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Abstract—Brain-computer interfaces (BCIs) enable direct com-
munication with the brain, providing valuable information about
brain function and enabling novel treatment of brain disorders.
Our group has been building HALO, a flexible and ultra-low-
power processing architecture for BCIs. HALO can process
up to 46 Mbps of neural data, a significant increase over the
interfacing bandwidth achievable by prior BCIs. HALO can
also be programmed to support several applications, unlike
most prior BCIs. Key to HALO’s effectiveness is a hardware
accelerator cluster, where each accelerator operates within its
own clock domain. A configurable interconnect connects the
accelerators to create data flow pipelines that realize neural
signal processing algorithms. We have taped out our design in
a 12 nm CMOS process. The resulting chip runs at 0.88 V, per-
accelerator frequencies of 3–180 MHz, and consumes at most
6.3 mW for each signal processing pipeline. Evaluations using
electrophysiological data collected from a non-human primate
confirm HALO’s flexibility and superior performance per watt.

I. INTRODUCTION

BCIs directly sense and stimulate electrical activity of
neurons in the brain, enabling a new approach to increas-
ing our understanding of the brain, treating drug-resistant
epilepsy, restoring motor capabilities in individuals suffer-
ing from neurological disorders, and more [1–4]. BCIs are
also heralding innovation in improving mental focus, short-
term memory, mind-controlled assistive devices, and more.
Consequently, companies like Meta, Microsoft, Neuralink,
Kernel, Neuropace, Synchron, Paradromics and Medtronic are
building BCIs that read, process, and stimulate increasingly
more neurons with the highest signal fidelity.

BCIs can be realized as non-invasive headsets, or, as inva-
sive devices where the electrodes to sense/stimulate neurons
are implanted in or around brain tissue surgically. Our work
focuses on the latter, which can record and stimulate a
large population of neurons with high fidelity [5], and have
important clinical, research and therapeutic uses.

Conflicting constraints make it challenging to design pro-
cessors for invasive BCIs. On the one hand, BCIs must process
increasing volumes of neural data in real-time. For example,
BCIs that treat seizures must process neural activity to detect
signs of a current or impending seizure, determine where
and how to apply electrical stimulus to mitigate the seizure,
and apply the stimulus, all within a few milliseconds [6].

*Joint first authors who have contributed to this work equally. Authors are
listed in alphabetical order of last name.

Some BCIs can read neuronal activity at 10s of Mbps,
recent experimental designs claim even higher rates [7], and
DARPA’s NESD program targets reading millions of neurons
at Gbps data [8]. All this data must be analyzed in real time.

On the other hand, BCIs cannot overheat brain tissue
by more than 1 °C. In general, BCI vendors target power
consumption under 15 mW for safe permanent implantation.

Current BCIs have adopted the approach of rigid specializa-
tion to a particular application, or sacrificing data rates to sup-
port multiple applications. Consequently, the BCI landscape
is fragmented with many single-use or low capability devices.
Table I captures this predicament using a representative list of
state-of-art commercial and research BCIs.

Medtronic Neuropace Aziz Kassiri Neuralink NURIP HALO
[2] [2] [9] [2] [7] [10]

Tasks Supported
Spike Detection × × × × × × ✓
Compression × × ✓ × × × ✓
Seizure Prediction × ✓ × ✓ × ✓ ✓
Movement Intent ✓ × × × × × ✓
Encryption × × × × × × ✓

Technical Capabilities
Programmable ✓ Limited × ✓ × Limited ✓
Read Channels 4 8 256 24 3072 32 96
Data rate (Mbps) 0.01 0.02 9.76 1.32 545 0.13 46
Safety (<15mW) ✓ ✓ ✓ ✓ × ✓ ✓

TABLE I: Existing commercial and research BCIs meet target
power budgets by either restricting their scope to a single
use case, or by dropping brain-computer communication band-
width. HALO is the first flexible implantable BCI architecture
to overcome this tradeoff.

