
1 IEEE CICC 2021/ Session X/ Paper X.Y

Hardware/software Co-design for Neuromorphic
Systems
Rajit Manohar, Yale University

Introduction
Transistor technology for electronic computer systems is now at the
single digit nanometer scale. This enormous advance through
sustained efforts over more than sixty years has resulted in
computers that are extremely efficient in terms of the energy per unit
of computation. This progress in hardware was arguably driven by
the demand for computation, as software systems and digital
technology became integrated with more and more of our lives.
Despite this progress in device technology, general-purpose
microprocessors—the heart of a modern computer—can still be
viewed as a “von Neumann” computer with control, storage,
arithmetic, and input/output devices. As the demand for computation
grows unabated while the scaling of transistor technology slows
down, alternate approaches to further reducing the energy per unit
of computation are required.
There are several “rules of thumb” that have been well-understood
since the 1980s when it comes to designing energy-efficient VLSI
architectures. The architecture should use short wires and hence
make use of local communication, since communication costs often
dominate the energy budget. The architecture should consist of a
large collection of components that operate in parallel, and each
component should operate at a low voltage to save power while
leveraging parallelism for performance. While these properties might
be very appealing from a chip design perspective, the performance
of such a system can be exploited only if users write parallel
software, and even a small serial part of the program quickly limits
performance [1]. Hence, the improvements in transistor technology
were used to build more and more complex execution engines that
could be readily leveraged by existing software, until power
constraints limited the introduction of additional complexity and led
to the shift to multi-core systems.
There is a much less understood system that exhibits all the
attributes required for energy-efficient computation—and that is the
human brain. The human brain uses roughly 20W of power and can
perform tasks in real-time and on noisy inputs that go well beyond
the capabilities of modern computers. Neurons, synapses, dendrites,
and axons in the brain operate in an asynchronous, massively
parallel fashion. Electrical potentials are in the range of tens of mV,
and storage and computation are tightly integrated in individual
neurons and synapses [2]. Each component is slow, but the overall
system exhibits remarkable performance, routinely outperforming
traditional computers in certain problem domains. The system is not
explicitly programmed in the traditional sense, but instead learns
from experience and repetition. Hence, Biology provides an
existence proof of a fine-grained, massively parallel computer that
can perform important tasks with orders of magnitude less energy
compared to the best conventional computers.
Computers today are being asked to perform tasks that have similar
characteristics to those human beings excel at such as driving a car
or recognizing faces. Drawing inspiration from Biology,
neuromorphic computer systems aim to create electronics inspired
by the human brain with the goal of replicating its energy-efficiency
and computational ability [3]. This paper discusses neuromorphic
system design from a computing perspective—namely, the
hardware/software co-design trade-offs in the design of such
systems.

Early neuromorphic systems
Since even today we have a limited understanding of how biological
systems compute, a better description of a neuromorphic computer
is one that provides an electronic implementation of models of the
brain that are used by computational neuroscientists [4].
Neurons communicate with each other via spikes. A spike can be
viewed as a digital, continuous time signal. Biological spikes have
many distinct features in their waveform [2], but these are typically
simplified in an electronic implementation to the point where a spike

is simply a signal transition, and the arrival time of the spike is
determined by the signal transition time. Many neuromorphic
systems designed to scale up to millions of neurons including
TrueNorth [5], Loihi [6], Braindrop [7], Neurogrid [8], and the recently
announced Loihi2 use continuous time, asynchronous or self-timed
digital circuits for spike communication. Clocked spike-based
systems discretize time using the global clock signal; in this context,
the presence or absence of a spike is determined at each clock edge.
Spike outputs from a neuron travel along axons, and these axons
can be connected to the input of thousands of other neurons via
synapses that are part of the input dendritic tree for a neuron. There
are many different models for neurons and synapses, and for what
occurs when an input spike arrives. The simplest model and the one
that is easiest to implement is the leaky integrate-and-fire model
(LIF). In this model, a neuron is modeled by a membrane potential.
If a spike arrives at a particular time, the membrane potential is
increased by an amount determined by the weight of the synapse
along which the spike arrived. If the membrane potential exceeds a
threshold, and output spike is generated, and the potential is reset.
Finally, there is a constant leak that causes the membrane potential
to decrease with time if no input spike arrives. Models that are
biophysically more accurate include the Hodgkin-Huxley model [4],
where the state of the neuron and synapse are modeled with multiple
state variables that interact via coupled non-linear differential
equations. Other models of input spike arrival include using a
waveform to represent the effect of the input spike on the neuron
input over time rather than implicit synaptic dynamics.
Early neuromorphic systems were designed to mimic sophisticated
biological models. Analog circuit models were used in early
neuromorphic systems for energy-efficient computation of neuron
membrane potentials [9]. Continuous-time operation required
asynchronous digital communication. The output of a neuron could
be connected to thousands of other neurons. To support this level of
fanout in a VLSI technology where traditional digital circuits with an
average fanout of between two and four were wiring limited, a
packet-switched protocol for communicating spikes called the
address-event representation (AER) was introduced [10] (Fig. 1).
These circuits were designed in the 1980s and early 1990s when the
feature size was 0.5µm or larger. Each circuit was used to show
electronic versions of specific biological structures such as the retina
[11] and cochlea [12].

