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Abstract—Progress in VLSI technologies is enabling the inte-
gration of large numbers of spiking neural network processing
modules into compact systems. Asynchronous routing circuits
are typically employed to efficiently interface these modules,
and configurable memory is usually used to implement synap-
tic connectivity among them. However, supporting arbitrary
network connectivity with conventional routing methods would
require prohibitively large memory resources. We propose a two
stage routing scheme which minimizes the memory requirements
needed to implement scalable and reconfigurable spiking neural
networks with bounded connectivity. Our routing methodology
trades off network configuration flexibility for routing memory
demands and is optimized for the most common and anatomically
realistic neural network topologies. We describe and analyze our
routing method and present a case study with a large neural
network.

I. INTRODUCTION

Promising approaches are being proposed for reducing

power consumption in hardware implementations of spiking

neural networks and for dramatically increasing their inte-

gration densities, for example with the use of memristive

devices and advanced Very Large Scale Integration (VLSI)

processes [1,2]. These approaches are enabling the develop-

ment of large-scale neural network systems, composed of a

large number of homogeneous neural processors interfaced

among each other [3]. Both for multi-chip systems [5-7] and

for System-on-Chip (SoC) solutions, an efficient way to route

spikes among neurons within and across these processors is

to use asynchronous event-based communication protocols.

The methodology that is emerging as a common standard

for spiking neural network hardware is based on the Address

Event Representation (AER) [8,9].

In biological neural systems, each neuron on average makes

thousands of connections (synapses) with other neurons. In

neuromorphic VLSI, implementing this dense connectivity

using dedicated wires is infeasible for any moderately-sized

network since it would lead to excessive area requirements

for on-chip networks and a prohibitely large number of input-

output pads for multi-chip systems. However, semiconductor

wire bandwidths (several hundred MHzs to a few GHzs) are

orders of magnitude higher than typical operating speeds of

neurons (a few Hzs). AER leverages this discrepancy and

employs time-division multiplexing to implement dense neural

connectivity in silicon using a limited number of shared wires.

In AER, digital address-event packets encode the address

and time of spiking neurons. These packets are communicated

between neurons as asynchronous streams of binary words.

The destinations of AER packets are stored in routing tables

(implemented as memory arrays) whose entries define the

network connectivity. Typically, synapses outnumber neurons

by three or four orders of magnitude and therefore the size of

this routing table is a critical factor in determining the area

requirements, the power consumption, and the operation speed

of a neuromorphic system [4].

In order to determine the scalability of the system, it is

particularly important to analyze how the size of the routing

table varies with network size. Designing routing schemes

that support an arbitrary number of connections results in

prohibitively large routing tables. On the other hand putting

hard bounds on connectivity numbers in conventional routing

methods restricts the type of networks that can be imple-

mented. In this paper, we propose a novel two-stage, tag-based

approach to AER routing that reduces memory usage without

severely constraining the supported networks.

II. BACKGROUND

Neural connectivity through AER packets have been previ-

ously implemented through shared bus networks [10]. How-

ever, bandwidth restrictions limit the scalability of such ap-

proaches. Alternatively, local buses between adjacent neurons

arranged in one-dimensional [11] or two-dimensional [12]

grid network have been proposed. Such an approach can be

generalized to multiple hierarchical levels [13], with neurons

in different levels of the hierarchy connected via a shared bus.

The memory requirement for storing network connectivity

information is one of main obstacles in hardware imple-

mentations of large highly-interconnected neural networks.

Routing methods can be broadly categorized into two classes

based on where routing information is stored: source routing,

and destination-tag/distributed routing. In source routing [15],

information about the destination of a spike is stored at its

source and is attached to the outgoing routing packet. The

routers in the routing fabric use this information to direct the



packet to its destination. In distributed routing [16], the source

address of a spike is attached to the outgoing routing packet

and the routing information to reach destinations is stored

at the routers. As the packet traverses the routing fabric, it

reaches only those nodes that have subscribed to that address.

For a routing fabric to accommodate arbitrary connectivity

among n neurons, O(n) entries are required in the routing

table, to specify the connections of each neuron. However, the

flexibility offered by this kind of routing fabric can be quite

wasteful for systems designed to emulate real brain networks.

Such networks have common structures and specific features

in their connectivity profiles [14,17] that can be exploited to

optimize resource usage in routing networks. One of the most

notable features in these types of networks is their high degree

of clustering, with nodes (neurons) connecting preferentially

to others in their local neighborhood. The large density of local

connections in brain networks may have several functional and

evolutionary benefits such as enhanced communication speeds

and minimal wiring and metabolic costs. As we describe in

the following section, this feature can have beneficial effects

also in the design of memory-efficient routing networks for

neuromorphic systems.

