
Non-Uniform Access Asynchronous Register Files

David Fang, Rajit Manohar
Computer Systems Laboratory

Electrical and Computer Engineering
Cornell University

{fang , rajit }@csl.cornell.edu

Abstract

Register files of microprocessors have often been cited
as performance bottlenecks and significant consumers of
energy. The robust and modular nature of quasi-delay in-
sensitive (QDI) design offers a toolchest of techniques for
improving average-case performance and reducing energy
consumption of register files, which cannot be leveraged as
easily in synchronous designs. In this paper, we focus on
the design of an asynchronous register core, the heart of
a register file. We describe the vertical pipelining trans-
formation and describe the locking mechanism that main-
tains pipelined mutual exclusion among reads and writes to
the same register. The primary contributions of this paper
are 1) detailed evaluation of the width-adaptive datapath
(WAD) representation in register files, which leads to sig-
nificant energy reduction by conditionally communicating
higher significant bits of integers with little performance
degradation, and 2) ‘nesting’ the register core to create
non-uniform banks to facilitate faster and lower energy ac-
cesses to more frequently used registers and slower accesses
to less frequently used registerswithout increasing the in-
terconnect requirement or control complexity. We present
spice -simulated results for a wide variety of register files
laid out in TSMC.18µm technology.

1. Introduction

In modern microprocessors, register files sit at the small-
est and fastest end of the memory hierarchy. Register files
are exposed as part of an instruction set architecture (ISA)
to the compiler, whose task is to schedule uses of registers
as efficiently as possible. Since the register file is used by
almost every instruction, it is important that it be accessible
on every cycle. However, several trends compound the chal-
lenge of meeting cycle times in superscalar register files:

• increasing number of ports to support wider instruction

issue⇒ increased area of each register word

• deeper pipelines⇒more in-flight instructions⇒more
physical registers

• increasing architectural width
(today 32 and 64 bits, tomorrow?)

The first two points arise from exploiting increasing
instruction-level parallelism (ILP) in the instruction stream.
The resulting increase of bit line loads slows register ac-
cesses while increasing access energy. The slowdown of
register files (as registers grow in size, number of ports,
and architectural width) has been well-modeled [23,29]. To
meet cycle time requirements, two countermeasures against
these trends are:

• banked, distributed, or clustered register files

• multi-cycle access register files

Splitting register files often results in increased inter-
connect complexity and sometimes explicit communication
through inter-cluster traffic [12, 23]. Multi-cycle register
files lead to increased pipeline depth (and branch mispre-
diction penalty), anddramatically increase the bypass and
control complexity [1,6].

In an asynchronous datapath, variations in access time
need not complicate the pipeline organization, due to the
data-driven nature of operation. This paper presents im-
plementations of non-uniform access registers that are free
from the re-timing complexities of synchronous datapaths.

On top of the challenge of sustaining performance in the
face of growing complexity is the problem of increasing
energy consumption in register files. Today’s register files
consume up to 40% of the datapath energy, or 15% of the
core energy [27]. Modifying them for increasing ILP only
increases the register file’s proportion of energy consump-
tion. Traditional techniques for reducing register file en-
ergy fall into one of several categories: 1) circuit techniques
that reduce the energy per register access, 2) reducing the

http://www.csl.cornell.edu/~fang/
http://www.csl.cornell.edu/~rajit/
http://www.csl.cornell.edu/

number of accesses to register cores, 3) more efficient uti-
lization of equal or fewer resources (number of registers,
ports) [21, 27, 29]. In this paper, we exploit the compress-
ibility of operand values and non-uniformity in register us-
age to achieve an average-case improvement.

With self-timed designs, timing constraints are lifted and
replaced with a discipline of local handshakes on channels
between concurrent processes. The question we address in
this paper is: How can we leverage the benefits of asyn-
chronous design — modularity, formal verification, and ro-
bustness of quasi-delay insensitivity (QDI) — to improve
the performance and reduce the energy of growing register
files?

The paper is organized as follows: In Section2, we de-
scribe how the register core is vertically pipelined to im-
prove throughput and how pipeline-locking is implemented
to preserve correctness. In Section3, we present the imple-
mentation of a width-adaptive datapath (WAD) register file,
which saves considerable energy by communicating com-
pressed integers. In Section4, we presentnestingas an
implementation of a non-uniform access register core and
discuss its potential for improving performance and reduc-
ing energy in the average case. In Section5, we describe
our simulation methodology and compare performance and
energy results for the various designs of the core read and
write ports.

2. Vertically Pipelining the Register Core

RI[0]

WI[0]

W[0] W[1]

R[0] R[1]

WI[1]

RPORT[1]RPORT[0]

WPORT[0] WPORT[1]

RI[1]
reg[0..31]

Figure 1. Register core decomposition

The entire register file, which includes the surrounding
control and bypass, is decomposed in the same manner as
in the MiniMIPS [9,17]. Our model for the core is a 2-read,
2-write ported, 32-word x 32-bit register array, shown in
Figure1, which receives indices from the control on chan-
nelsRI [0..1] andWI [0..1] that correspond to the register
number, supplies data to the bypass (not shown) on the read
bit line channelsR[0..1], and receives data from the bypass
on write bit line channelsW [0..1]. The received index in
each port process is decoded into a 1of32 word line chan-
nel that selects which register is accessed. The values of
the respective registers are represented by thereg variable

ca
sc

ad
ed

 lo
ca

l w
or

d
lin

es

(a) unpipelined

lo
ca

l w
or

d
lin

es

(b) pipelined completion

gl
ob

al
 w

or
d

lin
es

(c) vertically pipelined

w
or

d
lin

es

bit lines
read/write

co
nt

ro
l

ph
ys

ic
al

 s
ub

−
ch

an
ne

ls

ph
ys

ic
al

 s
ub

−
ch

an
ne

ls

lo
gi

ca
l d

at
a

ch
an

ne
l

Figure 2. Different pipeline organizations of register
cores. The triangles represent completion trees in a QDI
design.

cell array

re
ad

/w
ri

te
co

m
pl

et
io

n
da

ta
 in

te
rf

ac
e

ar
ra

y

handshake
control

control propagation completion
control propagation array

xvt xpi xcell

Fig. 2c

ycp

ycell

yht

Figure 3. Template floorplan for a single block of a ver-
tically pipelined register core from Figure2c, shown here
with a 4-bit x 32-word block size. Component dimensions
are listed in Table4.

array, which is shared among all port processes. The con-
trol for the coreguaranteesthat on each iteration: 1) the
indices it issues never concurrently read and write the same
register, and 2) that each register is written by at most one
write port. Since the port processes are decoupled from one
another, reads and writes todifferent registers may safely
complete in any order.