II. THE HALO PROJECT

Our goal is to build a BCI processor that can process
high neural data rates and supports many BCI applications,
while meeting the power constraints needed for safe long-
term implantation. The outcome of our research is HALO,
a BCI processor that has a family of accelerator processing
elements (PEs), each operating in separate clock domains
with low-power asynchronous circuit-switched communica-
tion. Figure 1a shows the chip diagram of a 12 nm CMOS
tape out of HALO. Figure 1b shows how HALOintegrates
with the remainder of a typical implantable BCI device.

HALO’s design is unconventional in many ways. Standard
low power design dictates that we realize one accelerator per
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(a) (b)

Fig. 1: The chip diagram on the left shows our HALO tape-out
in a 12 nm technology. Per-PE labels show the distinct logic
and memory components of the PE that are placed in different
physical locations. The block diagram on the right shows other
key components of implantable BCIs, including the sensors,
which consists of conductive needles that penetrate millimeters
of cortical tissue, analog components, a radio, and power
sources. Implantable BCIs are packaged in a hermetically-
fused silica capsule or titanium capsule.

BCI application in the form of a dedicated ASIC (which we
refer to as a monolithic ASIC). We find that monolithic ASICs
exceed the permitted power budget, and do not achieve our
desired flexibility in hardware design.

Instead, HALO realizes both flexibility and low power
operation. We begin by systematically mapping the design
space of BCI applications to identify the target capabilities
we wish to support. These include disease treatment, signal
processing, and secure transmission of neuronal data (e.g.,
compression and encryption). While these capabilities are not
exhaustive, we identify them to be the broad features required
for a flexible multi-use BCI platform.

Next, we refactor the underlying algorithm of the BCI
applications into distinct pieces or kernels that realize different
phases of the algorithm. The kernels facilitate the design of
modular, ultra-low-power hardware processing elements (PEs).
By bundling logic with similar complexity within individual
PEs, we are able to clock the module at the lowest frequency
required to sustain bandwidth and reduce power. We complete
the design by including a low-power RISC-V microcontroller
to configure PEs into processing pipelines and support com-
putation for which there are no PEs.

Finally, we devise several hardware-software co-design
techniques described in Section IV, which optimize the design
at the abstraction level of the PEs. These techniques enable
HALO to achieve 4-57× and 2× lower power dissipation than
software and monolithic ASIC implementations, respectively.

HALO’s top-down, modular approach provides another im-
portant design benefit. It allows us to be agile, and tape
out the design with incremental functionality. We evaluate
our tape-outs using electrophysiological data collected from a
non-human primate’s motor cortex. We originally synthesized
HALO in 28 nm, and have later synthesized and taped out
several modules in 12 nm.

III. COMPUTATIONAL TASKS SUPPORTED BY HALO

Figure 2 presents an overview of the HALO architecture.
The block diagram on the left shows the PEs in our design.
The PEs are assembled into the task pipelines shown on the
right, by using a configurable interconnect.

HALO supports multiple types of applications. The first
category consists of support for seizure treatment and mit-
igating movement disorders. Seizure prediction/stimulation
pipelines are part of the state-of-the-art BCIs approved for
clinical use by the U. S. Food and Drug Administration
(FDA) [11]. Similarly, algorithms to detect/stimulate the brain
to counteract movement disorders associated with essential
tremor and Parkinson’s disease are under FDA approved trials.
HALO supports FFT, cross-correlation, and bandpass filters
over linear models to support closed loop treatment of these
neurological disorders.

The second category includes compression to reduce radio
transmission bandwidth. BCIs generally require lossless com-
pression, except in specific scenarios like spike sorting. HALO
supports spike detection using the near energy operator (NEO)
PE, and implements several lossless compression variants
since the best choice of the compression algorithm varies
across brain regions and patient activity. We support lossless
LZ4 and LZMA compression, as well as discrete wavelet
transform (DWT) compression. Compression ratios vary by as
much as 40% depending on compression algorithm and target
brain region [3].

