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Abstract

We present a process decomposition technique for the de-
sign of pipelined asynchronous circuits. The technique is
simple to use, and is based on projecting a program on dif-
ferent sets of variables. We provide conditions under which
the technique can be applied, and show how it can be used
to decompose complex concurrent programs.

1. Introduction

The formal synthesis approach to designing asyn-
chronous VLSI systems begins with a simple, sequential
description of the specification to be implemented. The end
result of synthesis is a highly complex concurrent system
which is a valid implementation of the original sequential
specification. The transformation of a sequential specifica-
tion to the final concurrent system is done using semantics-
preserving transformations; therefore, if we know that the
original sequential specification is correct, the final concur-
rent implementation is correct as well [6].
The main program transformation used in the design

of the Caltech microprocessor [7] was process decompo-
sition [6]. The transformation was used to decompose a
sequential program into a concurrent one in a systematic
manner.
In the design of an asynchronous MIPS microprocessor,

we used a number of program transformations geared to-
ward increasing the amount of concurrency in the system
by finely pipelining various parts of the computation [8]. In
this paper, we present a framework in which we can analyze
a large class of program transformations that were used in
the design of the MIPS processor.
We present a method for the decomposition of programs

into parts based on the notion of projection. The idea is
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inspired by examining the data-dependencies in the com-
putation, and attempting to eliminate all unnecessary syn-
chronization. In the simplest case, we take a program and
syntactically project various variables into separate concur-
rent processes that are unsynchronized. For instance, we
would decompose process

�� L�x �P�y � R�x �Q �y�

into

�� L�x �R�x � k �� P�y �Q �y �

since the two parts of the original process are not data-
dependent. (The processes are written in CHP notation,
a brief description of which is provided in the appendix.)
Such transformations are not always semantics-preserving,
and we examine the conditions under which we can apply
them while preserving the correctness of the computation.
The conditions amount to demonstrating that certain pro-
grams are locally slack elastic—a property which can be
established for a relatively large class of programs [5].
We present the design of the writeback process in the

asynchronous MIPS processor using the notion of projec-
tion. The derivation of the final concurrent implementation
is instructive, in that it shows the types of program transfor-
mations that are necessary in order to achieve high perfor-
mance in an asynchronous design.

2. Slack Elastic Programs

We specify a distributed computation using CHP, a vari-
ant of CSP [3]. (A brief description is provided in the ap-
pendix.) The processes in the computation interact by ex-
changing messages over first-in first-out channels. Each
channel in the computation has a fixed amount of slack,
or buffering, which specifies the maximum number of out-
standing messages on a channel. The probe of a communi-
cation action is a boolean that is true when the communica-
tion action can complete without suspending.



Slack elastic programs are those whose correctness is
preserved when the slack on channels in the system is in-
creased [5]. We only consider programs that are deadlock-
free, where no communication action can remain suspended
forever. Increasing the slack on a synchronization channel
is a transformation that can be used to increase the amount
of concurrency in the system. A particular instance of in-
creasing concurrency is adding pipelining. For example,
consider:

p� � �� L�x � R�g�f �x �� �

If we can increase the slack on channel R, we can replace
this program with

p� � �� L�x � R��f �x � � k �� R��y � R�g�y� �

in which the computation g�f �x �� has been decomposed
into two pipeline stages. As far as the rest of the compu-
tation is concerned, the only observable difference between
p� and p� is that the slack on channel R (or L) has been
increased by one. Slack elasticity is a property of closed
systems, since we must consider the process as well as its
environment in order to determine if a system is slack elas-
tic.
Since increasing the slack on a communication channel

will usually increase the number of possible traces [9], we
do not use traces directly to compare executions. Instead,
all properties of the system are specified in terms of the se-
quence of messages sent and received on communication
channels. Information about the relative order of communi-
cation actions on different channels is not considered when
comparing computations.
When a program is deterministic and does not probe any

