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Abstract—Global routing has become more challenging due
to advancements in the technology node and the ever-increasing
size of chips. Global routing needs to generate routing guides
such that (1) routability of detailed routing is considered and
(2) the routing is deterministic and fast. In this paper, we firstly
introduce soft capacity which reserves routing space for detailed
routing based on the pin density and Rectangular Uniform
wire Density (RUDY). Second, we propose a deterministic par-
allelization approach that partitions the netlist into batches and
then bulk-synchronously maze-routes a single batch of nets. The
advantage of this approach is that it guarantees determinacy
without requiring the nets running in parallel to be disjoint,
thus guaranteeing scalability. We then design a scheduler that
mitigates the load imbalance and livelock issues in this bulk
synchronous execution model. We implement SPRoute 2.0 with
the proposed methodology. The experimental results show that
SPRoute 2.0 generates good quality of results with 43% fewer
shorts, 14% fewer DRCs and a 7.4X speedup over a state-of-the-
art global router on the ICCAD2019 contest benchmarks.

Index Terms—global routing, detailed routability, paralleliza-
tion, determinism

I. INTRODUCTION

The routing problem in VLSI chip design is usually solved
in two steps known as global routing and detailed routing.
Global routing partitions the 3D routing space into regular
rectangles (GCells) and generates a 3D grid graph in which
each node represents a GCell and each edge represents the
connection between adjacent GCells. The goal of global
routing is to generate a routing solution on the grid graph
and provide a preferred routing region (Guide) for the de-
tailed router. The global routing solution should maximize
routability for the detailed router to manage design rule checks
(DRCs), pin accessibility, irregular shapes, etc.

In the traditional global routing formulation, the capacity
of an edge is generally set as the number of available tracks.
However, consuming all given capacity of an edge in global
routing may result in limited space for the detailed router
to handle some complicated scenarios, such as DRCs, pin
accessing, track switching, etc. Therefore, we introduce a soft
capacity which reserves space for the detailed router to be

used for complicated scenarios. The soft capacity is downsized
from the hard capacity (number of available tracks), using the
pin density and RUDY value of the region. With the space
reservation of soft capacity, SPRoute 2.0 generates 43% fewer
shorts and 14% fewer DRCs compared with a state-of-the-art
global router.

In terms of parallelization, maze routing is widely used in
global routing and is the most time-consuming stage on hard-
to-route benchmarks. A common strategy to parallelize maze
routing is net-level parallelization, i.e. each thread acquires a
net and applies maze routing on its local grid graph. Threads
may route nets through the same region concurrently, thus
resulting in a race condition and non-deterministic solution.
A deterministic parallel approach is to route nets with dis-
jointed routing regions concurrently. But the parallelism of
this approach is limited due to the large overlapped region
of different nets. To achieve good speedup, some parallel
global routers like NCTU-gr [1] and SPRoute [2] adopt non-
deterministic net-level parallelization which does not enforce
disjointness of concurrent nets.

We propose a deterministic net-level parallelization strategy,
which divides the entire netlist into batches and executes
batches of nets in a bulk synchronous way. The nets in a given
batch are ripped up and re-routed based on the usage of the
grid graph after the completion of the previous batch, and the
new usage changes of the global grid graph are not applied
until all the nets in the current batch are completed. In this
way, nets in a given batch make a deterministic maze routing
decision, irrespective of the order of execution, and thus region
disjointness is not required to guarantee determinism.

There are two major issues in the performance of this
bulk synchronous parallelization: load imbalance and livelock.
First, threads executing a batch may have load imbalance due
to the considerably different sizes of nets. Second, since nets
make decisions based on the stale usages after the completion
of the previous batch, nets in the same batch can compete for
the same routing resources repeatedly and result in livelock.
We design a scheduler which reduces the impact of these two



issues and achieves a good speedup.
The contributions of this paper are summarized as follows:
• We propose a soft capacity to reserve space for detailed

routability. The soft capacity is adjusted from the hard
capacity based on the pin density and RUDY of the
neighboring GCells.

• We parallelize maze routing in a deterministic bulk
synchronous approach which does not require net dis-
jointness to guarantee determinism.

• We design a scheduler for the deterministic parallel
execution model to mitigate the performance impact of
load imbalance and live lock.