Finally, HALO supports encryption with the AES PE..
No existing BCI supports encryption, but we foresee it as
becoming necessary in future BCIs for secure data exfiltration.
HALO’s encryption PE is designed according to standards
like HIPAA, NIST, and NSA that require using AES with an
encryption key of at least 128 bits.

IV. THE HALO ARCHITECTURE

HALO supports five tasks, and can set up two of them in
multiple ways, leading to a total of eight distinct pipelines
configurable by a clinician. With the conventional monolithic
ASIC approach, we would have required eight ASICs. Instead,
we decompose the pipelines into reusable PEs, shown in
Figure 2. A RISC-V microcontroller is used to configure the
PEs into pipelines via programmable switches.

A. Decomposing BCI Tasks into PEs

Kernel PE decomposition: Some BCI tasks consist of distinct
computational kernels naturally amenable to PE decomposi-
tion. For example, seizure prediction combines kernels for
FFT, cross-correlation (XCOR), Butterworth bandpass filtering
(BBF), and a support vector machine (SVM). We realize each
as a PE, as shown in Figure 2. This approach saves power
because XCOR contains complex computation (e.g., divisions,
square roots) that scales quadratically with the number of
inputs. In contrast, BBF is a simple filter with minimal
arithmetic that scales linearly with the input count. Separating
XCOR and BBF into separate PEs ensures that BBF’s filtering
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Fig. 2: HALO consists of low-power hardware PEs and a RISC-V micro-controller. The PEs are configured into pipelines to
realize tasks ranging from compression (in blue) to spike detection (in green). PEs taped-out in the latest 12nm technology
node are shown within the grey background. Optional PEs (e.g., AES encryption) are shown in square brackets. PEs operating
in parallel (e.g., FFT, XCOR, and BBF for seizure prediction) are shown in curly brackets.

logic is clocked over an order of magnitude slower than the
logic for cross-correlation.

PE reuse generalization: Multiple BCI tasks like movement
intent and seizure prediction often share the same computa-
tional kernel, such as FFT, but with different configurations
(e.g., the FFT resolution). We make our PEs configurable to
increase their reuse across applications.

Algorithm 1 LZMA pseudocode
1: function LZMA COMPRESS BLOCK(input)
2: output = list(lzma header);
3: while data = input.get() do
4: best match = find best match(data);
5: Probmatch = count(tablematch, best match)
6: /count total(tablematch);
7: r1 = range encode(Probmatch);
8: output.push back(r1);
9: increment counter(tablematch, best match);

10: end while
11: return output;
12: end function

Major refactoring: PE decomposition is more effective if
the original algorithms are refactored. Consider LZMA and
DWTMA compression. Both algorithms compute the fre-
quency of data values to encode them efficiently. However,
we found that using one PE for all operations overshoots the
15 mW power budget. Therefore, we refactored the original
algorithm. We identify that data locality of functions manip-
ulating major data structures is a good indicator of kernel
boundaries. This observation is also tied to the fact that PEs
in HALO have only local memories and cannot share large
amounts of data. We call this approach, Locality Refactoring.

Algorithm 1 demonstrates how locality refactoring is used
to modify the LZMA application. The second half of this
algorithm can be separated into probability calculations and
frequency information updates centered around the mainte-
nance of the core MA data structure, the frequency table (in
green), as well as efficient encoding (in blue). This refactoring
brings together phases that operate on the same data structures,

allowing us to separate distinct such sections into PEs. Each
PE can then be clocked at a significantly lower frequency,
leading to 2× power savings over a design that combines all
operations.