channels, the system is slack elastic. This is because all
communication actions only depend on the data values that
are transferred on channels—intuitively, all communication
actions are controlled by local variables in processes. In this
case, changing the slack of a channel does not affect what
the system computes. The notion of what happens when the
slack of a communication channel is increased is formalized
in Theorem 2 from [5]. Theorem 2 states that increasing the
slack on a channel can change the behavior of a system only
if it causes the introduction of non-deterministic choices
within some process in the system. (This theorem is ap-
plicable only when examining systems in which processes
do not share variables.) If we can show that we cannot intro-
duce any non-determinism in the system, we are guaranteed
that the system will not change its behavior when the slack
on a channel is increased.
To analyze a component of a concurrent system, we in-

troduced the concept of locally slack elastic systems. Given
an open system S we define the concept of local slack elas-
ticity of S as follows. We examine the parallel composition

of S with any other system S� such that SkS� is closed.
If adding slack to any channel in the closed system does
not introduce any non-determinism in S, S is said to be lo-
cally slack elastic. Once again, it should be clear that if S
does not probe any channels, S is locally slack elastic. If we
compose a collection of locally slack elastic systems to con-
struct a closed system, the resulting system is locally slack
elastic as well.
We state the following result which provides sufficient

conditions for local slack elasticity:

Theorem 1 (determinism) Let S be an open system in
which the guards of selection statements are syntactically
mutually exclusive and there are no probed channels. Then
S� is locally slack elastic.

The interested reader is referred to [5] for more details and
proofs of other sufficient conditions for slack elasticity.
In this paper we focus on locally slack elastic systems,

and when we say that two systems are equivalent, we mean
they are equivalent when composed with other locally slack
elastic systems.

3. Projection

We would like to be able to decompose a process into
parts and reduce the synchronization among parts that are
not data-dependent. However, as was described above, re-
ducing synchronization is not guaranteed to preserve the
correctness of the original computation.
To address this issue, we adopt the following strategy.

We begin by decomposing a process into parts, and keep-
ing the parts tightly synchronized so as to preserve the se-
mantics of the original computation. This decomposition is
done via a partition function that systematically separates a
CHP program fragment into two parts based on the structure
of the program. The purpose of this part of the transforma-
tion is to syntactically divide the program fragment into two
parts in a manner that guarantees correctness.
The second part of the transformation uses the concept

of slack elasticity to introduce concurrency among the two
parts that were decomposed by partitioning. We will loosen
the synchronization constraints by assuming that we are de-
signing our system by composing locally slack elastic com-
ponents.

3.1 Partitions

A partition of a statement is a pair of statements such that
their concurrent composition with a special sequencer pro-
cess behaves exactly like the original statement, assuming
that the two partitioned parts have infinite execution traces.
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We introduce the program templates LSync��� and
RSync��� to clarify the presentation of partitions. These
template will be used to synchronize the two parts of the
partition by using a “fork and join” synchronization mecha-
nism when composed with the sequencer. These are defined
as follows:

LSync�S � � C��� S �C��
RSync�S � � C��� S �C��

whereC� andC� are fresh channels. Given a partition of the
form hLSync�A� �RSync�B�i, the concurrent composition
of the two parts would be

C���A�C�� k C���B �C��

which, when composed with C�� � C���C�� � C��, would
implement a “fork and join” synchronization.
We define a function part�S � that maps statement S to a

set of pairs, where each pair is a valid partition of S . This
function is defined by structural induction on the body of S
as follows:

� part�A� � fhLSync�skip� � RSync�A�i�
hLSync�A� � RSync�skip�ig

for any elementary statement A. We will define the
partition function so that if hp � qi is in the set of valid
partitions, so is hq � pi with Lsync and Rsync inter-
changed.

� part�SkT � � fhLSync�A� � RSync�skip�i�
hLSync�skip� � RSync�A�i�
hLSync�S � � RSync�T �i�
hLSync�T � � RSync�S �ig

where A represents the statement SkT . Parallel com-
position can be partitioned without introduction of any
additional synchronization. Note that, for simplicity,
parallel composition is one of the terminal symbols in
our structural definition of partitions.

� part�S �T � � fs � t � s � part�S � � t � part�T � �
hl�s�� l�t� � r�s�� r�t�ig

The partition of the sequential composition of two
statements is derived by examining all possible parti-
tions of the two statements, and sequentially compos-
ing their components. The functions l��� and r��� are
used to extract the left and right components of a pair.
(An explanation of the set notation can be found in the
appendix.)