If one were to synthesize quasi delay-insensitive (QDI)
production rules from the current specification of the core,
one would find that the handshake cycle times would be
severely limited by the completion trees (across the data
channels), one of the byproducts of the QDI asynchronous
design style. Figure2a shows a schematic of an unpipelined
register core, with completion trees that span the architec-
tural width of the datapath. We discuss two techniques that
reduce the size of completion trees.

2.1. Pipelined Completion

Pipelined completion, illustrated in Figure2b, distributes
the control for full-width operations across several blocks
by wiring global control to each block, and in each block,

synchronous latches or
asynchronous buffers

Figure 4. Aligned pipeline
operation

synchronous
latches

ReceiverSender

leading

lagging

Figure 5. Synchronous parallel
skewed vertical pipeline operation

leading

or Buffer
ReceiverSender

lagging

Function Unit

Figure 6. Asynchronous block-
skewed vertical pipeline operation

copying control to local register cells. This moves par-
tial completion off critical cycles and results in smaller,
block-wide completion trees. In the MiniMIPS register
file, each block was one byte wide [17]. The control ac-
knowledge for each block is collected in a separate comple-
tion tree at the global distribution stage. A consequence of
pipelined completion is that each register’s port control re-
quires both a global word-lineanda local word-line. Dou-
bling the control-interconnect bandwidth requires either an-
other metal layer or roughly twice the word pitch, which is
inefficient for word-arrayed structures such as the register
core.

2.2. Vertical Pipelining

We chose tovertically pipeline the register core, as
shown in Figure2c.1 In a QDI vertical pipeline, control
is linearly pipelined from the least significant to most sig-
nificant blocks via QDI handshakes on local (1of32) word-
line channels, whicheliminatesthe need for long-distance
global word lines across the register core. Vertical pipelin-
ing can be thought of as an instance of pipelined comple-
tion, where control is distributed in a linear tree, as opposed
to a balanced tree.

The basic floorplan for one block of the pipelined reg-
ister core appears in Figure3. The cell array stores bits in
2-read, 2-write ported register cells. The control propaga-
tion array contains precharge circuits (similar to Figure7)
that copy word lines for each port to the successor block
and contains an OR-completion tree across each port’s word
line channel. The peripheral data interface circuits, shown
in Figure 8, invert the read-data bit lines into channelR,
drive the read-enable bit lines, control the resetting of the
read-data bit lines and the write-validity bit lines. Therv
and wv validity signals are completed in each block of the
R andW channels. The handshake control collects con-
trol and data completion signals and communicates with the
neighboring blocks using QDI validities and acknowledges.

1We call thisvertical because most traditional pipeline diagrams show
pipeline stages flowing horizontally. A design with horizontal and vertical
pipelining is also calledtwo-dimensionally pipelined.

Pipelined completion and vertical pipelining benefit
from smaller completion trees and distributed control
fanout. Another advantage of vertical pipelining over
pipelined completion is that the control for each block only
needs to collect the acknowledgment from its immediate
successor, as opposed to one stage completing across all
blocks. This means that the control for an unpipelined
design works for an arbitrary number of vertical pipeline
stages! Vertically pipelined architectures scale to any width
with constant cycle timeon data handshakes.

A natural property of vertical pipelining is that com-
municated data tokens on the datapath areblock-skewed,
i.e., as control ripples vertically across the blocks, less-
significant blocks are communicated earlier than more-
significant blocks, as illustrated in Figure6. An exam-
ple of extreme vertical pipelining with a 1-bit granularity
is the bit-skewedpipeline of the asynchronous lattice fil-
ter [7]. The synchronous counterpart to vertically pipelining
(“byte-parallel, skewed”, Figure5) has been proposed [4],
however, the disadvantage in the synchronous domain is
that each successive block is an entire clock-cycle behind
its predecessor, which is much worse than the 2-gate verti-
cal latency through each pipeline stage’s control propagator,
whose simplified circuit template is shown in Figure7.

In a block-skewed vertical pipeline, since the most sig-
nificant blocks’ results always lag behind the least signifi-
cant blocks’, operations that depend on the more significant
blocks (e.g. compare instructions, right-shifts) will execute
slower than with block-aligned pipelined completion. The
overall performance such architectures Is determined by a
tradeoff between cycle time and thetotal vertical latency,
which depends on the number of blocks.

2.3. Pipeline Locking

Even if the control issues read-write exclusive port in-
dices on each iteration, vertically pipelining accesses to the
shared variablesreg without further measures can lead to
a violation of read-write exclusion because the full-width
completion of shared variable accesses is decoupled from
the control handshake. Since we make no assumptions
about when read and write operations complete, we need to

locks

(word lines)

Fig. 3

mutexhi(RCi,WCi)⇒ mutexhi(RCo,WCo)

wenren

RCi WCi

WCoRCo

Figure 7. A 1-read, 1-write pipeline-locking template cir-
cuit for a control propagation element in each block of a
read-write vertical control pipeline.ren andwen are local
precharge signals for each port within a block. The shaded
portion of the circuit shows the locks.