B. Processing Element Optimizations

Unchanged PE output: Some PEs (e.g., XCOR, LZ) process
data in blocks instead of samples and wait for all inputs in the
block to arrive. This bursty computation is problematic as it
requires either large buffers to sink the outputs of computations
or running the destination PEs at high frequency to meet data
rates. Both approaches waste power. Therefore, when possible,
we spatially reprogram the original algorithm and co-design
it with the hardware. Consider the XCOR PE. The original
algorithm waits for all data to arrive before operating on it, but
we refactor it to process inputs as they arrive. The final form
in Algorithm 2 reduces the amount of computation needed in
the final step, as well as the number of buffers needed to store
the inputs. This translates to a power savings of 2.2× over the
original algorithm. This technique also extends to other PEs
like LZ to achieve 1.5× power reduction.

Modified PE output: When possible, we modify the PE
outputs to save energy without losing accuracy. Consider the
data block size used in compression. Large block sizes lead
to better estimates of frequencies, but small block sizes allow
the use of smaller data types and reduce the memory footprint
and power of the MA PE. We observe that the frequencies of
values within a block remain largely unchanged after they have
stabilized. Consequently, we allow the frequency counters to
saturate and set block size independently of counter bit width.
Overall, counter saturation modification allows HALO to
benefit both from reduced memory footprint of 16-bit counters,
and better compression ratio of larger blocks.

C. On-Chip Network

Each PE operates at the lowest frequency needed for data
processing rates, and is synthesized with established syn-
chronous design flows. While running PEs in separate clock
domains saves power, it can potentially complicate inter-PE
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communication. Prior work on globally asynchronous locally
synchronous (GALS) architectures [12] encountered these
issues for packet-switched on-chip networks. Unfortunately,
we estimate that a simple packet-switched mesh network
consumes over 50ṁw, excluding such designs. Instead, we
co-design inter-PE communication with the BCI algorithms.
The decomposition of BCI tasks into kernels creates static and
well-defined data-flows between PEs. NoC route selection al-
lows replacement of a packet-switched network to a far lower-
power circuit-switched network built on an asynchronous
communication fabric.

D. Choice of FIFO Buffer Design

Despite optimizations, FIFO buffers are necessary at the
output of some of HALO’s bursty PEs, e.g., PEs in the
compression pipeline. Reducing the buffer sizes is important to
reduce power, especially for our 12 nm tape-outs. We achieve
this by first increasing the frequency of the PE that reads
from the buffer, beyond the rate necessary to sustain the data-
processing rate. We select the optimal frequency and FIFO
buffer size by studying the power tradeoff between the higher
frequency of the PE and the lower size of the FIFO. We
show this tradeoff in Section VI-B. Next, for FIFOs larger
than 1 KB, we use SRAM instead of registers, since SRAM
consumes less power than registers.

V. SYNTHESIS

Our 15 mW target power budget includes the HALO chip,
sensors, ADC, amplifier, and radio. We assume a microelec-
trode array with 96 channels, each of which records each
sample encoded in 16 bits at a frequency of 30 KHz, yielding
a data rate of 46 Mbps. After accounting for all analog com-
ponents, HALO’s processing pipelines (including the radio)
must consume no more than 12 mW. We present results for
our original evaluation at 28 nm Fully-Depleted Silicon-On-
Insulator (FD-SOI) CMOS process as well as our augmented
evaluation for our tape-out at 12 nm (which includes accurate

Algorithm 2 XCOR spatial programming refactoring
1: function XCOR(input, output)
2: // channel[][] stores input in appropriate channel location
3: channel[channel num][sample num] = input
4: // data[] stores sums of input received so far
5: data[count]+ = input
6: // data lag[] stores sums of input till LAG
7: if count 2 == LAG then
8: data lag[count] = data[count]
9: end if

10: // Finish correlation computation
11: if channel.filled() then
12: for each i, j ∈ channels do
13: avg i = data[i]/SIZE
14: avg j = (data[j]− data lag[j])/SIZE
15: output.push back(avg i, avg j)
16: end for
17: return output
18: end if
19: end function

estimates for the interconnect). Synthesis and power analysis
is performed using the latest generation of Cadence® synthesis
tools with standard cell libraries from STMicroelectronics.