Example: The partitions of x �� 	 are

fhLSync�x �� 	� � RSync�skip�i�
hLSync�skip� � RSync�x �� 	�ig

Example: The set of partitions of A�B �C where A, B , C
are elementary statements contains the following set:

fhLSync�A��LSync�B��LSync�C ��
RSync�skip��RSync�skip��RSync�skip�i�

hLSync�A��LSync�B��LSync�skip��
RSync�skip��RSync�skip��RSync�C �i�

hLSync�A��LSync�skip��LSync�C ��
RSync�skip��RSync�B��RSync�skip�i�

hLSync�A��LSync�skip��LSync�skip��
RSync�skip��RSync�B��RSync�C �ig

The rest of the partitions can be obtained by the symmetric
closure of the set (i.e., for each pair hx � yi, add hy � xi to
the set of partitions with LSync and RSync interchanged).
Observe that for any pair hx � yi in the set of partitions, both
components x and y of the partition locally preserve the
ordering among actions in the original program.

Partitions consist of two pieces of the original computation
that, when composed in parallel with a sequencer process,
precisely implement the original computation. We formal-
ize this observation by the following theorem.

Theorem 2 (partition) Let E��� be a program template,
and consider any pair hL � Ri � part�P�. Assume that in
any deadlock-free execution of E �P�, action P is encoun-
tered infinitely often without any parallel duplication of P .
Then,

E �L� k �� R � k �� C�� � C�� � � E �P�

Proof: (Sketch) Note that the requirement of infinite com-
munication on channels C� and C� simply ensures that the
process ��C�� � C��� does not deadlock. If we permit pro-
cess ��C�� �C��� to deadlock, we can lift the infinite com-
munication restriction.
Observe that L begins with C�� and R begins with

C��—by definition of part���. Therefore, L cannot begin
execution until R begins execution, and vice versa. Simi-
larly, L cannot finish execution until R finishes (and vice
versa), because they both end with C�� and C�� respec-
tively. Therefore, it suffices to show that when LkR are
composed with a process that repeatedly executesC���C��,
they implement P . This can be shown by structural induc-
tion on the definition of part���.
Let hL � Ri � part�P �. The key observation is that the

following properties hold: (a) L and R begin with C�� and
C�� respectively; (b) L and R execute a matching number
of communications on C� and C� (observe that this holds
in the definition of part��� given above); (c) The environ-
ment executes C�� �C��, which enforces that the number of
completed communication actions on channels C� and C�

is equal.
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The proof of equivalence is straightforward for the cases
when P is an elementary statement or the parallel compo-
sition of two statements. We consider the case of sequen-
tial composition. Given P � S�T , we have L � Ls�Lt
and R � Rs�Rt where Ls, Lt, Rs, Rt are obtained from
the partitions of S and T by the appropriate substitution of
Sync��� actions with communications on C� and C�. By
induction, LskRs implements S and LtkRt implements T
(when composed with the process ��C�� �C���). Since the
number ofC� actions inLs equals the number ofC� actions
in Rs, we are guaranteed that the number of completed C�

actions equals the number of completed C� actions at the
semicolon between Ls and Lt—and at the semicolon be-
tween Rs and Rt. Since both Lt and Rt begin with a com-
munication action on C� and C� respectively, they begin
simultaneously—concluding the proof.

Partitioning a process is a generalized form of process
decomposition. In process decomposition, a CHP program
was split into two parts by using the following transforma-
tion:

������ S � ���� � ������ A� ���� k ���A�� S �A�

where A is a slack zero communication action. We can use
partitioning to obtain a similar decomposition:

������ S � ���� � ������� C���C��� ����

k�� C��� S �C�� �

k�� C�� � C�� ��

We can replace C�� actions with C�� actions and eliminate
the sequencer process, since this does not change any syn-
chronization behavior. We obtain:

������ S � ���� � ������� C���C��� ����

k�� C��� S �C�� ��

(Indeed, when transformed into handshaking expansions,
using a two phase protocol on channel C� would result in
a reshuffled version of the system obtained through process
decomposition.)

