by employing shared tracking loops with deferred updates,
fixed-point arithmetic and mathematical approximations. Our
system consumes 1.4mW during continuous tracking mode
with position 3-D rms error below 4 meters. Synchronous
designers could emulate and benefit from our approach by
breaking the full system down into subsystems based on
their data rates and driving them with fast and slow clocks.
However, synchronous designs will have more difficulty imple-
menting completely data-driven behavior, because the system
has clock ratios that are 40000000:7161000:7000:350:7.

We have begun work on laying out the system for physical
manufacture and testing. Once it has been manufactured, we
intend to integrate the system with a low-power RF front
end and a microcontroller. Additionally, the work presented
here can be extended to increase potential position accuracy
and tracking sensitivity in weak-signal environments without
significantly increasing the power consumption.

APPENDIX A

Our system approximates a non-coherent normalized Early-
Minus-Late (EML) DLL discriminator which gives a delay
error estimate, in units of Gold code chips, at the end of the
nth accumulation period, in the form

τerr,n+1 =
1
2

√

I2
E,n + Q2

E,n −
√

I2
L,n + Q2

L,n√
I2
E,n + Q2

E,n +
√

I2
L,n + Q2

L,n

 (7)

where IE,n and QE,n are the early in-phase and quadrature
accumulations and IL,n and QL,n are the late in-phase and
quadrature accumulations. The DLL uses a carrier-aided first
order filter loop [11].

Our system approximates a four-quadrant arctangent FLL
discriminator, δθ with the objective of minimizing the Doppler
frequency estimate error which is directly proportional to
the rate of rotation of the prompt in-phase and quadrature
accumulations’ phasor. The rotation angle of the phasor that
occurs in one code period at the end of the nth accumulation
period is computed as

δθn+1 = tan−1

(
QP,nIP,n−1 − IP,nQP,n−1

IP,nIP,n−1 + QP,nQP,n−1

)
(8)

where IP,n and QP,n are the prompt in-phase accumulations
for the nth code period and IP,n−1 and QP,n−1 are the prompt
in-phase accumulations for the (n − 1)th code period. This
discriminator is not affected by the sign flip in the prompt
in-phase and quadrature accumulations caused by data bit
transitions in the signal. The FLL uses a second order filter
loop [11].

As for the PLL, our system approximates a two-quadrant
arctangent Costas Loop discriminator, φD.The PLL maximizes
the in-phase correlation power while minimizing the quadra-
ture correlation power, which is equivalent to minimizing the

phasor angle, φD,n+1 of the quadrature accumulation vector
from the in-phase accumulation vector at the end of the nth

accumulation period. The PLL uses a second order loop filter
[11].

φD,n+1 = tan−1

(
QP,n

IP,n

)
(9)

ACKNOWLEDGMENT

The authors would like to thank the late Paul Kintner for
his advice on GPS systems. This material is based upon work
supported in part by the National Science Foundation Graduate
Research Fellowship under grant No. DGE-0707428.

REFERENCES

[1] J. A. Brzozowski and C.-J. H. Seger, Asynchronous circuits, ser. Mono-
graphs in computer science. Springer, 1995.

[2] B. Sheikh and R. Manohar, “An operand-optimized asynchronous ieee
754 double-precision floating-point adder,” in Asynchronous Circuits and
Systems (ASYNC), 2010 IEEE Symposium on, may 2010, pp. 151 –162.

[3] A. Martin, “Remarks on low-power advantages of asynchronous cir-
cuits,” in Proc. European Solid-State Circuits Conference (ESSCIRC),
1998.

[4] K.-W. Cheng, K. Natarajan, and D. Allstot, “A 7.2mw quadrature gps
receiver in 0.13um cmos,” in Solid-State Circuits Conference - Digest
of Technical Papers, 2009. ISSCC 2009. IEEE International, feb. 2009,
pp. 422 –423,423a.

[5] B. O’Hanlon, T. Humphreys, M. Psiaki, and P. Kintner, Jr., “Devel-
opment and field testing of a dsp-based dual-frequency software gps
receiver,” in Proc. ION GNSS 2009, 2009, pp. 317–325.

[6] J.-M. Wei, C.-N. Chen, K.-T. Chen, C.-F. Kuo, B.-H. Ong, C.-H. Lu,
C.-C. Liu, H.-C. Chiou, H.-C. Yeh, J.-H. Shieh, K.-S. Huang, K.-I. Li,
M.-J. Wu, M.-H. Li, S.-H. Chou, S.-L. Chew, W.-L. Lien, W.-G. Yau,
W.-Z. Ge, W.-C. Lai, W.-H. Ting, Y.-J. Tsai, Y.-C. Yen, and Y.-C. Yeh,
“A 110nm rfcmos gps soc with 34mw -165dbm tracking sensitivity,”
in Solid-State Circuits Conference - Digest of Technical Papers, 2009.
ISSCC 2009. IEEE International, feb. 2009, pp. 254 –255,255a.

[7] W. Namgoong, S. Reader, and T. Meng, “An all-digital low-power if
gps synchronizer,” Solid-State Circuits, IEEE Journal of, vol. 35, no. 6,
pp. 856 –864, jun 2000.

[8] B. Parkinson and J. Spilker, The global positioning system: theory and
applications, ser. Progress in astronautics and aeronautics. American
Institute of Aeronautics and Astronautics, 1996, no. v. 1; v. 163.
[Online]. Available: http://books.google.com/books?id=lvI1a5J 4ewC

[9] K. Borre, D. Akos, N. Bertelsen, P. Rinder, and S. Jensen, A Software-
Defined GPS and Galileo Receiver: A Single-Frequency Approach.
Boston, MA: Birkhuser, 2006.

[10] P. Misra and P. Enge, Global Positioning System: Signals, Measurements,
and Performance. Lincoln, MA: Ganga-Jamuna Press, 2006.

[11] E. Kaplan and C. Hegarty, Understanding GPS: Principles and Appli-
cations, Second Edition. Norwood, MA: Artech House, 2005.

[12] C. L. Seitz, “System timing,” in Introduction to VLSI Systems, C. A.
Mead and L. A. Conway, Eds. Addison Wesley, 1980, ch. 7.

[13] B. K. Levitt and G. A. Morris, “An improved digital algorithm for fast
amplitude approximations of quadrature pairs,” DSN Progress Report
42-40, pp. 98–101, 1977.

[14] G. Gramegna, P. Mattos, M. Losi, S. Das, M. Franciotta, N. Bellantone,
M. Vaiana, V. Mandara, and M. Paparo, “A 56-mw 23-mm2 single-chip
180-nm cmos gps receiver with 27.2-mw 4.1-mm2 radio,” Solid-State
Circuits, IEEE Journal of, vol. 41, no. 3, pp. 540 – 551, march 2006.

[15] D. Sahu, A. Das, Y. Darwhekar, S. Ganesan, G. Rajendran, R. Kumar,
B. Chandrashekar, A. Ghosh, A. Gaurav, T. Krishnaswamy, A. Goyal,
S. Bhagavatheeswaran, K. M. Low, N. Yanduru, S. Dhamankar, and
S. Venkatraman, “A 90nm cmos single-chip gps receiver with 5dbm
out-of-band iip3 2.0db nf,” in Solid-State Circuits Conference, 2005.
Digest of Technical Papers. ISSCC. 2005 IEEE International, feb. 2005,
pp. 308 –600 Vol. 1.