Table II shows the synthesis results from 28 nm, and 12 nm.
Typically, a lower process node facilitates using a lower
frequency to sustain a given data processing rate, since the
gate delays are lower. However, Table II shows that several
PEs have a higher frequency at 12 nm. This was necessary to
optimize the FIFO buffer size (Section IV-D), and is especially
noticeable for the inherently bursty PEs (LZ, DWT, MA, RC).

PE 28 nm 12 nm

Freq
(MHz)

Logic
(mW)

Mem
(mW)

Area
(KGE)

Freq
(MHz)

Logic
(mW)

Mem
(mW)

Area
(KGE)

LZ 129 1.51 1.56 55 155 1.17 0.59 158
LIC 22.5 0.32 0.05 25 25 0.16 0.01 20
MA 92 2.28 1.06 66 180 1.87 0.62 274
RC 90 0.79 0 12 60 2.08 0 40
DWT 3 0.01 0 2 36 0.07 0.00 3
TOK 6 0.01 0 1 8 0.06 0.00 4
NEO 3 0.02 0 5 14 0.04 0.00 3
THR 16 0.01 0 1 3.5 0.04 0.00 4
GATE 5 0.01 0.12 17 42 0.34 0.04 28
RISCV 25 0.48 1.38 70 25 0.26 0.28 297
FFT 15.7 0.57 0.44 22 - - - -
XCOR 85 4.25 0.36 81 - - - -
BBF 6 0.10 0 23 - - - -
SVM 3 0.04 0.11 8 - - - -
AES 5 0.11 0 34 - - - -

TABLE II: Frequency, power, and area characteristics of our
28nm and 12nm HALO variants.

VI. EVALUATION

We use a physical synthesis flow for 28nm and 12nm tech-
nology nodes. A subset of our evaluations (i.e., compression
analysis) use brain data from a non-human primate collected
by the Borton Lab at Brown University as per our original
HALO paper [3].

A. Power Consumption

Figure 3 compares HALO’s power at 28 nm and 12 nm with
the monolithic ASIC approach, and another approach that runs
the applications on a RISC-V processor. Software tasks on
RISC-V can execute sequentially or in parallel, where the 96
electrode data streams are split between the multiple cores.
We study core counts from 1 to 64 and report the outcome of
the best configuration per task. HALO uses less power than
monolithic ASICs and RISC-V approaches, and is the only
design within the power limit of 15 mW for all applications.

B. Power Trade-off in the FIFO Buffer Design

Bursty PEs require large FIFOs to buffer data till the PE
can accept it. We show this trade-off between using a large
FIFO buffer versus increasing the frequency of the PE using
the MA module in the LZ-MA-RC pipeline.

Figure 4 shows the total power consumed by the MA-RC
segment of the compression pipeline, split into the power
consumed by the FIFO buffer, and the PE compute, as the
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Fig. 3: Power (in log-scale) of PEs, control logic and radios
for HALO versus RISC-V and monolithic ASICs. To meet
the 15 mW device power budget, these components (without
ADCs and amplifiers) need to be under 12 mW (the red line).
We compare HALO against the lowest-power RISC-V and
Monolithic-ASIC, the standard approach to low power design.
HALO-28 nm shows our original evaluation for 28 nm process
node. HALO-12 nm shows the evaluation for 12 nm process
node with accurate power analysis for interconnect.

frequency of MA is varied. MA must run at 90 MHz to
process the input rate of 46 Mbps. Figure 4 shows that the
power consumed by the FIFO buffer decreases as frequency is
increased. With a higher frequency, the PE can process inputs
faster, reducing the buffer time, and consequently, the size of
the buffer. However, a higher frequency increases the dynamic
power of not only MA but also for the subsequent PEs, i.e. RC,
to sustain the increased dataflow rate. The figure shows that
the overall power is lowest when MA operates at 120 MHz,
which is 33% higher than the minimum frequency required to
sustain the input datarate.