3.2 Projection

Given a statement S , we restrict our attention to valid
partitions hA �Bi � part�S�—partitions such that A and B
do not share any variables or communication ports. Disal-
lowing shared variables permits us to use the theory of slack
elastic systems to reason about partitions. Allowing the ac-
tions from A and B to overlap in any manner would not be
permissible without this condition. For example, consider
the process

x�� x�

One possible partition of it is shown below:

hLSync�x���LSync�skip�� RSync�skip��RSync�x��i

The “Sync” actions ensure that the two processes do not
modify variable x simultaneously. If we attempted to re-
move the synchronizations, both x� and x� might execute
concurrently, causing erroneous executions.
We introduce concurrency by adding slack on channels

C� and C� that implement the “Sync” action. As we in-
crease the slack on these channels, we loosen the synchro-
nization constraints we have imposed through “Sync” op-
erations. This transformation cannot be justified in general.
We therefore restrict ourselves to considering systems such
that the partitioned system (with the sequencer process) is
locally slack elastic, and where channels C� and C� are
slack elastic. The theorems stated earlier provide sufficient
conditions that would ensure that the system is locally slack
elastic.
We now let the slack on channels C� and C� be infinite.

Notice that the sequencer process can run arbitrarily ahead
of the the two partitions that it is synchronizing. As a result,
the LSync and RSync actions no longer serve any purpose,
and can be eliminated! The final result is a decomposition
of the original process in which the two parts can execute
concurrently.

Theorem 3 (projection) Let E��� be a program template,
and let hL � Ri be a valid partition of process P . Replace
LSync�A� by A in L (call this process L�) and RSync�B�
by B in R (call this process R�). Assume that: (a) in any
deadlock-free execution of E�P �, action P is encountered
infinitely often without any parallel duplication of P ; (b)
E �L�k��R�k��C���C��� is locally slack elastic; (c) E �L�
and R do not share variables. Then, E �L��k��R�� is a
valid implementation of E �P�.

Proof: (Sketch) By Theorem 2, we are guaranteed that
E �L�k��R�k��C�� � C��� is equivalent to E�P �. By as-
sumption (b), the system is locally slack elastic. Therefore,
we can increase the slack on channelsC� andC� without af-
fecting the correctness of the entire system. When the slack
on C� and C� is infinite, we can eliminate all communica-
tion actions on C� and C�, because eliminating them does
not affect the possible execution traces that could occur—
concluding the proof.

By the nature of this construction, we have a transforma-
tion that effectively projects a process onto two disjoint sets
of variables.

Example: Consider the following process:

�� L�x �R�x �P�y �Q �y �
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A valid partition of the body of the loop would be:

hLSync�L�x ��LSync�R�x ��LSync�skip��LSync�skip��
RSync�skip��RSync�skip��RSync�P�y��RSync�Q �y�i

The two components of the partition do not share variables
or ports. The system is locally slack elastic, because there
are no selection statements. Therefore, we can apply Theo-
rem 3 to argue that the original process is equivalent to:

��L�x �R�x � skip� skip� k ��skip� skip�P�y �Q �y�

which is the same as:

�� L�x �R�x � k �� P�y �Q �y �

We can think of this as a transformation that syntactically
projected the original process onto two sets of variables—
fL�� R�� xg and fP�� Q�� yg—to obtain the final result.

4. Examples

In this section we use projection to show how various
parts of a computation can be decomposed so as to increase
the amount of concurrency in the final implementation.

4.1 Simple Pipelining

Consider the earlier example where we pipelined the
computation of g�f �x ��. The original program was

�� L�x � R�g�f �x �� �

This program is equivalent to

�� L�x � y �� f �x �� R�g�y� �

We can replace the assignment with communication actions
using the communication axiom [3], to obtain

�� L�x � �R��f �x �kR��y�� R�g�y� �

We project the program onto the two disjoint sets
fL�� x� R��g and fR��� y� R�g to obtain

�� L�x � R��f �x � � k �� R��y � R�g�y� �

which is the pipelined implementation. This example il-
lustrates that the introduction of new variables and internal
communication actions permits the systematic decomposi-
tion of a process into multiple parts that exchange data as
required. The first step was to introduce variable y to hold
the intermediate result f �x �. Next, the assignment to y was
replaced with a communication action. Finally, we applied
projection to obtain the pipelined implementation.

