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Introduction 
Transistor technology for electronic computer systems is now at the 
single digit nanometer scale. This enormous advance through 
sustained efforts over more than sixty years has resulted in 
computers that are extremely efficient in terms of the energy per unit 
of computation. This progress in hardware was arguably driven by 
the demand for computation, as software systems and digital 
technology became integrated with more and more of our lives. 
Despite this progress in device technology, general-purpose 
microprocessors—the heart of a modern computer—can still be 
viewed as a “von Neumann” computer with control, storage, 
arithmetic, and input/output devices. As the demand for computation 
grows unabated while the scaling of transistor technology slows 
down, alternate approaches to further reducing the energy per unit 
of computation are required. 
There are several “rules of thumb” that have been well-understood 
since the 1980s when it comes to designing energy-efficient VLSI 
architectures. The architecture should use short wires and hence 
make use of local communication, since communication costs often 
dominate the energy budget. The architecture should consist of a 
large collection of components that operate in parallel, and each 
component should operate at a low voltage to save power while 
leveraging parallelism for performance. While these properties might 
be very appealing from a chip design perspective, the performance 
of such a system can be exploited only if users write parallel 
software, and even a small serial part of the program quickly limits 
performance [1]. Hence, the improvements in transistor technology 
were used to build more and more complex execution engines that 
could be readily leveraged by existing software, until power 
constraints limited the introduction of additional complexity and led 
to the shift to multi-core systems. 
There is a much less understood system that exhibits all the 
attributes required for energy-efficient computation—and that is the 
human brain. The human brain uses roughly 20W of power and can 
perform tasks in real-time and on noisy inputs that go well beyond 
the capabilities of modern computers. Neurons, synapses, dendrites, 
and axons in the brain operate in an asynchronous, massively 
parallel fashion. Electrical potentials are in the range of tens of mV, 
and storage and computation are tightly integrated in individual 
neurons and synapses [2]. Each component is slow, but the overall 
system exhibits remarkable performance, routinely outperforming 
traditional computers in certain problem domains. The system is not 
explicitly programmed in the traditional sense, but instead learns 
from experience and repetition. Hence, Biology provides an 
existence proof of a fine-grained, massively parallel computer that 
can perform important tasks with orders of magnitude less energy 
compared to the best conventional computers. 
Computers today are being asked to perform tasks that have similar 
characteristics to those human beings excel at such as driving a car 
or recognizing faces. Drawing inspiration from Biology, 
neuromorphic computer systems aim to create electronics inspired 
by the human brain with the goal of replicating its energy-efficiency 
and computational ability [3]. This paper discusses neuromorphic 
system design from a computing perspective—namely, the 
hardware/software co-design trade-offs in the design of such 
systems. 
 
Early neuromorphic systems 
Since even today we have a limited understanding of how biological 
systems compute, a better description of a neuromorphic computer 
is one that provides an electronic implementation of models of the 
brain that are used by computational neuroscientists [4]. 
Neurons communicate with each other via spikes. A spike can be 
viewed as a digital, continuous time signal. Biological spikes have 
many distinct features in their waveform [2], but these are typically 
simplified in an electronic implementation to the point where a spike 

is simply a signal transition, and the arrival time of the spike is 
determined by the signal transition time. Many neuromorphic 
systems designed to scale up to millions of neurons including 
TrueNorth [5], Loihi [6], Braindrop [7], Neurogrid [8], and the recently 
announced Loihi2 use continuous time, asynchronous or self-timed 
digital circuits for spike communication. Clocked spike-based 
systems discretize time using the global clock signal; in this context, 
the presence or absence of a spike is determined at each clock edge. 
Spike outputs from a neuron travel along axons, and these axons 
can be connected to the input of thousands of other neurons via 
synapses that are part of the input dendritic tree for a neuron. There 
are many different models for neurons and synapses, and for what 
occurs when an input spike arrives. The simplest model and the one 
that is easiest to implement is the leaky integrate-and-fire model 
(LIF). In this model, a neuron is modeled by a membrane potential. 
If a spike arrives at a particular time, the membrane potential is 
increased by an amount determined by the weight of the synapse 
along which the spike arrived. If the membrane potential exceeds a 
threshold, and output spike is generated, and the potential is reset. 
Finally, there is a constant leak that causes the membrane potential 
to decrease with time if no input spike arrives. Models that are 
biophysically more accurate include the Hodgkin-Huxley model [4], 
where the state of the neuron and synapse are modeled with multiple 
state variables that interact via coupled non-linear differential 
equations. Other models of input spike arrival include using a 
waveform to represent the effect of the input spike on the neuron 
input over time rather than implicit synaptic dynamics. 
Early neuromorphic systems were designed to mimic sophisticated 
biological models. Analog circuit models were used in early 
neuromorphic systems for energy-efficient computation of neuron 
membrane potentials [9]. Continuous-time operation required 
asynchronous digital communication. The output of a neuron could 
be connected to thousands of other neurons. To support this level of 
fanout in a VLSI technology where traditional digital circuits with an 
average fanout of between two and four were wiring limited, a 
packet-switched protocol for communicating spikes called the 
address-event representation (AER) was introduced [10] (Fig. 1). 
These circuits were designed in the 1980s and early 1990s when the 
feature size was 0.5µm or larger. Each circuit was used to show 
electronic versions of specific biological structures such as the retina 
[11] and cochlea [12]. 