Fig. 3 W 0

W 1

wv

iwv

wv

Re

renD

renD

RCei

IRv

renD

rv

R1
R0

renD

R1
R0

Figure 8. Bit line peripheral circuit for each read and
write port. The shaded transistors are present for only the
nested versions, described in Section4.

prevent data hazards, subsequent reads from racing ahead
of outstanding writes, and vice versa.

Previous asynchronous microprocessor designs have em-
ployed different techniques for dealing with read-write haz-
ards in register files [10, 11, 20, 22, 26], however, we im-
plementpipeline-lockingin the same way as in the Mini-
MIPS [17]. Pipeline-locking propagates the guarantee of
mutual exclusion and atomicity through each pipeline stage
when the critical action is decoupled from control and thus,
prevents violation of dependencies in the pipelined register
core [16]. Figure7 shows the precharge template for a 1-

−

en

VDD

en

Le

L0

L1

aC

Re

Rv

R1

R0

en

Rv

Lv

C

Figure 9. 1of2 precharge enable-valid full-buffer

read, 1-write, pipeline-locked control propagator, which can
be easily generalized for more ports. Preserving mutual ex-
clusion requires locking for both pipelined completion and
vertical pipelining because completion of the port opera-
tions is decoupled from the control. All vertically pipelined
read and write ports in this paper were designed with a 4-bit
block size.

2.4. Base Design Production Rules

QDI production rules for the register core read and write
ports are synthesized based on a few template handshak-
ing expansions [14]. To minimize the cost of wiring signals
across large arrays, we restricted ourselves to reshufflings
that use a single precharge signal and shared output validi-
ties [19]. The handshaking expansion (HSE) for our vari-
ation, calledprecharge enable-valid full-buffer(PCEVFB),
is listed as HSE Program1, and its 1of2 circuit template is
shown in Figure9. In this paper, we present results for only
the PCEVFB versions of the register core; the half-buffer
counterpart (PCEVHB) is slightly slower in most cases [9].

Program 1 HSE: precharge enable-valid full-buffer (PCEVFB)

*[[Re]; en↑; [L]; R↑; Le↓;
[¬Re]; en↓; R↓, ([¬L]; Le↑)]

In addition to the single-banked core of 32 registers, we
also designed and simulated register cores with two banks
of 16 registers. Not only does banking accelerate and reduce
the energy of asynchronous memory-structure accesses, but
it can also yield better average-case performance when se-
quential accesses touch different banks [8, 13]. To accom-
modate for two banks in the register file, the control pro-
cesses perform one level of decoding before each bank’s de-
code to distinguish between accesses to the two banks, the
writeback bypass is extended to split a conditionally copied
value to one of the banks, and the read bypasses are ex-
tended to merge values from one more bank source.

3. Width Adaptivity (WAD)

The observation that the vast majority of values commu-
nicated on the integer datapath require fewer bits than the
full architectural width motivates the encoding of integers
in a compressible representation to reduce switching activ-
ity and energy. Various surveys of 32-bit architectures have
found that30 to 80% (averaging over65%) of integer data-
path energy can be reduced by suppressing communication
(or clocking) of leading0s and1s [4,15]. 64-bit and wider
architectures exhibit even greater compressibility.

Synchronous designs have exploited the compressibility
of integers using opcode- and operand-based clock-gating
to reducing switching and latching activity on the data-
path [2,3], however, these proposed architectures have only
a very coarse granularity for detecting narrow operands.
Synchronous byte-parallel, skewed implementations suffer
from latching overhead (of synchronous vertical pipelining)
and increased complexity in the control for bypass paths [4].

Table 1. The encoding of width-adaptive datapath (WAD)
blocks

delim. bit MSB next block control

0 0 normal propagate
0 1 normal propagate
1 0 0 terminate
1 1 1 terminate

= 0

001XXXXX 0 0 0 1 0 0 0 0 1 0 0 0 = 262

1 0 0X X X X X 1 01 1 1 1 1 1 0 1 1 1 =−263

XXXXX 1X X X X X X X X X X 1 1 11 = −1

1 0000XXXXXXXXXXXXXX X

Figure 10. Examples of WAD numbers. MSBs are lightly
shaded and delimiter bits are darkly shaded. Only darkly
bordered blocks’ bits are communicated.

Our work implements the block-skewed,width-adaptive
datapath (WAD) architecture [15]. The WAD encoding
is shown in Table1, with examples given in Figure10.
Where the delimiter bit is true (in the terminal block), all re-
maining higher significant bits are understood (without their
communication) to be leading0s or 1s, depending on the
MSB of the terminal block. Asynchronous WAD has sev-
eral advantages over other similar proposed architectures:
1) Rather than constantly re-detecting leading0s and1s,
delimiter bits are stored and communicated with significant
blocks of data and re-evaluated for compaction with low

overhead [15]. 2) The distributed nature of WAD is en-
tirely transparent to the datapath control —nomodification
to existing control logic outside of the vertical pipeline is re-
quired. 3) The robust, self-timed nature guarantees that any
timing variation that arises from WAD is correctly tolerated.
One could conceivably vertically pipeline non-uniformly
to optimize the placement of delimiter boundaries for en-
ergy minimization. Formally, WAD can be described with
a template process transformation that can be applied to all
pipelined functional units, including arithmetic blocks such
as adders [9,15,18].

The problem with implementing WAD using pipelined
completion is that control isunconditionallycopied to all
blocks with global word lines, which may lead to incorrect
behavior. To adapt pipelined completion for data-dependent
control requires feedback from every block to the global
word-line copy stage, which lengthens the handshake cycle
time. The linearly pipelined nature of vertical pipelining is
much better-suited for WAD.