4.2 Data-dependent Synchronization

Consider the following program. It receives a bit on
channel C , and depending on the value either discards the
input received on channel A, or sends it out on channel X
along with copying the value received on B to Y .

�� A�x � C �c�
� c � true �	 B�y �X �x �Y �y
�� c � false �	 skip
�

�

Observe that the value communicated on channel Y in the
first guard of the selection statement is received on B , and
does not use the values c or x . We use the environment
template

E �P� �

�� A�x �C �c�
� c � true �	 P

�� c � false �	 skip
�

�

We project B�y�X�x� Y �y onto two disjoint sets fX�� xg
and fB�� Y �� yg; the two parts after projection are X �x and
B�y �Y �y respectively. Since E �X �x � does not share any
variables with B�y �Y �y , we obtain the following decom-
position:

�� A�x �C �c�
� c � true �	 X �x �� c � false �	 skip �

�

k
��B�y �Y �y�

Note that both processes are simpler to implement than the
original process. Also, the actions on channels A and B are
no longer synchronized. The second process has no inter-
nal selection statement, and does not even need to examine
the value of variable c. Since our model of computation
does not consider the relative order of actions on channels
C and B , we can decompose the original computation into
these two processes. Note that an environment where a pro-
cess always attempts to send a message on channel B , but
where C always receives a false value is ruled out because
that would imply that the send action on B (in the environ-
ment) in the original computation was suspended forever—
violating the absence of deadlock requirement on slack elas-
tic programs.

5. Selections and Loops

The definition of partitions can be extended to handle
selection statements and loops. When a selection statement
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is decomposed into two parts, we must ensure that we do
not change the value of the guards of the selection state-
ment. The definition of partitions for selection statements
and loops is given below. We will useA to refer to the argu-
ment of part on the LHS for the remainder of this definition.

� part��G� � H� 	 S���� � ���Gn �Hn 	 Sn�� �
fhLSync�A� � RSync�skip�i�

hLSync�skip� � RSync�A�ig

fs�� � � � � sn�si � part�Si

� �
hLSync�skip�� �G� 	 LSync�skip�� l�s��

��� � �
��Gn 	 LSync�skip�� l�sn���

RSync�skip�� �H� 	 RSync�skip�� r�s��
��� � �
��Hn 	 RSync�skip�� r�sn��ig

where G
i
� H

i
, for all i. The first part of the expres-

sion is the trivial partition, where the entire statement
is in one half of the partition. The rest of the defini-
tion consists of the case when we partition each state-
ment in each guarded command. The guards can be
partitioned as well; however, they can only be parti-
tioned when they are equivalent in the two partitions,
and equivalent to the guards used in the original pro-
gram. Note that G

i
and H

i
can be interchanged freely.

The partition of a selection statement is the union of all
such conjunctive decompositions of the guards. The
additional synchronization sequences the guard evalu-
ation and the execution of the statement in the guarded
command.

� part���G� � H� 	 S���� � ���Gn � Hn 	 Sn�� �
fhLSync�A� � RSync�skip�i�

hLSync�skip� � RSync�A�ig

fs�� � � � � sn�si � part�Si

� �
hLSync�skip��
��G� 	 LSync�skip�� l�s���LSync�skip�
��� � �
��Gn 	 LSync�skip�� l�sn��LSync�skip�
��

RSync�skip��
��H� 	 RSync�skip�� r�s���RSync�skip�
��� � �
��Hn 	 RSync�skip�� r�sn��RSync�skip�
�ig

where G
i
� H

i
, for all i.

Non-deterministic loops and selection statements cannot
be partitioned. This is because the implementation of a non-
deterministic selection statement is free to pick any alterna-
tive that has a true guard. This implies that the two par-
titions might pick different alternatives since the choice is
demonic (cf. [2]), thereby resulting in a system that would
not be equivalent to the original program.

Example: Consider the following process. It receives in-
puts on channels A and B , and a control input on channel
C . If the value received on C is true, the input on A is sent
on channel X ; otherwise, the input on B is sent on channel
Y .

