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Abstract—SCALO is the first distributed brain-computer interface (BCI) consisting of
multiple wireless-networked implants placed on different brain regions. SCALO
unlocks new treatment options for debilitating neurological disorders and new
research into brain-wide network behavior. Achieving the fast and low-power
communication necessary for real-time processing has historically restricted BCIs
to single brain sites. SCALO also adheres to tight power constraints, but enables
fast distributed processing. Central to SCALO’s efficiency is its realization as a full
stack distributed system of brain implants with accelerator-rich compute. SCALO
balances modular system layering with aggressive cross-layer hardware-software
co-design to integrate compute, networking, and storage. The result is a lesson in
designing energy-efficient networked distributed systems with hardware
accelerators from the ground up.

B rain-computer interfaces (BCIs) connect biolog-
ical neurons in the brain with computers and
machines. They can advance our understand-

ing of the brain, help treat neurological/neuropsychiatric
disorders, restore lost sensorimotor function, enable
novel human-machine interaction, and even enhance
personal entertainment [1].

BCIs sense and stimulate the brain’s neural activity
using either wearable surface electrodes or through sur-
gically implanted surface and depth electrodes [1]. We
have been designing processors for surgically implanted
BCIs, which are the cutting edge of neuroengineering.
Although they pose surgical risks, implanted BCIs
collect far higher fidelity neural signals than wearable
BCIs and, hence, are used in state-of-the-art research
applications [1]. Many of these devices have received
clinical approval, and even more are undergoing clinical
trials to restore movement and vision, and mitigate
memory decline.

Until recently, BCIs have simply relayed the neural
activity picked up by electrode sensors to computers
that process or “decode" that neural activity. But,
emerging neural applications increasingly benefit from
BCIs that include processing capabilities. Such BCIs
enable continuous and autonomous operation without
tethering. Many researchers have responded to this
need by developing BCIs capable of on-device process-
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ing (e.g., [2], [3], [4]), either through innovative circuit
design or with novel processing architectures1. We have
been targeting the design of next-generation BCIs using
architectural innovation but also by leveraging co-design
across the layers.

Implantable BCI processors are challenging to
design. They cannot exceed a few milliwatts of power,
as overheating the brain by even over 1 ◦C can damage
cellular tissue. At the same time, they must deliver on
many performance criteria. First, they must process
exponentially growing volumes of neural data within
milliseconds. This often also involves computationally
intense algorithms for applications like epileptic seizure
detection or movement intent decoding. Second, the
processors must be flexible to support different algo-
rithms to personalize the computation and to under-
stand or treat different diseases. Finally, they must
support applications that process data from multiple
brain sites over multiple timescales, as neuroscience
research is increasingly showing that the brain’s func-
tions (and disorders) are based on temporally-varying
physical and functional connectivity among brain re-
gions. Assessing brain connectivity requires placing
communicating implants in different brain regions, with
storage that enables multi-timescale analysis.

BCIs today (e.g., [5]) achieve low power by specializ-
ing to a single function or by sacrificing data throughput.
Neither option is ideal. BCIs should be flexible to sup-

1Our recent review of these approaches
is available at https://www.sigarch.org/
the-brain-computer-interfacing-landscape-for-computer-architects/.
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port many applications and personalize their function.
They must also support high data throughput to infer
more about the brain.

Our previous work developed HALO, a multi-
accelerator processor that supports orders of magnitude
high data rates (46 Mbps) over prior work but is also
flexible via programmable inter-accelerator dataflow [3].
However, HALO has two key shortcomings. First, it
interfaces with only a single brain site, whereas future
applications will consist of distributed implants that
interface with multiple brain sites. Second, HALO or any
other BCI doesn’t support the multi-timescale signal
analyses necessary to decode brain function.

The lack of a BCI capable of real-time distributed
processing is hindering the brain sciences. Such sys-
tems are also difficult to build, especially as they
must rely on wireless networking rather than wired
connections that pose a risk of infection. The wireless
radios safe for implantation offer only 0.1× data rates
than what is necessary to operate at the line rate
of sensing. This calls for a new distributed computer
architecture design strategy from the ground up.