WAD introduces very little change to the block-skewed,
vertically pipelined core read and write port circuits. Aside
from adding one row of register cells and bit lines per block
for the delimiter bit, WAD modifications are confined to the
handshake control and control propagation cells in Figure3.
Read port control propagation depends on the state of the
selected register’s delimiter bit, which adds one series tran-
sistor to each precharge stack in Figure7. Read port con-
trol termination is detected with a shared bit line, similar to
read bit lines. In the read port handshake control, the re-
set phase only waits for the control output acknowledge in
the propagation case, otherwise the wait is bypassed by the
termination case. Write port control propagation depends
on the value of the delimiter bit of the arriving data (also
stored in the delimiter bit cell), which adds one series tran-
sistor to the original precharge stack.2 The termination case
is detected in the handshake logic. In the write port hand-
shake logic, the reset phase only waits for the control output
acknowledge in the propagation case, otherwise the wait is
bypassed by the termination case.

In Section5.2, we show that WAD leads to significant
energy savings over the standard (non-WAD) pipeline block
while suffering only slightly in cycle time.

4. Non-Uniform Nesting

Banking register files to uniformly reduce their access
times and cycle times runs into limitations because of the
increased interconnect requirement. How can one acceler-
ate registers without further banking? Since register allo-

2We have studied two variations of reshufflings of the WAD write port,
which are differentiated by whether the precharge enable signal iscondi-
tionally or unconditionallyraised on each iteration [9]. In this paper, we
present results for only the unconditional variation.

Table 2. MIPS register conventions. Bolded register
classes are the most frequently used.

name reg# convention

$zero 0 constant0
$at 1 reserved for compiler

$v0-$v1 2–3 results
$a0-$a3 4–7 arguments
$t0-$t7 8–15 (callee-saved) temps
$s0-$s7 16–23 caller-saved
$t8-$t9 24–25 (callee-saved) temps
$k0-$k1 26–27 reserved for OS

$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

cell array
inner

ne
st

ed
 in

te
rc

on
ne

ct

ar
ra

y
da

ta
 in

te
rf

ac
e

control
handshake

cell array
outer

xvt xpi xnixcell

ycp

ycell

yht

Figure 11. Floorplan of a nested 4-bit x 16-word pipeline
block of the register core, with the outer partition on the left
side and the inner partition on the right. New or modified
components that arise from nesting are darkly shaded, while
all other components corresponding to Figure3 remain un-
changed. The WAD, nested floorplan includes one more
row of delimiter bit cells in the cell array. The dimensions
for the various components are listed in Table4.

cators in compilers obey register conventions, such as that
of the MIPS ISA, listed in Table2, the majority of regis-
ter accesses is often covered by only a minority of regis-
ters: results, arguments, caller saves, stack and frame and
return pointers. Table3 shows the most frequently read and
written MIPS registers, sorted by frequency.3 Since asyn-
chronous designs are not constrained to any timing require-
ments, there is potential to achieve average case speed-up
and energy reduction for sufficiently skewed register usage
distributions. We introduce asynchronous registernesting
as a method for exploiting skewed register usage with non-
uniform register accesses.

3Averaged across SPECInt95 benchmarks with training inputs: 099.go,
129.compress, 134.perl, 124.m88ksim, 130.li, 147.vortex, 126.gcc,
132.ijpeg, compiled withgcc-2.95.3 -O3 , run on a MIPS simulator

Table 3. Cumulative dynamic usage frequencies of the 20
most read and written MIPS registers

N reg read% cumul. reg write% cumul.

1 0 32.95 32.95 0 27.63 27.63
2 3 14.90 47.85 2 18.96 46.59
3 2 12.59 60.44 3 18.35 64.94
4 30 9.78 70.22 4 9.57 74.51
5 5 8.03 78.25 5 6.83 81.34
6 4 6.36 84.61 6 4.87 86.21
7 29 4.73 89.34 31 2.95 89.16
8 16 2.36 91.70 29 2.52 91.68
9 31 1.73 93.43 16 2.04 93.72
10 17 1.43 94.86 30 1.67 95.39
11 6 1.19 96.05 14 1.49 96.88
12 28 0.91 96.96 1 1.03 97.91
13 14 0.85 97.81 17 0.52 98.43
14 1 0.60 98.41 18 0.41 98.84
15 18 0.48 98.89 7 0.30 99.14
16 7 0.29 99.18 19 0.22 99.36
17 19 0.23 99.41 8 0.13 99.49
18 20 0.15 99.56 20 0.13 99.62
19 21 0.13 99.69 9 0.08 99.70
20 8 0.09 99.78 21 0.08 99.78

Non-uniform register architectures have a long evolu-
tionary history in clocked-designs. One of the early ap-
pearances of heterogenous register files was in the Cray-1
supercomputer [24], in which primary registers were used
directly in computation, while intermediate registers were
used for auxiliary storage. Movements between the two lev-
els of registers were accomplished by explicit instructions.
A key observation in superscalar architectures is that code
with high ILP suffers very little from slower multi-cycle
register accesses, while serially dependent code (with low
ILP) is not accelerated by increasing the number of physi-
cal registers. Such contrasting characteristics of instruction
streams demand small, fast register files backed by larger,
slower register files or memory [5,23,25]. Proper schedul-
ing of dependent instructions through fast registers leads to
speed up of critical code, while larger register files are good
for reducing spills that would otherwise pollute the cache.

Accommodating non-uniform accesses has proven to be
a challenge in clocked designs. Support for variable multi-
cycle accesses requires multiple levels of bypassing, which
results in increased bypass latency, and pipeline depth (and
hence, branch misprediction penalty) [1]. The interconnect
requirement is the greatest limitation to fully-connected
multi-level bypassing, and partial bypassing pushes com-
plexity into the control logic [6]. Asynchronous register
nesting suffers from none of these problems.