 
Programmable neuromorphic systems 
To have a neuromorphic system as a supplement to a conventional 
computer system requires it to be programmable. This means we 
need flexibility in the underlying hardware, as well as a mechanism 
to map computations directly to the neuromorphic substrate. For 
simplicity, we assume that the “assembly language” for the 
neuromorphic platform is a graph-based specification of the 
underlying spike-based computation. This is akin to traditional 
FPGA-based systems, where a gate-level netlist is mapped to a 

 
Figure 1. Address-event representation (AER) is used to time-multiplex 
neuron outputs onto a shared bus. Packets encode the neuron address 
that spiked, and this is used to determine the set of destination axons to 
which the spike must be delivered. Incoming spikes are de-multiplexed 
to the input axons when they are received from the packet-switched 
network.  
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programmable hardware substrate consisting of programmable logic 
and programmable interconnect. 
The biggest challenge in the design of large-scale neuromorphic 
systems is creating an efficient programmable communication 
infrastructure. Traditional FPGAs are designed to map digital circuits 
that have an average fan-out of between 2 and 4. Even with this 
limited typical fanout, the bulk of the die area (over 80%) of an FPGA 
is devoted to implementing programmable wires using muxes and 
configuration bits. Neuromorphic systems have typical axon fanouts 
of over a thousand, and so dedicated point-to-point connectivity akin 
to an FPGA is prohibitively expensive. Instead, each spike endpoint 
is given an address, and a packet-switched routing fabric is designed 
that can route a spike to its destination address [13]. While different 
spike routing architectures have been proposed [13], the most 
popular approaches include bi-directional mesh networks [5,6] as 
well as tree-based routing [7,8] (Fig. 2). 
 

 
Neuron models 
There are many computational models of neurons, and different 
researchers in the neuroscience field use different models. If we 
draw an analogy to software, we can view the neuron model has the 
choice of arithmetic instructions that the hardware should support. In 
the software domain, we have well-defined requirements, and the 
choice of arithmetic instructions can be reduced to questions about 
efficiency and universality. Given a complete set of arithmetic 
primitives, we can emulate any of the others. Hence once we have a 
complete set, the rest is a question of efficiency: what is the best 
choice given the cost of hardware implementation v/s the software 
overhead for a set of benchmarks? Various instruction-set 
architectures have made different choices, but any of them can be 
used to implement the same software program by a compilation 
process. 
The same approach is not quite so straightforward in the 
neuromorphic case, as there is no consensus on the right level of 
abstraction for biological information processing. However, there are 

well-understood categories of biological spiking behavior exhibited 
by a range of neuron models [14]. Even a simple neuron model like 
LIF can, with some simple enhancements, replicate complex neuron 
behavior in a local micro-circuit configuration of one, two, or three 
such simple neurons [15]—the neuromorphic equivalent of 
technology mapping to a standard cell library. 
 