Programmable neuromorphic systems
To have a neuromorphic system as a supplement to a conventional
computer system requires it to be programmable. This means we
need flexibility in the underlying hardware, as well as a mechanism
to map computations directly to the neuromorphic substrate. For
simplicity, we assume that the “assembly language” for the
neuromorphic platform is a graph-based specification of the
underlying spike-based computation. This is akin to traditional
FPGA-based systems, where a gate-level netlist is mapped to a

Figure 1. Address-event representation (AER) is used to time-multiplex
neuron outputs onto a shared bus. Packets encode the neuron address
that spiked, and this is used to determine the set of destination axons to
which the spike must be delivered. Incoming spikes are de-multiplexed
to the input axons when they are received from the packet-switched
network.

n1

n2

n3de
nd

rit
es

ou
tp

ut
 a

xo
ns

synaptic junction

neuron body

2, 3, 1
shared
AER
bus

encodes
neuron
address

input axons

input AER bus is de-
multiplexed on to

input axons

to routing
tables

&
packet-

switched
network

from
packet-

switched
network

 IEEE CICC 2021/ Session X/ Paper X.Y 2

programmable hardware substrate consisting of programmable logic
and programmable interconnect.
The biggest challenge in the design of large-scale neuromorphic
systems is creating an efficient programmable communication
infrastructure. Traditional FPGAs are designed to map digital circuits
that have an average fan-out of between 2 and 4. Even with this
limited typical fanout, the bulk of the die area (over 80%) of an FPGA
is devoted to implementing programmable wires using muxes and
configuration bits. Neuromorphic systems have typical axon fanouts
of over a thousand, and so dedicated point-to-point connectivity akin
to an FPGA is prohibitively expensive. Instead, each spike endpoint
is given an address, and a packet-switched routing fabric is designed
that can route a spike to its destination address [13]. While different
spike routing architectures have been proposed [13], the most
popular approaches include bi-directional mesh networks [5,6] as
well as tree-based routing [7,8] (Fig. 2).

Neuron models
There are many computational models of neurons, and different
researchers in the neuroscience field use different models. If we
draw an analogy to software, we can view the neuron model has the
choice of arithmetic instructions that the hardware should support. In
the software domain, we have well-defined requirements, and the
choice of arithmetic instructions can be reduced to questions about
efficiency and universality. Given a complete set of arithmetic
primitives, we can emulate any of the others. Hence once we have a
complete set, the rest is a question of efficiency: what is the best
choice given the cost of hardware implementation v/s the software
overhead for a set of benchmarks? Various instruction-set
architectures have made different choices, but any of them can be
used to implement the same software program by a compilation
process.
The same approach is not quite so straightforward in the
neuromorphic case, as there is no consensus on the right level of
abstraction for biological information processing. However, there are

well-understood categories of biological spiking behavior exhibited
by a range of neuron models [14]. Even a simple neuron model like
LIF can, with some simple enhancements, replicate complex neuron
behavior in a local micro-circuit configuration of one, two, or three
such simple neurons [15]—the neuromorphic equivalent of
technology mapping to a standard cell library.