With nesting, we partition a single bank of registers into
a fast outer bank and a slow inner bank using a QDI in-
terconnect,without requiring any additional external inter-
connect. By isolating the load of the inner bank, the outer

Fig. 11

IR1

irenD

renDiren D

IR0

iren D

renD

IRv

R0

R1

IRCv

irenD

IR0

IR1

Figure 12. Read port nested interconnect

Fig. 11

IW 1

IW 0
wv

W 1
W 0

wv
iwv

IWCv

IW 0

iwv

IW 1

Figure 13. Write port nested interconnect

bank’s bit line capacitance is roughly halved relative to the
unpartitioned bank and therefore operates faster and with
less energy. A similar technique uses only a pass gate to
partition each bit line, which is most useful in clocked de-
signs where the resulting slow-case bit line delay still meets
the timing constraints [27]. Though a QDI implementation
using pass gates may be possible, we have only explored
one implementation using fully-restoring logic.

Our implementation of register nesting follows a few
guidelines. 1) We maintain a strictly QDI design style, free
of timing assumptions about gate delays. A consequence of
this choice is that we have greater circuit overhead in the
interconnect than other possible designs that use timing as-
sumptions. 2) We want to introduce as few modifications
to the existing non-nested design as possible to minimize
the slowdown to the outer partition relative to a non-nested
bank of the same size. Since accesses to the inner partition
use the outer partition through the interconnect, this can be
achieved by making inner accesses behave like an access
to a normal (but slower) register from the outer partition’s
perspective. The interconnect functions like a bypass envi-
ronment from the inner partition’s perspective.

The floorplan for a nested block of the vertically
pipelined register core is shown in Figure11with eight reg-
isters in the outer and inner partitions. The circuits in the
register cell array and control propagation array remain un-
changed from Figure3. The arrow in the figure shows how
the control completion trees have been unbalanced to favor
faster completion in the outer partition than in the inner par-
tition. To summarize the impact of nesting on the original
register core design: In the peripheral circuits interfacing
theR andW channels, one series transistor (shaded in Fig-
ure8) has been added to one production rule per port per bit,
to implement a guard signaling that the inner partition has
reset before the read and write communication handshakes
are allowed to proceed. Each of those transistor gates is
connected to a wire run across the outer register array to the
nested interconnect, which is the greatest cost of nesting.

Checking the reset of each nested bit line independently
eliminates the need for bit line completion trees in the inner
partition. For the handshake control circuits, nesting intro-
duces a single transistor modification inonly the WAD read
port because its control termination condition is detected on
a shared bit line which is now split into two partitions [9];
all standard and write port handshake controls workunmod-
ified!

New circuits are introduced in the nested interconnect
component, shown in Figure12 for each read port bit, and
Figure13 for each write port bit. The nested interconnect
circuits for the control propagation arrays (not shown) are
relatively simple for the standard and WAD versions.IR
andIW are the inner partition’s counterparts of the read and
write bit lines.IRC v andIWC v are the word lines that ac-
tivate the nested interconnect.IRv andiwv , the validities
for reading and writing the inner partition, are connected
across the outer partition to the peripheral data interface cir-
cuits.

The conservativeness of QDI, along with the minimal
(one-sided) guard addition to the outer partition’s peripheral
data interface, imposes a high penalty for reading from the
inner partition [9]. Since only IRv↑ is checked by the outer
partition’s read data interface (Figure8), we must guaran-
tee that IRv be stably lowbeforethe outer partition’s bit
lines R↓ may fire. This is accomplished by waiting for
the inner partition to complete most of its reset phase be-
fore responding to the outer partition with data. To alter the
interface between the partitions and allow greater partition
concurrency (while maintaining QDI) would require more
information about the state of the inner partition to be com-
municated to the outer partition, which would incur greater
wiring overhead over the outer partition and transistor over-
head in the peripheral data interface. The tradeoff for such
a transformation reduces the inner partition access penalty
while reducing the speedup of the outer partition.

Writing to the inner partition is not quite as restricted.
The outer partition’s write data interface only checksiwv↓,

which meansiwv must be stably high before the outer par-
tition is allowed to see the write validitywv↓. Since this
is already guaranteed, the reset phase of the inner partition
and the outer write-validity may proceed concurrently as
soon as the write to the inner partition is complete.

5. Results

Table 4. Component sizes, corresponding to Figure11.

dim. λ λ/xcell dim. λ λ/ycell

xcell 65 1.00 ycell 210 1.00

xpi 268 4.12 ycpstd 380 1.81

xvt 109 1.68 ycpWAD 401 1.91

xni 240 3.69 yht 140 0.67

Each version of the register core described in this paper
was laid out in TSMC.18µm technology using SCMOS
design rules and simulated using a variant ofspice .4 The
sizes and areas of all components are summarized in Ta-
ble 4. Though our layout was not thoroughly optimized
for any particular metric, transistor gates were reasonably
sized. We measured performance and energy over a25 ns
period of full-throughput operation on each port. For read-
ing in the width-adaptive case, we maintained all register
delimiter bits as0 to simulate only the propagation case,
because the termination case is never throughput-limiting.
For writing, we alternated bit values on every iteration, ex-
cept for the WAD delimiter bits (0), to simulate worst-case
write-validity delay and energy in writing activity.

Performance and energy results for all core read and
write ports are listed in Table5. We also report theread
latency for each read port and thewrite latencyfor each
write port. The read latency is measured as the delay from
the read word line to the read bit lineR↑ (2 transitions), and
the write latency is measured as the delay from the write
bit line and word line input to write validitywv↓ (3 tran-
sitions) and always includes the time to toggle the internal
storage bits. Assuming that the delay of the inverters that
drive R↑ is invariant, the absolute differences in read laten-
cies are accounted for by the fall time of the read bit line
R↓. Assuming that the delay of toggling the storage bits is

invariant, the absolute differences in write latencies are ac-
counted for by the fall time of the write validity linewv↓.