• We implement SPRoute 2.0 based on the proposed
methodology. Compared with the state-of-the-art, our
global router achieves better quality of results with fewer
shorts and DRCs and a significant speedup.

The rest of the paper is organized as follows: Section II
describes the preliminaries and the relevant background for the
global routing problem. Section III provides a brief overview
of the related work in this area. In Section IV, we describe
the proposed soft capacity and deterministic maze routing,
followed by the experimental results in Section V. Finally,
we conclude our work in Secion VI.

II. PRELIMINARIES

A. Global Routing

In the traditional global routing formulation, the 3D routing
space is partitioned into regular rectangles (GCells), resulting
in a 3D grid graph G(V,E), where each vertex v ∈ V
denotes a GCell and each e ∈ E denotes the connection
between adjacent GCells. The capacity of an edge represents
the maximum number of wires that can go through the edge.
The usage of an edge is the number of wires that are currently
using the edge and the overflow is denoted by the number of
wires that exceeds the capacity.

The global routing problem is, for each net, to find a
path that connects all the pins of a net in the given grid
graph without any overflow on the edges, minimizing the total
wirelength and number of vias.

B. Evaluation Metrics

Traditional global routing solutions are evaluated by a
combination of the total overflow, total wirelength and the
number of vias. In the ICCAD-2019 contest [3], the global
routing solution is evaluated by a state-of-the-art detailed
router Dr.CU [4]. Dr.CU first reads the routing guides as
input and performs detailed routing. Then Cadence Innovus
[5] is used to extract the quality information based on the
metrics in Table I, which includes basic usage (wire length
and the number of vias), non-preferred resource usage and
DRC violations.

C. RUDY

Rectangular Uniform wire Density (RUDY) [6] estimates
the wirelength density by uniformly spreading the wire volume
of nets into its bounding box. It is commonly used as a feature
to indicate the congestion of a region in several routability
prediction works. RUDY of a net represents the average wire

TABLE I
METRICS IN ICCAD-2019 CONTEST

Category Metric Weight

basic usage length of wire 0.5
number of vias 4

non-preferred usage

length of wrong-way wire 1
number of off-track vias 1
length of off-track wires 0.5

length of out-of-guide wires 1
number of out-of-guide vias 1

DRC violations

number of min-area violations 500
number of spacing violations 500

number of short violations 500
short metal area / M2 pitch 500

length per unit area in the bounding box of the net, and is
computed by:

RUDYn(x, y) =
wire length
bbox area x ∈ [xmin, xmax] , y ∈ [ymin, ymax]

0 otherwise
(1)

Here the xmin and xmax represents the maximum and
minimum x-axis coordinates of the net, and ymin and ymax

represents the maximum and minimum y-axis coordinates
of the net. The RUDY of a location (x, y) is computed by
aggregating RUDY of all nets in netlist N :

RUDYN (x, y) =
∑

n∈N RUDYn(x, y) (2)

III. RELATED WORK

A. Global Routing and Detailed Routability

Most global routers including FastRoute 4.0 [7], NCTU-
GR 2.0 [1], NTHU-Route [8], NTUgr [9] focus on generating
routing paths on a grid graph with given edge capacity and
do not consider detailed routability. VFGR [10] introduces an
accurate congestion model for several layout components like
fat vias, and proposes a pass-through capacity on the node.
CUGR [11] works directly on the 3D grid graph and pro-
poses a probabilistic resource model for detailed routability.
Taghavi et al. [12] use pin geometries and density to measure
detailed routability in routability-driven placement. GLARE
[13] utilizes pin density for better congestion analysis.

We choose CUGR as our baseline because (1) it is one of
the available state-of-the-art global routers and (2) the other
congestion models are not readily evaluated in the flow since
they are not implemented in a global router.

B. Parallelization in Maze Routing

Global routers have adopted a number of parallelization
techniques. PGRIP [14], a parallel version of GRIP [15], uti-
lizes integer programming and processes routing subproblems
corresponding to rectangular subregions covering the chip
area. Han [16] implement net-level parallelization on GPUs
by identifying and scheduling independent nets. VFGR [10]
utilizes both net-level and region-level parallelization. NCTU-
GR 2.0 [1] studies race conditions on routing resources and
introduces a collision-aware rip-up and reroute solution by
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Fig. 1. Overall flow of SPRoute 2.0

adjusting the cost of conflicting routing resources. SPRoute [2]
introduces a two-phase parallel scheme to address the livelock
issue in net-level parallelization.