The crossbar and neuro-synaptic core 
Since packet-switched communication networks have significantly 
higher cost than dedicated wires, a natural question that arises is 
whether we can reduce the packet traffic in the routing network. The 
output spike from a neuron must be delivered to many destinations, 
and each of those destinations is specified by an address. If those 
addresses are physically near each other on the chip, then we could 
send a single packet to a group of addresses, reducing the 
communication cost.  
To do so, a collection of synapses and their associated neurons are 
grouped together into a cluster called a neurosynaptic core [16]. 
Furthermore, this architecture also introduced the now-ubiquitous 
wiring-efficient crossbar organization of axons and dendrites (Fig. 3). 
A collection of neurons is grouped together into a single core. Each 
of those neurons have a set of incoming synapses, organized into 
the input dendrite for the neuron. The collection of neurons has a set 
of incoming axons, and each axon can connect to each neuron at a 
dedicated synapse. 
There are two parameters for a neurosynaptic core: the number of 
neurons (N), and the number of input axons (A). In the case of a 
crossbar configuration, the number of synapses supported is A*N. If 
a synapse supports a weight of b bits of precision, then the amount 
of state required is A*N*b. The benefit of the crossbar organization 
is that an N-way fanout of a spike is supported within a core via a 
simple local wire fanout—about as energy-efficient as it gets. If the If 
the synapses are fully utilized, then this organization reduces the 
number of spike packets by a factor of N. Since typical values of N 
are in the 128 to 1024 range, this is a significant reduction in 
communication cost. The crossbar architecture also permits 
experimentation with different synaptic materials that can be 
deposited as part of back-end-of-line processing in-between the 
axon and dendrite metal layer steps. This organization was used in 
TrueNorth [5], as well as most systems that use advanced materials 
to implement a synaptic device [17]. 
 

 
To understand the software trade-offs, suppose we had a single 
neuron in a core (N=1). In this case, A would be determined by the 
maximum fan-in for an individual neuron. To prevent a small number 
of extremely high fan-in neurons from determining the value of A, we 
can introduce special relay neurons whose sole purpose is to forward 
their accumulated input to another input axon for a secondary 
neuron. This approach breaks up a large fan-in into a tree of relay 
neurons, just like high fan-in logic gates are broken down into trees 

 
Figure 2. Examples of spike-routing architectures combined with 
neurons and synapses. 
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Figure 3. A neurosynaptic core consisting of a dense synaptic array 
with row/column accesses like a standard memory. The synaptic 
device could be standard digital logic (e.g. an SRAM) or use a beyond-
CMOS material. 
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of smaller fan-in gates. Based on an analysis of typical graphs to be 
mapped to the architecture, a suitable value of A can be selected. 
As we increase the value of N, we introduce a second software 
constraint. Any two neurons within an individual neurosynaptic core 
share the same input axons. Hence, we expect two effects: (i) not all 
neurons will have the same set of input axons—i.e., some of the 
synapses out of A*N will have zero weight, and this number will 
increase as N increases; (ii) the value of A itself will increase to 
accommodate the diversity of inputs, further increasing the number 
of zero weight synapses in a core. As the number of zero weight 
synapses in a core increase, the benefits of the crossbar 
organization diminish. 
The mapping of neurons to neurosynaptic cores must take the 
synaptic constraint imposed by the core organization into account. It 
is beneficial to group neurons that share input axons into the same 
core. From the software standpoint, this can be viewed as an input 
sharing constraint for the core: neurons that share many axons 
should be grouped into an individual core. Once the maximum 
number of unique input axons is reached, no additional neurons can 
be added to a core due to resource constraints. 
There is a second challenge with a crossbar organization, and this 
has to do with array efficiency. Driving an axon in the crossbar 
requires an address decoder, and reading the dendritic voltage 
requires readout circuitry. This is akin to an SRAM bank design, with 
word line drivers and bit line read circuitry. In a small SRAM bank, 
the overhead of the control circuits can be very large—on par with 
the area used for the bit-cell array. This intuition holds for the 
crossbar in a neurosynaptic core as well. Also, for designs with 
newer materials that require more complex driver and readout logic, 
the overhead of the access circuitry is even higher. 