The crossbar and neuro-synaptic core
Since packet-switched communication networks have significantly
higher cost than dedicated wires, a natural question that arises is
whether we can reduce the packet traffic in the routing network. The
output spike from a neuron must be delivered to many destinations,
and each of those destinations is specified by an address. If those
addresses are physically near each other on the chip, then we could
send a single packet to a group of addresses, reducing the
communication cost.
To do so, a collection of synapses and their associated neurons are
grouped together into a cluster called a neurosynaptic core [16].
Furthermore, this architecture also introduced the now-ubiquitous
wiring-efficient crossbar organization of axons and dendrites (Fig. 3).
A collection of neurons is grouped together into a single core. Each
of those neurons have a set of incoming synapses, organized into
the input dendrite for the neuron. The collection of neurons has a set
of incoming axons, and each axon can connect to each neuron at a
dedicated synapse.
There are two parameters for a neurosynaptic core: the number of
neurons (N), and the number of input axons (A). In the case of a
crossbar configuration, the number of synapses supported is A*N. If
a synapse supports a weight of b bits of precision, then the amount
of state required is A*N*b. The benefit of the crossbar organization
is that an N-way fanout of a spike is supported within a core via a
simple local wire fanout—about as energy-efficient as it gets. If the If
the synapses are fully utilized, then this organization reduces the
number of spike packets by a factor of N. Since typical values of N
are in the 128 to 1024 range, this is a significant reduction in
communication cost. The crossbar architecture also permits
experimentation with different synaptic materials that can be
deposited as part of back-end-of-line processing in-between the
axon and dendrite metal layer steps. This organization was used in
TrueNorth [5], as well as most systems that use advanced materials
to implement a synaptic device [17].

To understand the software trade-offs, suppose we had a single
neuron in a core (N=1). In this case, A would be determined by the
maximum fan-in for an individual neuron. To prevent a small number
of extremely high fan-in neurons from determining the value of A, we
can introduce special relay neurons whose sole purpose is to forward
their accumulated input to another input axon for a secondary
neuron. This approach breaks up a large fan-in into a tree of relay
neurons, just like high fan-in logic gates are broken down into trees

Figure 2. Examples of spike-routing architectures combined with
neurons and synapses.

Bi-directional 2D mesh-based
packet-switched spike routing
network. This type of network
is used in TrueNorth, and a
four-way bristled mesh is used
in Loihi.

Variations of the standard
mesh include limited support
for multi-cast packets.
Examples include row
broadcast and column
broadcast of spike packets to
support high fanout.

neurons and
synapses

packet-switched
router

Bi-directional H-tree-based
packet-switched spike routing
network. A network of this type
was used in the Raindrop
project for collecting spikes
from individual neuron circuits.

Variations include tree-based
flooding used in the Neurogrid
project to support high spike
fanout.

tree router nodes

Figure 3. A neurosynaptic core consisting of a dense synaptic array
with row/column accesses like a standard memory. The synaptic
device could be standard digital logic (e.g. an SRAM) or use a beyond-
CMOS material.

synaptic array

in
pu

t a
xo

ns

individual neuron logic or time-
multiplexed neuron hardware

intersection
has a

synaptic
device

3 IEEE CICC 2021/ Session X/ Paper X.Y

of smaller fan-in gates. Based on an analysis of typical graphs to be
mapped to the architecture, a suitable value of A can be selected.
As we increase the value of N, we introduce a second software
constraint. Any two neurons within an individual neurosynaptic core
share the same input axons. Hence, we expect two effects: (i) not all
neurons will have the same set of input axons—i.e., some of the
synapses out of A*N will have zero weight, and this number will
increase as N increases; (ii) the value of A itself will increase to
accommodate the diversity of inputs, further increasing the number
of zero weight synapses in a core. As the number of zero weight
synapses in a core increase, the benefits of the crossbar
organization diminish.
The mapping of neurons to neurosynaptic cores must take the
synaptic constraint imposed by the core organization into account. It
is beneficial to group neurons that share input axons into the same
core. From the software standpoint, this can be viewed as an input
sharing constraint for the core: neurons that share many axons
should be grouped into an individual core. Once the maximum
number of unique input axons is reached, no additional neurons can
be added to a core due to resource constraints.
There is a second challenge with a crossbar organization, and this
has to do with array efficiency. Driving an axon in the crossbar
requires an address decoder, and reading the dendritic voltage
requires readout circuitry. This is akin to an SRAM bank design, with
word line drivers and bit line read circuitry. In a small SRAM bank,
the overhead of the control circuits can be very large—on par with
the area used for the bit-cell array. This intuition holds for the
crossbar in a neurosynaptic core as well. Also, for designs with
newer materials that require more complex driver and readout logic,
the overhead of the access circuitry is even higher.