IV. PROPOSED ALGORITHM

A. Overall flow

Fig. 1 shows the overall flow of SPRoute 2.0. Firstly, the
soft capacity is computed according to the pin density and
RUDY of the region, then net tree generation and pattern
routing are executed to generate an initial routing solution.
If there is overflow in the solution, the global router itera-
tively performs maze routing using the proposed deterministic
parallel methodology. Finally when overflow decreases to
zero or the maximum number of iterations is reached, layer
assignment is executed to generate 3D routing guides. The
overflow computed in SPRoute 2.0 is based on the soft
capacity to reserve space for detailed routability.

B. Soft Capacity and Cost function

1) DRCs and congestion: Fig. 2 (a) shows the screenshot of
the whole chip of benchmark em ispd19 test7. The grey region
in the middle left is the standard cell region and the rectangles
around it are memory blocks. The yellow bar at the edge of
the chip are I/O pins. Fig. 2 (b) and (c) shows the pin density
map and RUDY map where the majority of the congestion
is in the standard cell region. The bottom four figures (e)-(h)
show the DRC map from Metal2 to Metal5 if the capacity
of all edge reserves 10% for the detailed routabilty, i.e. soft
capacity = 90% of the number of available tracks. These maps
demonstrate that the DRC location is related to the pin density
and the RUDY of the region, and high metal layers are less
affected by pin density and RUDY than lower metal layers.

Based on the relationship among pin density, RUDY and
DRC map, we estimate the congestion of a region by adding
the pin density and RUDY:

cong (x, y) = pin density (x, y) + w ∗RUDY (x, y)
(3)

where w is a constant weight. The RUDY is computed by
the half perimeter wire length (HPWL) and the area of the
bounding box.

2) Soft Capacity: The soft capacity of an edge indicates the
routing resources after reserving space for detailed routing and
is used to compute the overflow for the termination of rip-
up and reroute. The soft capacity is adjusted from the hard
capacity based on a ratio function:

soft cap (x, y) = ratio (cong (x, y)) ∗ hard cap (x, y)
(4)

where hard cap is the number of available tracks between
GCells, i.e. total number of tracks minus the number of tracks
consumed by blockages or pins. The ratio function is a
logistic function of the congestion cong(x, y), which takes the
mean of the cong(x, y) of adjacent GCells. Fig. 2 (d) gives
an example of the ratio function:

ratio (cong) = min+ max−min
1+exp((cong−congmid)∗k) (5)

where min and max denotes the minimum and maximum
value of the ratio function, k is the slope which determines
the sensitivity to the congestion, and congmid is the midpoint
of the logistic function.

In the ratio function shown in Fig. 2 (d), if cong is low, the
soft capacity is about 90% of the hard capacity and does not
drop much as congestion increases, since a small amount of
congestion does not affect the routability significantly. If cong
is close to congmid, the soft capacity decreases dramatically
as congestion increases. If cong is high, the ratio function
reaches a bottom line since the edge between GCells still needs
to maintain capacity for possible connectivity.

Different layers have different parameters for the ratio func-
tion since they are influenced by the congestion in different
scales. As shown in Fig 2(e)-(h), low metal layers have
more DRCs than high metal layers thus require more space
reservation. This is because 1) low layers are affected by pin
accessibility more than high layers and 2) generally low layers
are used for local nets which consists of turns and vias, while
high layers are used for long-range wires. Long-range parallel
wires are regular and do not require much space reservation.
Therefore, different parameters are used in different layers in
our global router, and these parameters are uniform for all
benchmarks.

C. Initial Routing

A common strategy to route a multi-pin net is to first
decompose it into many two-pin edges to generate a routing
tree, and then route each two-pin edge individually. In Fig.
1, we utilize FLUTE [17] to generate a rectilinear Steiner
minimum tree (RSMT) for each net and then apply pattern
routing techniques from FastRoute 4.0 [7] to generate an initial
solution for rip-up and reroute.