III. THE PROPOSED ROUTING SCHEME

Let’s consider a network of spiking neurons in which the

number of neurons is N and the fan-out of each neuron is F . In

a standard routing method, each destination would be encoded

with log
2
(N) bits. With F possible destinations, the storage

requirement would be of F log
2
(N) bits per neuron. The total

number of bits required for such scheme would therefore be

NF log
2
(N).

A. Two-stage Routing

In the proposed routing scheme neurons are grouped in

clusters of size C, resulting in N/C clusters. To reduce

memory requirements, while still supporting large fan-out per

neuron, we divide the fan-out operation into two stages. For

a fan-out of F per neuron, the first stage is responsible for

fan-out of F/M , and the second stage implements a fan-out

of M . This two-stage routing scheme is illustrated in Fig. 1.

The following steps describe the routing scheme:

• Each neuron transmits F/M copies of its AER packet to

an equivalent number of intermediate nodes, using point-

to-point routing.

• Each of the N/C intermediate nodes broadcasts its AER

packet to C neurons in its end-point cluster.

• Each neuron in the end-point cluster has a set of K
tags (there are K unique tags per cluster). If the AER

packet received matches one of the neuron’s tags then the

packet is accepted. In this way, an M -way fan-out can

be implemented within each cluster (M ≤ F , M ≤ C)

Total tag memory: If within each cluster the tags were

uniformly distributed, then each tag would be replicated M
times, for a total number of KM tag entries. Hence each

neuron would contain KM/C tags, each requiring log
2
(K)

bits. Note that an alternative is to simply have a bit-vector for

F/M

F/M

Neuron
  1..N

Neuron
  1..NIntermediate nodes

            1..N/C

one cluster
    size: C

Fig. 1. Two-stage tag-based Routing. Parameter N is the total number of
neurons and C is cluster size. Each tag is replicated M times within a cluster

each neuron to determine which tag a neuron subscribes to.

The storage requirements for this would be K bits.

Total sender memory: Sender nodes require F/M entries,

each having to route a tag (log
2
(K) bits) to N/C interme-

diate neurons (log
2
(N/C) bits). The total memory for the

sender side of this two-stage routing scheme is therefore

(F/M)(log
2
(K) + log

2
(N/C))

B. Routing flexibility versus memory trade-offs

For a fixed choice of parameters, any network that can be

implemented with K tags can be embedded into one that uses

K + 1 tags. Therefore any network that can be implemented

with clusters of size rC can be embedded into one with cluster

size C (r > 1, r ∈ N) if both networks have the same number

of tags. Hence while larger clusters and fewer tags lead to

reduced storage requirements, both larger clusters and fewer

tags reduce the flexibility in routing. There is another trade-off

between cluster size and number of tags that is captured by the

following observation: any network that can be implemented

with K tags and clusters of size C can be also embedded in

a network with rK tags and clusters of size rC. Hence, it is

the ratio α = K/C that matters. If M (the amount of fan-out

internal to a cluster) increases, then it is reasonable to expect

that the size of the cluster C should also increase. Hence, we



Routing Storage/neuron

standard F log
2
(N)

two-stage-log
√

F log
2
(N) · 2

√

log
2
(C)

TABLE I
ROUTING TABLE STORAGE REQUIREMENTS.

assume that M = γC. The parameter γ ∈ [0, 1] captures the

mean “utilization” of the cluster. In other words, high values

of γ imply that an input spike to the cluster is a valid input

for most of the neurons in the cluster.

C. Logarithmically encoded tags

For logarithmically encoded tags, the total memory require-

ment per neuron would be:

bits =
KM

C
log

2
(K) +

F

M
(log

2
(K) + log

2
(N/C))

=
KM

C
log

2
(K) +

F

M
log

2

(

KN

C

)

= αM log
2
(αC) +

F

M
log

2
(αN)

Larger values of C increase storage requirements, but they

also increase the flexibility supported by the routing network.