We perform a similar analysis for all PEs with bursty
datarates, considering all pipelines they are part of. For ex-
ample, from Figure 2, MA is in another compression pipeline
with DWT, and optimizing the power of that pipeline yields a
frequency of 180 MHz, which we finally use for MA.

VII. AGILE PROTOTYPING

HALO is an unconventional BCI processor, and we follow
an agile approach to tape out and verify it incrementally.
Our first tape out only includes the RISC-V processor that
we develop entirely in-house. This chip has an area of about
297 KGE (kilo gate equivalent), normalized to the cell area of
a 2-input NAND gate.

Next, we add some pipelines that are relatively easy to verify
because their signal processing is simpler (i.e., spike detection)
and some, which are more complex (i.e., compression). Fig-
ure 1a showed this layout, and has an area of of 832 KGE.
We tape out two versions of this design. One exposes the
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Fig. 4: Power of MA-RC components divided into FIFO and
PE power for the LZMA pipeline. As MA frequency increases,
FIFO size and power decreases. Correspondingly, PE power
increases. The total power is minimized at 120 MHz.

RISC-V interface, the PE interfaces that carry reconfiguration
commands, and PE internal memory, externally for testing and
debugging. The other variant has these connections internal,
as they would be in the final system.

HALO has been designed in a modular manner from the
beginning to support such an agile workflow (Section II).

Figure 5 shows the initial dies we received from the foundry.
They operate at 0.88 V with overall dimensions < 1mm2.

(a) Single die. (b) Multiple dies from a wafer.

Fig. 5: Chips from our first tape-out in 12 nm technology node.

We will complete additional tape outs to include all our PEs,
and then package the chips with the remaining components
of the BCI: sensors and stimulation units, ADC, radio, and a
power source (Figure 1b). Along with neuroscientists, we plan
on evaluating the performance and safety of the final package
in vivo using animal studies.

VIII. CONCLUSION

HALO presents a wet lab to chip design project that
explores the question of how to build a flexible ultra-low-
power processing architecture for next-generation BCIs. While
this work performs an initial exploration of workloads that
are important for neuroscience, but the list of tasks can be
expanded. Future BCIs will implement other workloads, with
different pipelines targeting different research and medical
objectives. Because of its modular design, HALO will be able
to support such workloads seamlessly.

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MM.2023.3258907

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IX. ACKNOWLEDGEMENTS

This work was partially supported by the National Sci-
ence Foundation (awards 2019529, 2118851, 1815718, and
2040682). This work was also supported by a grant from
the Swebilius Foundation. The authors also gratefully ac-
knowledge Muhammed Ugur, Gabriel Petrov, Oliver Ye,
Michal Gerasimiuk, Hitten Zaveri, Dennis Spencer, Nick Turk-
Browne, and Imran Quraishi for their feedback on this work.

REFERENCES

[1] A. L. S. Ferreira, L. C. d. Miranda, and E. E. Cunha de Miranda,
“A Survey of Interactive Systems based on Brain-Computer Interfaces,”
SBC Journal on 3D Interactive Systems, vol. 4, no. 1, 2013.

[2] Hossein Kassiri, Sana Tonekaboni, M. Tariqus Salam, Nima Soltani,
karim Abdelhalim, Jose Luis Perez Velasquez, Roman Genov, “Closed-
Loop Neurostimulators: A Survey and A Seizure-Predicting Design
Example for Intractable Epilepsy Treatment,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 11, no. 5, pp. 1026–1040, 2017.

[3] I. Karageorgos, K. Sriram, J. Vesely, M. Powell, D. Borton, R. Manohar,
and A. Bhattacharjee, “Hardware-Software Co-Design for Brain-
Computer Interfaces,” International Symposium on Computer Architec-
ture (ISCA), 2020.

[4] I. Karageorgos, K. Sriram, J. Veselý, N. Lindsay, X. Wen, M. Wu,
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