The energy is measured per iteration per vertical pipeline
block. To fairly compare energy between the standard and
WAD designs, one would scale the WAD results by the ex-
pected block activity factor. To compare uniform to non-

4The absolute energies reported by the simulator have not been vali-
dated and are suspected to be much higher than actual values, however, we
deem the relative energies to be reasonable.

uniform access designs, one would take a weighted aver-
age of fast and slow accesses of the non-uniform design
(which is only a first-order approximation of the actual per-
formance) depending on the register usage statistics.

5.1. Impact of Bank Size

We only evaluate the performance and energy consump-
tion of register banks as a function of the number of reg-
isters; we do not account for the potential speedup of in-
terleaving accesses to different banks. Our energy mea-
surements forN=‘16’ exclude the contribution of the static
power dissipation of idle banks.

For the read port, reducing the bank size from 32 to 16
improves throughput by9.6% for the standard format, by
7.6% for WAD, and reduces the read latency by100 ps
(33%). Energy per block per iteration is reduced by about
40% for the standard and WAD formats. Clearly, the major-
ity of energy consumed is in the heavily loaded bit lines.

For the write port, reducing the bank size from 32 to 16
improves throughput by15.4% for the standard format, by
14.2% for the WAD format, and reduces the write latency
by 110 ps (21%). Energy per block per iteration is reduced
by about60% for the standard and WAD formats. We at-
tribute the super-linear energy reduction to reduced bit-line
leakage current and voltage drop, which factor into static
power dissipation.

5.2. Impact of Width Adaptivity

Width adaptivity results in a read port cycle time increase
of 7 to 10%, and a write port cycle time increase of6 to 8%.
There is no impact on the read or write latencies because
the bit line loads and driving strengths remain the same.
As expected, the energy overhead of WAD is around25%
for reading and writing because of the additional delimiter
bit. However, the expected energy savings from the reduced
width of a WAD integer (over 60%) far outweighs the over-
head energy per block at the 4-bit granularity.

5.3. Impact of Non-Uniformity

UsingN=‘16’ as the baseline for evaluating ‘16n’, we
see that register nesting has a great impact (positive and
negative) on the latencies and energy. For the read ports, the
fast partition operates with4% faster cycles,60 ps (37%)
less read latency,10% less energy, and the slow partition
operates with84% longer cycles,5 times longer read la-
tency, and50% more energy. For the write ports, the fast
partition operates with2% faster cycles,40 ps (10%) less
write latency,7% less energy, and the slow partition oper-
ates with40% longer cycles,2.3 times longer write latency,
and50% more energy.

Table 5. Register file reading and writingspice results

read write
freq. latency en./cy. freq. latency en./cy.

f N (MHz) (ns) (pJ) (MHz) (ns) (pJ)

32 537.0 0.323 26.59 409.2 0.528 27.45
16 588.8 0.222 15.78 472.1 0.417 11.30

S 613.5 0.163 14.09 481.0 0.375 10.49
16n 322.3 1.149 23.25 337.4 0.963 17.68
32 496.4 0.323 33.18 384.0 0.528 34.90
16 534.3 0.222 19.61 438.5 0.417 13.46

W 554.8 0.163 17.66 446.9 0.375 12.54
16n 285.9 1.149 29.52 311.5 0.963 21.18

Legend: ‘f’ (format): ‘S’ is standard (non-WAD),
‘W’ is WAD. ‘ N ’ (organization of registers): ‘32’
is a single bank of 32 registers (Figure3), ‘16’ is a
single bank of 16 registers, ‘16n’ is a nested bank
with 8 registers in the outer and inner partitions
(Figure11). For ‘16n’, the upper numbers in each
fused row correspond to the faster partition, and
the lower numbers correspond to the slower parti-
tion.

Since the penalty of accessing the slower partition is
relatively high for QDI nesting, one should justify when
nesting will be superior in the average case than with uni-
form accesses. With probability-weighted averages for cy-
cle times, latencies, and energies, we computebreakeven
probabilities r̂ in Table6, which represent the fraction of
accesses hitting the fast partition (‘hit-fast’) at which the
average-case metric with non-uniform ‘16n’ accesses is ex-
pected to equal that of the baseline uniform ‘16’ accesses.
Over95% of accesses must hit in the fast partition to aver-
age faster cycles,93% of accesses must hit-fast to average
lower latencies, and89% of accesses must hit-fast to aver-
age a net reduction in energy. Since all breakeven proba-
bilities are below the cumulative frequency of the 16 most
frequently used registers from Table3, roughly99%, nest-
ing wins on all metrics. For a total of 32 physical registers,
the best organization of the register core we have surveyed
uses two nested banks of 16 registers ‘16n’, each bank with
8 fast and 8 slow registers.

Table 6. Breakeven probabilities for nested read and
write ports, ‘16n’ vs. ‘16’. From left to right,̂r’s are the
breakeven probabilities for cycle time, latency, and energy
per block per iteration, respectively.

f r̂τ r̂l r̂E

S 95.3% 81.6%
read W 95.9% 94.0% 83.5%

S 95.6% 88.7%
write W 95.6% 92.8% 89.4%

What is the cost ofextendingan existing register bank
with deeper registers? We have compared accesses to a sin-
gle bank of 16 registers to acccesses to the outer bank of 16
registers with 16 registers in the inner partition ‘32n’. Ta-
ble 7 shows the impact of appending a nested interconnect
to a bank of 16 registers. The load of the interconnect in-

creases the cycle times of read and write ports in the outer
partition by7 to 10%, which no more than 1.5 times a sin-
gle register’s load. Thedecreaseof read latency (by6 ps) is
purely an artifact of measuring delay as the time difference
between the last of multiple arriving inputs to the output
transition, which does not model the Charlie Effect of tran-
sistors [28]. The insignificant change in latencies is very
promising to asynchronous designs whose performance can
be limited by the total forward latency through the datapath
as opposed to the cycle time of local handshakes. The in-
crease in energy includes the static power dissipation of an
idle inner partition (of 16 registers), so the increase in dy-
namic energy of the outer partition is actually much less.