Our solution is SCALO, the first architecture for
multi-site brain interfacing in real-time. SCALO is a dis-
tributed system of wirelessly networked implants. Each
implant has a HALO processor augmented with storage
and compute to support distributed BCI applications.
SCALO includes an integer linear programming (ILP)-
based scheduler that optimally maps applications to the
accelerators and creates network/storage schedules
to feed compute. SCALO’s programming interface is
easily integrated with widely-used signal processing
frameworks like TrillDSP and MATLAB.

SCALO continues to support HALO’s single-implant
applications [3], but also enables, for the first time, three
new classes of distributed applications: internal closed-
loop applications that modulate brain activity without
communicating with systems external to the BCI (e.g.,
treatment of epileptic seizure propagation), external
closed-loop applications (e.g., neural prostheses), and
interactive human-in-the-loop applications where clini-
cians query the BCI for data or dynamically adjust its
parameters.

We evaluate SCALO with a physical synthesis
flow in a 28 nm CMOS process coupled with network
and storage models. Our evaluations are supported
by prior partial chip tape-outs of HALO in a 12 nm
CMOS process. We show that SCALO is capable of
processing up to tens of brain regions and hundreds
of Mbps of neural data within a few ms, which is
orders of magnitude higher performance than existing
devices. Our technical contributions in architecting
SCALO also translate to advances in neuro-engineering,

and computer system design.

Background

BCI Applications & Kernels
The space of BCI applications is rapidly growing [1]. We
target three classes of distributed BCI applications that
operate in autonomous closed loops. From each class,
we study a representative application. We also study
spike sorting, a kernel often used to pre-preprocess
neural data before subsequent application pipelines.
Figure 1 shows these applications. Our original pa-
per [6] has more details about these pipelines.

(a) Seizure propagation analysis.

(b) Decoding movement intent with different approaches.

(c) Spike sorting to separate the combined electrode activity.

FIGURE 1: Overview of BCI applications supported
by SCALO.

Internal closed-loop applications: Nearly 25 million
individuals worldwide suffer from drug-resistant epilepsy.
SCALO supports epileptic seizure propagation calcula-
tions on-device. Figure 1a illustrates a typical pipeline.
First, seizures are detected locally in each brain site.
When a seizure is detected, the neural data at the site
is correlated with recent and past signals from other
brain sites to identify seizure propagation. Subsequently,
correlated regions can be electrically stimulated to
mitigate the seizure spread. The pipeline must complete
within 10 ms to be effective [6].

External closed-loop applications: These applica-
tions help individuals control assistive devices external
to BCIs, like artificial limbs, speech decoding systems,
or even paralyzed limbs implanted with electrodes. We
select three common algorithms representative of this
category, shown in Figure 1b. All algorithms initially
extract features relevant to their decoding strategy, and
apply different classification techniques to identify the
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intended movement. When the individual has also lost
sensory function, the feedback from the movement is
emulated by electrically stimulating relevant brain sites.
This pipeline must complete within 50 ms.

Human-in-the-loop applications: Researchers or clin-
icians may need to interactively query BCI devices to
retrieve important neural data, configure device param-
eters for personalization, or verify correct operation.

Spike sorting kernel: Spike sorting is entirely local
to each brain site, but, it is a widely used first step for
many applications that rely on neuron-level analysis.
Each electrode in a BCI usually measures the combined
electrical activity of a cluster of spatially adjacent neu-
rons, and spike sorting separates this combined activity
into per-neuron waveforms. Figure 1c shows a typical
pipeline. Spikes detected from electrodes are matched
with templates corresponding to each neuron’s activity
to isolate per-neuron waveforms. Template matching
uses some of the same compute-intensive correlation
measures from seizure propagation pipelines, e.g.,
dynamic time warping distance (DTW).

SCALO’s Design Strategy
SCALO achieves ultra power-efficient operation by
tightly co-designing compute with storage, networking,
scheduling, and application layers. We use knowledge
of neural decoding methods to reduce communication
between implants comprising the distributed BCI by: (1)
building locality-sensitive hash measures to filter candi-
dates for expensive signal similarity analysis across im-
plants; (2) reducing data dimensionality by hierarchically
splitting computations in classifiers and neural networks
(NNs); and, unusually, (3) by centralizing rather than
distributing key computations when appropriate (e.g.,
like matrix inversion in our applications).