The parameter M determines the trade-off between point-to-

point copying versus flooding. We can minimize the storage

as a function of M by differentiating this w.r.t. M . At the

optimal point M∗ we get:

0 = α log
2
(αC)−

F

M∗2
log

2
(αN)

M∗ =

√

F

α

log
2
(αN)

log
2
(αC)

The total number of bits required for this choice of M are:

2
√

αF log
2
(αC) log

2
(αN)

If for example we pick the design point K = C (α = 1),

we have:

storage/neuron = 2
√

F log
2
(C) log

2
(N)

M∗ =
√

F log
2
(N)/ log

2
(C)

Although this routing scheme is not as flexible as the

standard one it requires significantly fewer bits to represent

destination addresses.

However, there is a problem when M∗ > F , that is when:
√

F

α

log
2
(αN)

log
2
(αC)

> F

This condition can be true only if N1/F > C, when α = 1.

So, if the clusters are chosen so that C ≥ N1/F , then we

can always pick M∗ as a valid design point. This is a very

safe constraint: for example even when the total neuron count

in the 1010 range, a fan-out as small as 10 would require a

cluster size of C ≥ 10 to be able to have an optimal choice of

M∗. Since typical fan-out values are actually in the 103–104

range, this requirement imposes very few constraints on the

cluster size. The total number of neurons N would have to be

larger than 1010
3

before the right hand side of the constraint

would be 10 or larger.

The second requirement is that C ≥ M∗, otherwise the

cluster would not have a sufficient number of neurons to

support the fan-out anticipated. This means:

C ≥

√

F

α

log
2
(αN)

log
2
(αC)

which leads to

C
√

log
2
(C) ≥

√

F log
2
(N) for α = 1

This constraint is much more restrictive than the first one.

For example, if we take typical values of F = 5000, and

N = 1010, then clusters need to be C ≥ 152. Conversely, if

we picked a cluster size C = 256 with α = 1 (i.e., with 256

tags), then the optimal value of M is M∗ = 144. The network

would require a first-level fan-out of 35, followed by a second

cluster-level fan-out of 144 for a total maximum fan-out of

5040 and the storage per neuron would be 424.26
√

log
2
N

bits.

IV. BIOLOGICALLY REALISTIC NETWORKS

The routing scheme we described is suitable to implement

networks that have dense local connectivity, such as small-

world networks [17] and locally connected random networks

(LCRN) [14]. Here, we study an example of a LCRN derived

from data of layer II/III of the rat visual cortex [14]. In

this area, the probability of having local connections between

two neurons is given by a Gaussian function with standard

deviation of σ= 3 mm; the neuron density is approximately

75000 neurons/mm3; the thickness of the cortical layer is

0.3 mm. Therefore the total number of neurons in an area

of 5 mm×5 mm is approximately 700, 000. In our analysis,

we map the network onto a two-dimensional grid and assume

that each neuron makes connections within a circle area with

diameter of 5σ around it.

Suppose each neuron has fan-out of 4000. To implement this

network with the proposed routing scheme, we first calculate

M∗ and then the storage/neuron figure, for different cluster

sizes (C). The results are summarized in Table II. As expected,

the memory requirements and the size of the copy circuits

increase with increasing cluster size.

In a standard routing algorithm, a fan-out of 5000 per neu-

ron would require 5000 entries for each neuron in the routing

table. As illustrated in Fig. 2, our two-stage routing method

requires a significantly lower amount of memory even for large

network sizes and cluster sizes. For a fixed cluster size, the

amount of routing memory required per neuron decreases as



Cluster Size (C) Copy-1 Copy-2 Storage/neuron

127 38 106 1.42 Kbits
256 40 98 1.53 Kbits
512 43 92 1.63 Kbits
1024 45 88 1.72 Kbits

TABLE II
STORAGE/NEURON REQUIREMENTS FOR DIFFERENT CLUSTER SIZES.
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Fig. 2. Number of memory entries per neuron for different cluster sizes (C)
in the proposed two-stage routing scheme while α = 1 and F = 5000.

the network size decreases. The amount of memory required

also decreases with decreasing cluster size (with α = 1) for

a given network size. Smaller cluster sizes, however, provide

less connection flexibility in the system.

V. CONCLUSION

Synapses outnumber neurons by two or three orders of mag-

nitude in typical brain networks. The scalability of neuromor-

phic systems are therefore restricted by the routing memory

required to implement highly interconnected neural networks.

In this paper we have presented a novel two-stage routing

architecture that minimizes these memory requirements. Our

routing method utilizes the existence of dense clusters in

typical brain networks to optimize routing memory usage in

neuromorphic systems. Using the connectivity profile of the rat

visual cortex we showed that a network consisting of 700,000

neurons with 4000 connections each can be implementing in

our routing architecture using only 1.72 Kbits of storage per

neuron.
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