Table 7. Impact of appending a nested interconnect to a
bank of 16 registers

f τ32n
τ16
− 1 l32n

l16
− 1 E32n

E16
− 1

S 10.7% 25.8%
read W 8.8% -2.6% 26.8%

S 8.3% 41.7%
write W 7.7% 3.6% 44.6%

The number of registers in the inner partition hasno ef-
fecton the performance or dynamic energy of the outer par-
tition of 16 registers. Thus, a nested register bank can ac-
commodate a huge number of registers, while allowing a
subset of registers to be accessed quickly and efficiently.

6. Conclusion

In this paper, we have addressed the problem of de-
signing large, yet high-performance and low-energy asyn-
chronous register files. We have identified and exploited the
characteristics of typical operand values and register usage
that can be leveraged more easily with asynchronous design
than with synchronous design.

We have described the vertical pipeline transforma-
tion of the core, which improves the performance of the
read and write portswithout global word-line distribution
as pipelined completion requires. To preserve pipelined,
atomic, and read-write exclusive accesses to shared vari-
ables in the core, we implemented pipeline-locking in the
control propagation. We have shown how much banking the
core (in two) improves the cycle time, latency, and energy
of register accesses over the unbanked base design.

To exploit the compressibility of frequent datapath val-
ues, we have implemented width-adaptive (WAD) reading
and writing as an extension of the vertically pipelined de-
sign. The WAD design saves a considerable amount of en-
ergy in the average case, overcoming the25% energy over-
head of adding a delimiter bit per 4-bit block. The WAD
read and write ports maintain the same latencies while suf-
fering only a small increase in cycle time. The distributed
nature of WAD integer compression is transparent to the
control logic, making WAD trivial to implement.

The other important contribution of this paper is the in-
troduction of non-uniform asynchronous register nesting to
accommodate large register files while allowing a subset of
registers to operate as fast as a small bank. Two premises
motivate the use of nesting: 1) further banking is difficult or
impossible due to the limitations imposed by its intercon-
nect requirement, and 2) the majority of register accesses
uses only a relatively small subset of the available architec-
tural registers. We implemented nesting conservatively, un-
der the QDI timing model, which resulted in a high penalty
for accessing the inner partition. Nesting has the greatest
potential benefit for the latencies and energy of register file
accesses because these metrics are dominated by shared bit
lines, whose loads are nearly halved by isolating the load
of the seldom used partition. Where cycle time is not the
performance bottleneck, nesting can improve performance
by reducing the total latency through the datapath. Nesting
is also appealing from a complexity perspective because the
control (external to the register core) isno differentthan that
for a non-nested core; delay insensitivity of asynchronous
designs accommodates any variation in operation delays
while maintaining correctness — the same cannot be said
for synchronous designs.

We have demonstrated that register core banking, width
adaptivity (atop vertical pipelining), and core nesting are all
transformations that can be independently applied to asyn-
chronous register files. We have not even begun to apply
more traditional circuit techniques for accelerating accesses
and reducing energy.

Our work on asynchronous non-uniformity introduces
many possible directions for future work. At the circuit
level, one may be interested in what timing assumptions
can be made in the nested register core design for opti-
mizing and reducing the penalty of the accessing the inner

partition without compromising robustness. Reducing the
slow-hit penalty would lower breakeven probabilities and
make nesting more appealing to architectures whose reg-
ister usage distributions are not as skewed. The lessons
we have learned in designing non-uniform access register
files can also be applied to designing asynchronous memo-
ries, and may lead to re-organizations of the memory hier-
archy. Nesting may help register files in register-demanding
superscalar and parallel machines grow while sustaining
a required level of performance for a subset of registers.
Some interesting architecture questions arise in light of non-
uniform registers:

• How can register renaming leverage non-uniformity in
mapping logical to physical registers?

• Can wise instruction scheduling hide the latency of
slower reads?

• If non-uniformity is exposed in the ISA, can compiler
support help?

• Since we can add an arbitrary number of registers with
nesting without slowing down a critical set of registers,
what would be good uses for extra (slower) registers?

Finally, our work emphasizes that asynchronous systems
should never be designed around the models, assumptions,
and constraints of the synchronous domain.

Acknowledgments

The research described in this paper was supported in
part by the Multidisciplinary University Research Initia-
tive (MURI) under the Office of Naval Research Con-
tract N00014-00-1-0564, and in part by a National Science
Foundation CAREER award under contract CCR 9984299.
David Fang was supported in part by a National Defense
Science and Engineering Graduate Fellowship.

References

[1] Rajeev Balasubramonian, Sandhya Dwarkadas, and
David H. Albonesi. Reducing the complexity of the register
file in dynamic superscalar processors. InProceedings of
the 34th International Symposium on Microarchitecture,
December 2001.

[2] David Brooks and Margaret Martonosi. Dynamically ex-
ploiting narrow width operands to improve processor power
and performance. InProceedings of the 5th IEEE Sympo-
sium on High-Performance Computer Architecture, January
1999.

[3] David Brooks and Margaret Martonosi. Value-based clock
gating and operation packing: Dynamic strategies for im-
proving processor power and performance.ACM Transac-
tions on Computer Systems, 18(2):89–126, May 2000.

[4] Ramon Canal, Antonio González, and James E. Smith. Very
low power pipelines using significance compression. InPro-
ceedings of the 33rd International Symposium on Microar-
chitecture, pages 181–190, Monterrey, CA, December 2000.

[5] Keith D. Cooper and Timothy J. Harvey. Compiler-
controlled memory. InProceedings of the 8th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 2–11, San Jose, CA,
October 1998.

[6] Jośe-Lorenzo Cruz, Antonio González, Mateo Valero, and
Nigel P. Topham. Multiple-banked register file architec-
tures. InProceedings of the 27th Annual International Sym-
posium on Computer Architecture, pages 316–325, Vancou-
ver, Canada, June 2000.