�� A�x �B�y �C �c�
� c � true �	 X �x
�� c � false �	 Y �y
�

�

We assume that the input on C is known early, and we
would like to eliminate synchronization among actions A
and B . To partition the selection statement, and to decouple
the channel C from A and B we introduce variable ca and
cb that is equivalent to c:

�� A�x �B�y �C �c� ca �� c� cb �� c�
� ca � true � cb � true �	 X �x
�� ca � false � cb � false �	 Y �y
�

�

The first step is to replace the assignment statements with
communication actions, to obtain:

�� A�x �B�y �C �c� �Ca�ckCa�ca�� �Cb�ckCb�cb��
� ca � true � cb � true �	 X �x
�� ca � false � cb � false �	 Y �y
�

�

Next, we project this process onto fC�� c� Ca�� Cb�g and the
rest of the ports and channels. The resulting system is:

�� A�x �B�y �Ca�ca�Cb�cb�
� ca � true � cb � true �	 X �x
�� ca � false � cb � false �	 Y �y
�

�

k
�� C �c�Ca�c�Cb�c �

Finally, the first process can be pro-
jected onto fA�� x� Ca�� ca�X�g and fB�� y� Cb�� cb� Y �g
to obtain:
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�� A�x �Ca�ca�
� ca � true �	 X �x
�� ca � false �	 skip
�

�

k
�� B�y �Cb�cb�

� cb � true �	 skip
�� cb � false �	 Y �y
�

�

k
�� C �c�Ca�c�Cb�c �

In the final program, we have decoupled channels A and B .
Since the processes are all locally slack elastic, we can add
slack on channelsCa andCb to further decouple the control
channel C from channels A and B .

Quite often, we are faced with a program where we
would like to partition a selection statement, but we can-
not write the guards in the form required by our definition
of part���. Consider the selection statement shown below:

�G� �	 S� �� � � � ��Gn �	 Sn�

We make the assumption that the guards of the selection
statement are stable, i.e., the environment cannot change
their value from true to false. (This is the case when the
guards do not contain negated probes.) We introduce a fresh
variable g as follows:

�G� �	 g �� � �� � � � ��Gn �	 g �� n��
�G� �	 S� �� � � � ��Gn �	 Sn�

Next, we strengthen the guards in the second statement to
the following:

�G� �	 g �� � �� � � � ��Gn �	 g �� n��
�G� � g � � �	 S� �� � � � ��Gn � g � n �	 Sn�

We replace the assignment to g with communication ac-
tions, using a fresh slack zero channel G .

�G� �	 G ��kG�g �� � � � ��Gn �	 G �nkG�g��
�G� � g � � �	 S� �� � � � ��Gn � g � n �	 Sn�

Observe thatG�g is common to all alternatives in the selec-
tion statement. Therefore, we can write:

�G�gk�G� �	 G �� �� � � � ��Gn �	 G �n���
�G� � g � � �	 S� �� � � � ��Gn � g � n �	 Sn�

So far, we have not changed the computation performed by
the original guarded command. This final form can be par-
titioned, because the guards of the selection statement are
in the required form. We call this sequence of steps control
duplication, as we have created a copy g of control flow
information.

6. A Case Study

We present the decomposition of the writeback unit from
the asynchronous MIPS processor [8]. The MIPS Instruc-
tion Set Architecture (ISA) specifies that any exception
caused by an instruction is precise [4]. A precise exception
mechanism has to guarantee that that the instruction that
caused the exception and all instructions following it until
the first instruction of the exception handler do not modify
any observable state of the processor. The observable state
in the MIPS ISA consists of the memory, special purpose
registers, and general purpose registers. The writeback unit
coordinates this behavior, controlling when a particular in-
struction is permitted to modify the state of the processor.
The sequential CHP program for the writeback unit is:

WB � valid��

�� UN �un�UZ �uz �VA�va�EPC �epc�
�un � 	 �	 EX 	�e
��un � � �	 EX ��e
��un � � �	 e �� none

��
�uz � � �	 REG ��valid � �e � none��
��uz � 	 � un � � �	

MEM ��valid � �e � none��
��uz � 	 � un � � �	

MULT ��valid � �e � none��
��
�valid � �e �� none� �	

valid��EX �CP	pc�epc�CP	e�e
��va �	 valid�
��else �	 skip
�

�

The information received on various input channels is as
follows:

� UN : where to read the exception information for the
next instruction to be processed.