An alternate architecture for a neurosynaptic core is to replace the 
crossbar with a more traditional memory organization, where each 
input axon has a list of weights for each neuron in the core. A direct 
implementation of this idea would require A*N*b bits of state. 
However, if the connectivity is sparse, then we could represent S*b 
weights, where S is the total number of synapses in the core. 
Associated with each weight would be a neuron index, increasing the 
storage to S*b*log(N), which would be addressed by a log(S) bit 
address. Finally, an additional table would be needed to indicate the 
start address of the synapses for each axon, another A*log(S) bit 
table. The Loihi architecture [6] uses an addressing mechanism of 
this type. 
Finally, a third choice is to not permit the synaptic weights to be fully 
specified by the user, but instead provide support for a diversity of 
weights that can be selected in some fashion. In a digital 
implementation, this can be via a pseudo-random number generator 
that uses the axon and neuron indices to select a weight. In an 
analog implementation, this can be via a programmable analog 
network [7]. 
The number of bits needed for each weight, as well as the number 
of bits needed for the internal membrane potential for the neuron are 
both parameters that are selected by a co-design process. Typical 
choices are in the 8-bit range for weights (especially if learning is 
supported), and 16-bit range for the neuron state. The synaptic bits 
are much more expensive, since the number of synapses is many 
orders of magnitude larger than the number of neurons. If a synapse 
weight is not adaptive and a software analysis shows that a small 
number of unique weights is sufficient per core, then the synaptic 
storage requirements can be significantly reduced by storing a 
weight index rather than the actual weight value per synapse [5]. 
 
Learning 
One of the key characteristics of biological networks is that they learn 
and adapt continuously. This adaptation is implemented by changing 
the weights of the synapses. The most used learning rule is some 
variation of spike timing-dependent plasticity [18], where the 
temporal proximity of an input spike to a synapse and the output 
spike for the associated neuron is used to update the weight of a 
synapse. In a crossbar organization, this is achieved by applying the 
appropriate driving signals to the axon and dendrite to update the 

weight stored at their intersection. In a memory-oriented architecture, 
the coincidence in spike timing is recorded in a buffer and used to 
periodically update the weights stored in memory [6]. 
We don’t fully understand how biological systems achieve robust 
long-term memory while supporting continuous weight adaptation. 
Hence, neuromorphic systems often permit the learning mechanism 
to be disabled (or don’t support it at all) so that they can be used in 
a “pre-trained” mode. 
 
Temporal fidelity and determinism 
Information in spiking neural networks is carried in spike timing. In 
biological systems, there are direct, physical connections between 
the source of a spike and its targets. As discussed earlier, the limited 
wiring in VLSI forces us to use time-multiplexed wires and a packet-
switched routing approach to delivering spikes to their destination. 
This time-multiplexing can change the spike timing, thereby also 
impacting the computation. 
There are two approaches to this problem. The first, adopted by 
systems like Neurogrid [8] and Braindrop [7] is to ensure that the 
system is robust to this perturbation in spike timing. Biological 
systems have neuron spike rates that are roughly in the 1-10 Hz 
range, and typical computational neuroscience software models 
assume a temporal fidelity of 0.1ms. If the neuromorphic system is 
operating in real-time, then as long as the temporal uncertainty is 
much less than 0.1ms, the computation is likely to be robust. Since 
CMOS digital circuits can operate in the GHz throughput regime, 
even a thousand packet stall would introduce less than a 1µs 
uncertainly in a well-pipelined routing network. This means that a fast 
enough routing network would result in low temporal uncertainty. 

To examine the implications of this approach, consider a network 
architecture with N total neurons and a bisection bandwidth of B 
spikes/sec, where a router link has a mean occupancy of o units of 
time (Fig. 4). Hence, if a packet must wait for another one, it must 
wait o units of time. If the bisection cuts L links, B = L/o. If N/2 neurons 
spike at R=10 Hz, a traditional network analysis would require that B 
≥ R*N/2. However, suppose we introduce the software constraint 
that the uncertainty is 0.1ms. If we assume the packets are uniformly 
spread across the L links, then a packet may have to wait for 
(R*N/2L-1) other packets, i.e., for o*(R*N/2L-1) seconds, which must 
be less than 0.1ms = 1/(1000*R). Substituting B=L/o, we get B≥ 
1000*(R*R*N/2-L)—much larger than the traditional network 
bisection bandwidth requirement of R*N/2 [19]. 
 

 
Another alternative is to explicitly track time in the hardware. This 
approach is taken by both TrueNorth and Loihi; TrueNorth has an 
external global strobe signal that is used to advance time. Loihi uses 
a global barrier synchronization through its packet routing network to 

 
Figure 4. If we partition the architecture into two halves, then the 
network bisection bandwidth and per link throughput determines how 
long a packet might have to wait--which introduces timing variability. 
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advance time. In this approach, the temporal fidelity of the 
neuromorphic system is determined by the discrete timestep that is 
built into the hardware. 
 