An alternate architecture for a neurosynaptic core is to replace the
crossbar with a more traditional memory organization, where each
input axon has a list of weights for each neuron in the core. A direct
implementation of this idea would require A*N*b bits of state.
However, if the connectivity is sparse, then we could represent S*b
weights, where S is the total number of synapses in the core.
Associated with each weight would be a neuron index, increasing the
storage to S*b*log(N), which would be addressed by a log(S) bit
address. Finally, an additional table would be needed to indicate the
start address of the synapses for each axon, another A*log(S) bit
table. The Loihi architecture [6] uses an addressing mechanism of
this type.
Finally, a third choice is to not permit the synaptic weights to be fully
specified by the user, but instead provide support for a diversity of
weights that can be selected in some fashion. In a digital
implementation, this can be via a pseudo-random number generator
that uses the axon and neuron indices to select a weight. In an
analog implementation, this can be via a programmable analog
network [7].
The number of bits needed for each weight, as well as the number
of bits needed for the internal membrane potential for the neuron are
both parameters that are selected by a co-design process. Typical
choices are in the 8-bit range for weights (especially if learning is
supported), and 16-bit range for the neuron state. The synaptic bits
are much more expensive, since the number of synapses is many
orders of magnitude larger than the number of neurons. If a synapse
weight is not adaptive and a software analysis shows that a small
number of unique weights is sufficient per core, then the synaptic
storage requirements can be significantly reduced by storing a
weight index rather than the actual weight value per synapse [5].

Learning
One of the key characteristics of biological networks is that they learn
and adapt continuously. This adaptation is implemented by changing
the weights of the synapses. The most used learning rule is some
variation of spike timing-dependent plasticity [18], where the
temporal proximity of an input spike to a synapse and the output
spike for the associated neuron is used to update the weight of a
synapse. In a crossbar organization, this is achieved by applying the
appropriate driving signals to the axon and dendrite to update the

weight stored at their intersection. In a memory-oriented architecture,
the coincidence in spike timing is recorded in a buffer and used to
periodically update the weights stored in memory [6].
We don’t fully understand how biological systems achieve robust
long-term memory while supporting continuous weight adaptation.
Hence, neuromorphic systems often permit the learning mechanism
to be disabled (or don’t support it at all) so that they can be used in
a “pre-trained” mode.

Temporal fidelity and determinism
Information in spiking neural networks is carried in spike timing. In
biological systems, there are direct, physical connections between
the source of a spike and its targets. As discussed earlier, the limited
wiring in VLSI forces us to use time-multiplexed wires and a packet-
switched routing approach to delivering spikes to their destination.
This time-multiplexing can change the spike timing, thereby also
impacting the computation.
There are two approaches to this problem. The first, adopted by
systems like Neurogrid [8] and Braindrop [7] is to ensure that the
system is robust to this perturbation in spike timing. Biological
systems have neuron spike rates that are roughly in the 1-10 Hz
range, and typical computational neuroscience software models
assume a temporal fidelity of 0.1ms. If the neuromorphic system is
operating in real-time, then as long as the temporal uncertainty is
much less than 0.1ms, the computation is likely to be robust. Since
CMOS digital circuits can operate in the GHz throughput regime,
even a thousand packet stall would introduce less than a 1µs
uncertainly in a well-pipelined routing network. This means that a fast
enough routing network would result in low temporal uncertainty.

To examine the implications of this approach, consider a network
architecture with N total neurons and a bisection bandwidth of B
spikes/sec, where a router link has a mean occupancy of o units of
time (Fig. 4). Hence, if a packet must wait for another one, it must
wait o units of time. If the bisection cuts L links, B = L/o. If N/2 neurons
spike at R=10 Hz, a traditional network analysis would require that B
≥ R*N/2. However, suppose we introduce the software constraint
that the uncertainty is 0.1ms. If we assume the packets are uniformly
spread across the L links, then a packet may have to wait for
(R*N/2L-1) other packets, i.e., for o*(R*N/2L-1) seconds, which must
be less than 0.1ms = 1/(1000*R). Substituting B=L/o, we get B≥
1000*(R*R*N/2-L)—much larger than the traditional network
bisection bandwidth requirement of R*N/2 [19].