D. Rip-up and Reroute

The rip-up and reroute stage (Fig. 1) goes over the netlist
and tries to generate a better path for each net. We call the
process of performing rip-up and reroute on the whole netlist
as an iteration. The iterative loop terminates when overflow
decreases to zero or the maximum number of iteration is
reached.
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Fig. 2. Pin density, RUDY and DRCs map on ispd19 test7

Algorithm 1: Parallelization scheduler
Input: overflowing netlist N , iteration number iter,

batch size s, total overflow tof
Output: vector of net batches B, batch size for next

iteration s
1 nbatch = dN.size/se;
2 if iter = 1 then
3 if n.bbox > bbox thold then
4 foreach net n ∈ N do
5 B[n.id % nbatch].push(n)
6 else if tof > of thold then
7 if iter%2 = 0 then

sort by overflow edge X(N)
8 else sort by overflow edge Y (N)
9 foreach net n ∈ N do

10 B[n.sorted rank % nbatch].push(n)
11 else B[n.id % nbatch].push(n)
12 if s >= 2 ∗ nthreads then s = ds/2e

1) Bulk Synchronous Parallelization: In rip-up and reroute,
each net first checks whether its path contains overflowing
edges or not. If so, the path is removed by decrementing
the usage on all the used edges, and then rerouted to find
a new path with the minimum cost. The new path is added by
incrementing the usage on all the new edges.

We propose a bulk synchronous deterministic approach to
parallelize rip-up and reroute. The netlist is partitioned into
batches and all threads execute one batch of nets at a time. At
the beginning of the batch, each thread acquires a net from the
batch and reads the usage of the global graph and performs
rip-up and reroute in its thread-local graph. The changes of
usage of a net are not updated to the global graph immediately,
but pushed into a buffer which stores all the changes of this
batch. After all nets of a batch finish their rip-up and reroute,
the changes in the buffer are pushed to the global graph. In this
bulk synchronous model, nets read the same usage and makes
the same path searching decisions regardless of the execution

order in the batch, and generate deterministic solutions.
Our parallel maze routing is implemented in the Galois

system [18] which is an open-source C++ library designed
to ease the implementation of parallel graph algorithms. We
utilize the do all parallel loop in Galois to exploit net-level
parallelism. The do all construct partitions the batch evenly
among all threads. Each thread maze routes its local partition
of nets on its local grid graph and pushes changes to the buffer.
We enable the work stealing functionality in Galois to reduce
load imbalance.

2) Load imbalance: In our rip-up and reroute implemen-
tation, we mark a net as finished once it has no overflow
in an iteration. A finished net will not be ripped up in
future iterations even if it has new overflows caused by other
nets. After the first iteration of maze routing, most small
nets are marked as finished and will not be executed in
the later iterations. Because of this, the load imbalance issue
is significant especially in the first iteration. We design a
scheduler to filter out small nets in the first iteration to reduce
load imbalance.

3) Livelock: The second issue of our proposed paralleliza-
tion is livelock. Since nets in the same batch are not disjoint,
they might compete for the same routing resources, resulting
in livelock. Livelock can delay the convergence of overflow
and result in long runtime, or even prevent overflow from
decreasing to zero. The probability of livelock is affected by
many factors including the degree of overlap of the nets, the
size of the batch and the probability of the same scheduling.
In our scheduler design, we distribute close nets to different
batches and reduce the size of batches over iterations to reduce
the probability of livelock.

4) Scheduler: At the beginning of each iteration of rip-up
and reroute, finished nets are firstly filtered out and then
the scheduler shown in Algorithm 1 is called to partition the
unfinished nets into batches. Lines 2-5 shows the scheduling
to reduce load imbalance in the first iteration. The scheduler
filters out nets smaller than a threshold and only pushes larger
nets into batches. This reduces the difference of the net size



and load imbalance in the first iteration. The reason we filter
out small nets rather than large nets is that small nets should
have high priority in using local routing resources and should
not detour for large nets, which has more routing flexibility.

Line 6-10 shows the net scheduling to reduce livelock
after the first iteration when there is a substantial amount of
overflow. Line 7-8 are two functions to sort the overflowing
netlist according to their overflow edge. The sort key is the
X or Y coordinate of the middle point of an overflowing 2-
pin edge of a net and represents the approximate location
of the routing region. The scheduler alternatively uses X
or Y coordinate to sorts. If a net has multiple overflowing
2-pin edges, the scheduler picks a random one. Line 9-
10 distribute close nets into different batches to reduce the
overlap region and probabilty of livelock. Finally, a simple
random scheduling is utilized when maze routing is close to
convergence on line 11. On lines 12, the batch size is reduced
by half in each iteration to reduce the probability of livelock.