� UZ : 1 if the instruction writes its results to the register
file, 0 otherwise.

� VA: 1 if the instruction is the first instruction of the
exception handler, 0 otherwise.

� EPC : the program counter for the instruction.

� EX 	, EX �: the type of exception from different exe-
cution units.

The writeback process is in two states: executing valid in-
structions (valid is true); canceling the results of instruc-
tions (valid is false). The variables uz and va are one bit
wide; un is two bits wide; epc is a 32-bit quantity.
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The writeback process reads the exception information
from the appropriate channel. It sends permission to modify
the state of the processor (or lack thereof) to the appropriate
part of the processor (register file, memory unit, or multi-
plier/divider unit which has local registers). If an exception
is detected, it notifies the PCUNIT (via EX ) and sends the
program counter and exception type to the CP0 on channels
CP	pc and CP	e respectively. Finally, it updates the valid
bit. (For a more detailed description, readers are referred to
[8] and [4]). Note that the writeback process is locally slack
elastic, because it does not probe any channels.
First, we decompose the computation of valid out of the

writeback. The computation of valid depends on va , valid ,
and the value of e. Note that va is not used by any other part
of the computation. However, the rest of the computation
uses valid . We introduce a copy of valid, valid�, that is
used by the rest of the program. To project the last selection
statement (containing epc and e), we introduce a copy of e
as well.
After introducing the appropriate copies of valid and e,

and adding communication actions (as in the examples ear-
lier), we obtain:

WB	 � V �valid��

�� UN �un�UZ �uz �
�un � 	 �	 EX 	�e
��un � � �	 EX ��e
��un � � �	 e �� none

�� Enone��e �� none��E��e�
�uz � � �	 REG ��valid� � �e � none��
��uz � 	 � un � � �	

MEM ��valid� � �e � none��
��uz � 	 � un � � �	

MULT ��valid� � �e � none��
�� V �valid�

�

WB� �

valid��
V �valid �
�� VA�va�EPC �epc�Enone�en�E��e��

�valid � en �	
valid��EX �CP	pc�epc�CP	e�e�

��va �	 valid�
��else �	 skip
��
V �valid

�

We now focus on the second process. Observe that action
V �valid is performed on initialization, and after each itera-
tion of the non-terminating outer loop inWB�. Therefore,
it can be rewritten as:

EX

WB00 WB01

WB11

WB

WB1

WB0

WB10

Enone
E2V

Enone2

UN2

C

REG

MEM

MULT

CP0e

CP0pc
VA

UN

EX0 EX1 UZ

EPC

Figure 1. Decomposed version of the write-
back.

WB� �

valid��
�� V �valid �VA�va�EPC �epc�Enone�en�E��e��

�valid � en �	
valid��EX �CP	pc�epc�CP	e�e�

��va �	 valid�
��else �	 skip
�

�

Since epc is a 32-bit quantity, we decompose it out into a
separate process. We apply the control duplication steps
in order to decompose the selection statement inWB�. We
name the newly introduced channelC , and the new variable
introduced gd .
Applying projection once again, we obtain:

WB�	 �

valid��
�� V �valid �VA�va�Enone�en�

�valid � en �	 valid��EX �C �	
��va �	 valid��C ��
��else �	 C ��
�

�

WB�� �

�� EPC �epc�E��e��C �gd �
�gd � 	 �	 CP	pc�epc�CP	e�e�
��else �	 skip
�

�

wb1 We now examine processWB	. We separate the pro-
cess into two parts: one that computes the value of e, and
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the rest that uses the value of e. The part that computes the
value of e depends on the value un , received on channel
UN . The result of this projection is:

WB		 �

�� UN �un�
�un � 	 �	 EX 	�e
��un � � �	 EX ��e
��un � � �	 e �� none

��
Enone��e �� none��E��e�
Enone���e � none��UN ��un

�

WB	� �

�� V �valid��UN �uz �Enone��en��UN ��un��
�uz � � �	 REG ��valid� � en��
��uz � 	 � un� � � �	 MEM ��valid� � en��
��uz � 	 � un� � � �	 MULT ��valid� � en��
�

�

By the projection theorem, the concurrent composition
ofWB		,WB	�,WB�	 andWB�� implement the orig-
inalWB process. Figure 1 shows the final process decom-
position, with the channels visible to the rest of the system
as well as the internal channels introduced for the purposes
of projection.
The final decomposition of the writeback is superior to

the original programWB because each process in the final
decomposition performs fewer actions in sequence, reduc-
ing the overall cycle time of the system. In addition, by fur-
ther adjusting the slack on the different channels in the sys-
tem (in particular, adding slack to channels UN �, Enone�,
and E�) we can ensure that the pipelined implementation of
the writeback operates at peak throughput (cf. [1, 10]).