Another alternative is to explicitly track time in the hardware. This
approach is taken by both TrueNorth and Loihi; TrueNorth has an
external global strobe signal that is used to advance time. Loihi uses
a global barrier synchronization through its packet routing network to

Figure 4. If we partition the architecture into two halves, then the
network bisection bandwidth and per link throughput determines how
long a packet might have to wait--which introduces timing variability.

N/2 neurons, along with
their associated input

synapses and dendrites

N/2 neurons, along with
their associated input

synapses and dendrites

links cut by the bisection, total of L links

queued packets per link; a fresh packet must wait
for all the previous packets to be sent before it is transmitted

to the output. Delay for the kth packet = (k-1)*o

input packet output packet

 IEEE CICC 2021/ Session X/ Paper X.Y 4

advance time. In this approach, the temporal fidelity of the
neuromorphic system is determined by the discrete timestep that is
built into the hardware.

Routing tables
When a neuron in a neurosynaptic core produces an output spike,
the spike is delivered to a set of destination cores at specific axon
addresses. This routing information is stored in a per-neuron routing
table in each core. Since most architectures have a finite size for this
routing table, this imposes another software constraint on the neuron
fanout and connectivity. A more flexible routing architecture requires
a larger routing table. The size of the output routing table coupled
with the synapses per input axon in the core determine the total
fanout an individual neuron can support. This is coupled with the
constraints of the neurosynaptic core itself. Fig. 5 shows two different
design points for the overall neurosynaptic connectivity selected by
the TrueNorth and the Loihi projects.

Once neurons and synapses have been clustered, the clusters must
be placed on-chip to minimize the distance a spike travels, thereby
minimizing routing energy. This is like a VLSI or FPGA placement
problem, where the wiring length corresponds to the distance
traveled by a spike. Applying placement-style optimizations in the
software flow to optimize the physical location of neurosynaptic cores
can reduce the overall energy cost by a significant amount. Routing
tables can be populated once this placement information is known.

Information representation
The biggest impact on energy in large-scale programmable
neuromorphic systems is in the cost of spike routing. The best way
to reduce the energy cost is to reduce the total number of spikes
generated by the network. This must be tackled at the algorithmic
level, when mapping a problem into a spiking neural network
architecture.

The most direct way weights can be selected for a spiking neural
network is to convert a more traditional artificial neural network into
a spiking representation (e.g. [20]). Since artificial neural networks
have well-established algorithms for training, this approach
leverages significant effort in tools and methodology in computing
the weights for artificial neural networks and translates it to (non-
learning) neuromorphic systems. In this approach, the real valued
numbers used in traditional neural networks correspond to the
average spike rate. If we make the simplifying assumption that spikes
are Poisson (a common assumption in computational neuroscience)
and use a slotted model (consistent with the temporal schemes in
Loihi and TrueNorth), and the average spike rate corresponds to a
real number, then we can determine the amount of time that we must
wait in computing the average to get an accurate estimate of the real
number to a given precision. Note that since we are computing an
estimate of a stochastic process, there is always some probability of
error, and hence we also need to select a confidence threshold.
Unfortunately, the number of spikes needed grows very quickly; for
example, if we wish to correctly represent a real number with Poisson
spikes 90% of the time, then we need to wait for 20 time slots to get
a one-bit precise representation, and 2582 slots to get a four-bit
precise representation. A summary of the number of slots for
different choices of precision and confidence are shown in Table 1.

In other words, for any computation where value precision is
important, the spike cost is extremely high. We can counteract this
by permitting spikes to carry values (e.g. in the recently announced
Loihi2), and by using thinning to scale down the number of spikes
sent over the network [7]. In specific situations, we can use other
spike representations that are more efficient—for example,
information can be represented by the time difference between two
spikes rather than a spike rate [4]. The challenge of changing spike
encoding schemes is to design the appropriate network of neurons
given the physical neurons available in the hardware
implementation.
Another commonly used approach is to use populations of neurons
to represent a value. When input spikes are delivered to the
population, different neurons spike at different times. A winner-take-
all circuit is used to select the neuron that spiked first and use the
neuron index to represent the value encoded by the population. The
combination of populations of neurons and rates has been used
extensively in the neural engineering framework [21], which permits
the synthesis of neural circuits from a dynamical systems formulation
of the computation.