V. EXPERIMENTAL RESULTS

SPRoute 2.0 is implemented in C++ and the experiments
are conducted on a 64-bit linux machine with 2.2 GHz Intel
Xeon Gold and 196 GB of memory. We use the benchmarks
and the evaluation methodology from the ICCAD2019 contest
[3]. Firstly the global routing solutions are read as routing
guide by Dr.CU [4] to generate a detailed routing solution,
then Cadence Innovus [5] is used to examine DRCs, short,
etc. and report the final scores. The score contains basic usage
of wire length and vias, non-preferred usage such as wrong-
way wire/vias, DRCs and shorts, as shown in Table I. Note
that the ICCAD-2019 benchmarks consist of benchmarks from
both ISPD-2018 and ISPD-2019, but the evaluation metrics of
ISPD-2018 and ISPD-2019 are slightly different. To make our
evaluation uniform and in accordance with the metric shown in
Table I, we use the ISPD-2019’s evaluator for all benchmarks.

A. Comparison with the State-of-the-art

We compare the quality and runtime with the state-of-the-art
global router CUGR [11] in Table II. The benchmark names
without metal5 are designs with nine metal layers and the
ones with metal5 are the same designs with five metal layers.

We compute the geomean of the ratios over CUGR on all
benchmarks and summarize the result at the bottom of Table
II. The speedups are the reciprocals of the runtime ratios.
SPRoute 2.0 produces quality scores close to CUGR with
0.1% degradation, and for 8 of 12 benchmarks, our solution
is better. SPRoute 2.0 is 6.9X faster on single thread and 7.4
faster with 8 threads.

Table III lists the details of the quality under different
metrics. The bottom ratio demonstrates the average quality
compared with CUGR. Our global router produces 2% more
wirelength and number of vias, 2.1% more non-preferred
usage, 43.0% fewer shorts and 14.2% fewer violations. The
ratio of short is relatively small due to a biased result on
ispd18 test10 metal5 where our short is only 1.9% of
CUGR (highlighted in red, 98.1% better). Excluding this
benchmark, we still produce 21% fewer shorts and 3% fewer
DRCs on the remaining 11 benchmarks.
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Fig. 3. Scalability of Maze Routing

To show the effectiveness of RUDY in soft capacity, we
note that the quality score without RUDY in Table II drops by
0.6%. The decomposition of no-RUDY score is (not shown in
the table), 102.0% wirelength, 119.9% non-preferred usage,
64.9% shorts and 96.7% violations compared with CUGR.
Almost all metrics are degraded.

B. Performance of Bulk Synchronous Parallelization
We use the non-deterministic parallel maze routing in

SPRoute 1.0 [2] as the baseline to study the parallel scalability.
All the tuning parameters are the same and the only difference
between the non-deterministic maze routing and SPRoute 2.0
is the bulk synchronous parallelization. The net usages in the
non-deterministic maze routing are updated to global usage
immediately without considering the conflict with other nets.

We study the performance on five benchmarks with
metal5 in Fig. 3, as they are hard benchmarks and rip-up

and reroute takes a substantial amount of time in the total
runtime. NonDet is the non-deterministic baseline SPRoute
1.0. random represents a random scheduler which is line 11
in Algorithm 1. filter means adding lines 2-5 in Algorithm
1 to filter out small nets in the first iteration. filter + sort
is our complete scheduler. On 8 threads, the filter technique
improves performance from 3.2X to 4.0X and sort further
improves to 4.3X.

We note that the difference between the quality scores of
deterministic and non-deterministic maze routing is negligible
(< 0.1%).

VI. CONCLUSION

This paper is a contribution to detailed routability and deter-
ministic parallelization in global routing. First, we introduce
a soft capacity to reserve routing space for the detailed router
based on the pin density and RUDY of the region. Second, we
propose a bulk synchronous execution model for rip-up and
reroute to achieve deterministic parallelization, in which the
concurrent nets are not required to be disjoint. We design a
scheduler to mitigate the load imbalance and livelock in the
parallelization. We implement the proposed methodology in
SPRoute 2.0 which generates good quality of results with less
shorts and DRCs and a significant speedup over the state-of-
the-art.
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