7. Related Work

Process decomposition is a transformation that is purely
syntactic, yet preserves the semantics of the computa-
tion [6]. However, the transformation does not increase the
amount of concurrency in the system—a key property of
projection.

8. Conclusions

We presented a synthesis technique for the design of
finely pipelined asynchronous systems. The technique was
based on the concept of projecting a CHP program onto
different variables used in the text of the program. We
provided conditions under which the transformation could
be applied, which relied on certain processes being locally

slack elastic. We showed how the transformations were
used to construct a pipelined implementation of the write-
back process used in the design of an asynchronous MIPS
microprocessor.
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A. Notation

The notation we use is based on Hoare’s CSP [3]. What
follows is a short and informal description of the notation
we use.

Simple statements and expressions.

� Skip: skip. This statement does nothing.

� Assignment: x �� E . This statement means “assign
the value of E to x .” When E is true, we abbreviate
x �� E to x�, and when E is false we abbreviate x ��
E to x�.
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� Communication: X �e means send the value of e over
channel X ; Y �x means receive a value over channel
Y and store it in variable x . When we are not commu-
nicating data values over a channel, the directionality
of the channel is unimportant. In this case, the state-
ment X denotes a synchronization action on port X .

� Probe: The boolean X is true if and only if a com-
munication over channel X can complete without sus-
pending.

Compound statements.

� Selection: �G� 	 S� �� ��� ��Gn 	 Sn�, where Gi’s
are boolean expressions (guards) and Si’s are program
parts. The execution of this command corresponds to
waiting until one of the guards is true, and then exe-
cuting one of the statements with a true guard. The
notation �G� is short-hand for �G 	 skip�, and de-
notes waiting for the predicateG to become true. If the
guards are not mutually exclusive, we use the vertical
bar “�” instead of “��.”

� Repetition: ��G� 	 S� �� ��� �� Gn 	 Sn�. The
execution of this command corresponds to choosing
one of the true guards and executing the correspond-
ing statement, repeating this until all guards evalu-
ate to false. The notation ��S� is short-hand for
��true 	 S�. If the guards are not mutually exclu-
sive, we use the vertical bar “�” instead of “��.”

� Sequential Composition: S �T . The semicolon binds
tighter than the parallel composition operator k, but
weaker than the comma or bullet.

� Parallel Composition: S k T or S �T . The k operator
binds weaker than the bullet or semicolon. The comma
binds tighter than the semicolon but weaker than the
bullet.

� Simultaneous Composition: S �T (read “S bullet T”)
means that the actions S and T complete simultane-
ously. Typically, the two actions are communication
actions only, and the implementation of the bullet cor-
responds to replacing S by S � S and T by T �T and
then picking an interleaving of the “doubled” actions,
like S �T � S �T . The operator binds tighter than the
semicolon and parallel composition.

The concurrent execution of a collection of CHP processes
is assumed to be weakly fair—every continuously enabled
action will be given a chance to execute eventually. The
choice operator in the selection statement is assumed to be
demonic, and therefore the choice is not fair. Consider the
following four processes:

�� X �	 � k �� Y �� �

k ���X �	 X �x �� Y �	 Y �x �� Z �x �

k �� W �� �

Since the selection statement is not fair, Z is permitted to
output an infinite sequence of zeros. However, both Z �x and
W �� will execute eventually, since parallel composition is
assumed to be weakly fair.

Set Comprehensions.
We use the notation shown below to describe a set of

elements that satisfy some property.

fx � R � Tg

x is an unordered list of variable names (dummies), R (the
range) is a predicate, and T (the term) is an expression.
The notation describes the set containing all terms T where
x satisfies R.
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