[7] Uri Cummings, Andrew Lines, and Alain Martin. An asyn-
chronous pipelined lattice structure filter. InProceedings of
the 1st Annual International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, pages 126–
133, November 1994.

[8] Virantha N. Ekanayake and Rajit Manohar. Asynchronous
DRAM design and synthesis. InProceedings of the 9th An-
nual International Symposium on Asynchronous Circuits and
Systems, pages 174–183, Vancouver, Canada, May 2003.

[9] David Fang. Width-adaptive and non-uniform access asyn-
chronous register files. Master’s thesis, Cornell University,
December 2003.

[10] S. B. Furber, J. D. Garside, and D. A. Gilbert. AMULET3: A
high-performance self-timed ARM microprocessor. InPro-
ceedings of the 1998 International Conference on Computer
Design, pages 247–252, Austin, TX, October 1998.

[11] S. B. Furber, J. D. Garside, S. Temple, P. Day, and N. C.
Paver. AMULET2e: An asynchronous embedded con-
troller. In Proceedings of the 3rd Annual International Sym-
posium on Asynchronous Circuits and Systems, pages 290–
299, April 1997.

[12] R. Kessler. The Alpha 21264 microprocessor.IEEE Micro,
19(2):24–36, March/April 1999.

[13] M. Lewis and L. Brackenbury. Exploiting typical DSP ac-
cess patterns for a low power multiported register bank. In
Proceedings of the 7th Annual International Symposium on
Asynchronous Circuits and Systems, Salt Lake City, UT,
March 2001.

[14] Andrew M. Lines. Pipelined asynchronous circuits. Master’s
thesis, California Institute of Technology, 1995.

[15] Rajit Manohar. Width-adaptive data word architectures. In
Proceedings of the 19th Conference on Advanced Research
in VLSI, Salt Lake City, Utah, March 2001.

[16] Rajit Manohar and Alain J. Martin. Pipelined mutual ex-
clusion and the design of an asynchronous microproces-
sor. Technical Report CSL-TR-2001-1017, Cornell Com-
puter Systems Lab, November 2001.

[17] Alain J. Martin, Andrew Lines, Rajit Manohar, Mika
Nyström, Paul Penzes, Robert Southworth, Uri V. Cum-
mings, and Tak Kwan Lee. The design of an asynchronous

MIPS R3000. InProceedings of the 17th Conference on Ad-
vanced Research in VLSI, September 1997.

[18] Lars S. Nielsen and Jens Sparsø. A low-power asynchronous
data-path for a FIR filter bank. InProceedings of the 2nd
Annual International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 197–207, Aizu-
Wakamatsu, Fukushima, Japan, March 1996.

[19] Recep O. Ozdag and Peter A. Beerel. High-speed QDI asyn-
chronous pipelines. InProceedings of the 7th Annual Inter-
national Symposium on Asynchronous Circuits and Systems,
pages 13–22, Manchester, UK, April 2002.

[20] N. Paver, P. Day, S. B. Furber, J. D. Garside, and J.V. Woods.
Register locking in an asynchronous microprocessor. InPro-
ceedings of the 1992 International Conference on Computer
Design, pages 351–355, Boston, MA, October 1992.

[21] A. Podlensky, G. Kristovsky, and A. Malshin. Multiport reg-
ister file memory cell configuration for read operation. U.S.
Patent 5,657,291, Sun Microsystems, Inc., Mountain View,
CA, August 1997.

[22] M. Renaudin, P. Vivet, and F. Robin. ASPRO-216: a
standard-cell QDI 16-bit RISC asynchronous processor. In
Proceedings of the 4th Annual International Symposium
on Asynchronous Circuits and Systems, San Diego, CA,
March/April 1998.

[23] S. Rixner, W. Dally, B. Khailany, P. Mattson, U. Kapasi,
and J. Owens. Register organization for media process-
ing. In Proceedings of the 6th IEEE Symposium on High-
Performance Computer Architecture, pages 375–386, Jan-
uary 2000.

[24] Richard M. Russell. The Cray-1 computer system. In
Mark D. Hill, Norman P. Jouppi, and Gurindar S. Sohi, edi-
tors,Readings in Computer Architecture, pages 40–49. Mor-
gan Kaufmann, 2000.

[25] John A. Swenson and Yale N. Patt. Hierarchical register for
scientific computing. InProceedings of the 2nd International
Conference on Supercomputing, pages 346–353, Saint Malo,
France, 1988.

[26] Akihiro Takamura, Masashi Kuwako, Masashi Imai, Taro
Fujii, Motokazu Ozawa, Izumi Fukasaku, Yoichiro Ueno,
and Takashi Nanya. TITAC-2: A 32-bit asynchronous mi-
croprocessor based on scalable-delay-insensitive model. In
Proceedings of the 1997 International Conference on Com-
puter Design, pages 288–294, October 1997.

[27] Jessica Hui-Chun Tseng. Energy-efficient register file de-
sign. Master’s thesis, MIT, 1999.

[28] Anthony J. Winstanley, Aurelien Garivier, and Mark R.
Greenstreet. An event spacing experiment. InProceedings
of the 8th Annual International Symposium on Asynchronous
Circuits and Systems, pages 47–56, Manchester, UK, April
2002.

[29] V. Zyuban and P. Kogge. The energy complexity of register
files. In Proceedings of International Symposium on Low
Power Electronics and Design (ISLPED ’98), pages 305–
310, August 1998.

	. Introduction
	. Vertically Pipelining the Register Core
	. Pipelined Completion
	. Vertical Pipelining
	. Pipeline Locking
	. Base Design Production Rules

	. Width Adaptivity (WAD)
	. Non-Uniform Nesting
	. Results
	. Impact of Bank Size
	. Impact of Width Adaptivity
	. Impact of Non-Uniformity

	. Conclusion