Routing tables 
When a neuron in a neurosynaptic core produces an output spike, 
the spike is delivered to a set of destination cores at specific axon 
addresses. This routing information is stored in a per-neuron routing 
table in each core. Since most architectures have a finite size for this 
routing table, this imposes another software constraint on the neuron 
fanout and connectivity. A more flexible routing architecture requires 
a larger routing table. The size of the output routing table coupled 
with the synapses per input axon in the core determine the total 
fanout an individual neuron can support. This is coupled with the 
constraints of the neurosynaptic core itself. Fig. 5 shows two different 
design points for the overall neurosynaptic connectivity selected by 
the TrueNorth and the Loihi projects. 
 

 
Once neurons and synapses have been clustered, the clusters must 
be placed on-chip to minimize the distance a spike travels, thereby 
minimizing routing energy. This is like a VLSI or FPGA placement 
problem, where the wiring length corresponds to the distance 
traveled by a spike. Applying placement-style optimizations in the 
software flow to optimize the physical location of neurosynaptic cores 
can reduce the overall energy cost by a significant amount. Routing 
tables can be populated once this placement information is known. 
 
Information representation 
The biggest impact on energy in large-scale programmable 
neuromorphic systems is in the cost of spike routing. The best way 
to reduce the energy cost is to reduce the total number of spikes 
generated by the network. This must be tackled at the algorithmic 
level, when mapping a problem into a spiking neural network 
architecture. 

The most direct way weights can be selected for a spiking neural 
network is to convert a more traditional artificial neural network into 
a spiking representation (e.g. [20]). Since artificial neural networks 
have well-established algorithms for training, this approach 
leverages significant effort in tools and methodology in computing 
the weights for artificial neural networks and translates it to (non-
learning) neuromorphic systems. In this approach, the real valued 
numbers used in traditional neural networks correspond to the 
average spike rate. If we make the simplifying assumption that spikes 
are Poisson (a common assumption in computational neuroscience) 
and use a slotted model (consistent with the temporal schemes in 
Loihi and TrueNorth), and the average spike rate corresponds to a 
real number, then we can determine the amount of time that we must 
wait in computing the average to get an accurate estimate of the real 
number to a given precision. Note that since we are computing an 
estimate of a stochastic process, there is always some probability of 
error, and hence we also need to select a confidence threshold. 
Unfortunately, the number of spikes needed grows very quickly; for 
example, if we wish to correctly represent a real number with Poisson 
spikes 90% of the time, then we need to wait for 20 time slots to get 
a one-bit precise representation, and 2582 slots to get a four-bit 
precise representation. A summary of the number of slots for 
different choices of precision and confidence are shown in Table 1. 
 

 
In other words, for any computation where value precision is 
important, the spike cost is extremely high. We can counteract this 
by permitting spikes to carry values (e.g. in the recently announced 
Loihi2), and by using thinning to scale down the number of spikes 
sent over the network [7]. In specific situations, we can use other 
spike representations that are more efficient—for example, 
information can be represented by the time difference between two 
spikes rather than a spike rate [4]. The challenge of changing spike 
encoding schemes is to design the appropriate network of neurons 
given the physical neurons available in the hardware 
implementation. 
Another commonly used approach is to use populations of neurons 
to represent a value. When input spikes are delivered to the 
population, different neurons spike at different times. A winner-take-
all circuit is used to select the neuron that spiked first and use the 
neuron index to represent the value encoded by the population. The 
combination of populations of neurons and rates has been used 
extensively in the neural engineering framework [21], which permits 
the synthesis of neural circuits from a dynamical systems formulation 
of the computation. 
 
Summary 
We have discussed numerous hardware/software co-design issues 
in neuromorphic systems. The appropriate choices for each of these 
issues is a strong function of the actual computations being mapped 
to the neuromorphic substrate. To make progress on this front, what 
is needed is a collection of accepted and open benchmark suite that 
is designed to showcase the efficiency of spike-based neuromorphic 
architectures. We are working toward this goal and developing a 
flexible neuromorphic architecture that can be used as a reference 
design by the community. 
 

Table 1. When using Poisson spikes, the number of time slots needed 
to obtain an accurate estimate of a rate with high confidence grows 
quicky with the precision required. 
 

Precision 
(bits) 

Number of slots needed for different 
confidence values 

c = 95% c = 90% c = 75% 
1 28 20 8 
2 176 126 56 
3 848 592 288 
4 3670 2582 1248 
5 15211 10731 5227 

 

 

 
Figure 5. Different choices made by two different large-scale 
neuromorphic architectures: TrueNorth and Loihi. 
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