Summary
We have discussed numerous hardware/software co-design issues
in neuromorphic systems. The appropriate choices for each of these
issues is a strong function of the actual computations being mapped
to the neuromorphic substrate. To make progress on this front, what
is needed is a collection of accepted and open benchmark suite that
is designed to showcase the efficiency of spike-based neuromorphic
architectures. We are working toward this goal and developing a
flexible neuromorphic architecture that can be used as a reference
design by the community.

Table 1. When using Poisson spikes, the number of time slots needed
to obtain an accurate estimate of a rate with high confidence grows
quicky with the precision required.

Precision
(bits)

Number of slots needed for different
confidence values

c = 95% c = 90% c = 75%
1 28 20 8
2 176 126 56
3 848 592 288
4 3670 2582 1248
5 15211 10731 5227

Figure 5. Different choices made by two different large-scale
neuromorphic architectures: TrueNorth and Loihi.

1
2
3

k

1
2
3

m
input axon

single destination
(core, axon) per

neuron

output fan-out:
one slot per

neuron

input fan-out:
full crossbar

n2

input synapse
& neuron: small
set of unique

weights per core

n1

1
2
3

1
2
3

m
input axon

multiple
destinations

(core, axon) per
neuron

output fan-out: fixed
total # of slots shared

by all neurons

input fan-out: fixed
total # of slots
shared by all

neurons.

n2

n1

input synapse
& neuron: flexible

weights

TrueNorth
design
choices

Loihi
design
choices

5 IEEE CICC 2021/ Session X/ Paper X.Y

References:
[1] G.M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities”, Proc. AFIPS, 1967.
[2] E. Kandel et al., “Principles of Neural Science”, McGraw Hill,
2021.
[3] C.A. Mead, “Neuromorphic electronic systems”, PIEEE, Oct 1990.
[4] P. Dayan and L. Abbott, “Theoretical Neuroscience”, MIT Press,
2005.
[5] P. Merolla et al., “A million spiking-neuron integrated circuit with
a scalable communication network and interface”, Science, 2014.
[6] M. Davies et al., “Loihi: A neuromorphic manycore processor with
on-chip learning”, IEEE Micro, 2018.
[7] A. Neckar et al., “Braindrop: A Mixed-Signal Neuromorphic
Architecture With a Dynamical Systems-Based Programming
Model”, PIEEE, Jan 2019.
[8] B.V. Benjamin et al., “Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations”, PIEEE, 2014.
[9] M. Mahowald and R. Douglas, “A silicon neuron”, Nature, 1991.
[10] J. Lazzaro et al., “Silicon auditory processors as computer
peripherals”, IEEE Trans. Neural Nets, May 1993.
[11] M. Mahowald and C.A. Mead, “The silicon retina”, Scientific
American, 1991.
[12] R.F. Lyon and C.A. Mead, “An analog electronic cochlea,” IEEE
Trans. Acoust. Speech and Signal Processing, 1988.

[13] Shih-Chii Liu et al., “Event Based Neuromorphic Systems”,
Wiley, 2015.
[14] E.M. Izhikevich, “Which model to use for cortical spiking
neurons?”, IEEE Trans. Neural Networks, 2004.
[15] A.S. Cassidy et al., “Cognitive Computing Build Block: A
versatile and efficient digital neuron model for neurosynaptic cores”,
IJCNN 2013.
[16] P. Merolla et al., “A digital neurosynaptic core using embedded
crossbar memory with 45pJ per spike in 45nm”, CICC 2011.
[17] S. Yu, “Neuro-inspired computing with emerging nonvolatile
memorys”, PIEEE, Feb 2018.
[18] G. Bi and M. Poo, “Activity induced synaptic modifications in
hippocampal culture: Dependence on spike timing, synaptic strength
and cell type”, J. Neuroscience, 1999.
[19] S. Moradi et al., “The impact of on-chip communication on
memory technologies for neuromorphic systems”, J. Physics D, Oct
2018.
[20] P. Diehl, “Performant spiking systems”, Ph.D. thesis, ETHZ
2016.
[21] C. Eliasmith et al., “Neural engineering: computation,
representation, and dynamics in neurobiological systems”, MIT
Press, 2003.