SCALO consists of hardware accelerators or pro-
cessing elements (PEs) to support (1)-(3) above with
low latency and power. We build the PEs so that they
can be reconfigured to realize many applications and
compose them in a GALS (Globally Asynchronous
Locally Synchronous) architecture [3]. By realizing each
PE in its independent clock domain, we allow it to be
tuned for minimal power to sustain a given application-
level processing rate. We use per-implant non-volatile
memory (NVM) to store prior signals and hash data.
Our storage layout is optimized for PE access patterns.

SCALO also consists of per-implant radios that
support an ultra-wideband (UWB) wireless network.
We build our PEs to directly access the network
and storage, avoiding the bottlenecks that traditional
accelerator-based systems (including ultra-low-power

coarse-grained reconfigurable arrays or CGRAs) suffer
in relying on CPUs to orchestrate data movement.

SCALO’s components are predictable in latency and
power, facilitating optimal compute/network scheduling
with an ILP.

The SCALO Architecture
Figure 2 shows SCALO and its implants (or nodes).
Each SCALO node contains 16-bit ADCs/DACs, an
accelerator/PE-rich reconfigurable processor, an NVM
layer, a radio for inter-node (intra-BCI) communication,
another radio for external communication, and a power
supply. SCALO can run various applications and in-
teractive queries expressed in widely-used high-level
languages. An ILP scheduler maps their operations
onto the nodes optimally.

On-BCI Distributed Neural Pipelines
Our first step is to convert the pipelines in Figure 1
into counterparts amenable for distributed processing.
One enhancement is to enable the pipelines to use
storage to assess correlations over multiple timescales.
The more critical enhancement is to modify the pipeline
to mitigate the inter-node communication bottleneck.
Figure 3 shows the refactored applications, made
amenable for distributed real-time processing.

First, we split signal comparison such as in seizure
propagation analysis into a fast hash check and sub-
sequent exact comparison. We use locality-sensitive
hashing (LSH) [7], and the hash check identifies neural
data that is (in high probability) correlated among
brain regions and, hence, is necessary for inter-node
exchange. This avoids communicating or comparing all
other data that is unlikely to be correlated across brain
regions. Hashes are 100× smaller than signals and
can be quickly and accurately generated.

Spike sorting also benefits from hash-based signal
processing and storage. Spikes from the incoming
signals are detected and encoded with hashes. These
hashes are compared with the hashes of templates
that are locally stored in each node to classify the
spike waveforms instead of running an expensive signal
similarity computation.

Second, we decompose classifiers like SVMs and
NNs to reduce the data being communicated. Instead of
the conventional approach of applying a classifier to all
neural data from all brain sites, each of SCALO’s nodes
calculates a partial classifier output on its own data. All
outputs are aggregated on a node to calculate the final
result. Local classifier outputs are 100× smaller than
the raw inputs; and communicating the former rather
than the latter reduces network usage significantly.

3

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3411881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



(a) SCALO overview. (b) The processor fabric in each of
SCALO’s nodes.

FIGURE 2: The SCALO BCI is a distributed network of nodes implanted in multiple brain sites. The
nodes communicate wirelessly with each other and the environment. Each SCALO node has sensors,
radios, analog/digital conversion, processing fabric, and storage; the processing fabric contains hardware
accelerators and configurable switches to create different pipelines.

Decomposing linear SVMs is trivial and does not affect
accuracy. NNs are similarly decomposed by distributing
the rows of the weight matrices.

Third, we centralize the matrix inversion operation
used in the Kalman filter. The Kalman filter generates
large matrices as intermediate products from lower-
dimensional electrode features and inverts one such
matrix. Distributing (and communicating) large matrices
over our wireless (and serialized) network violates our
response time goals. Therefore, we directly send the
electrode features from all sites to a single implant,
which computes the filter output, including the interme-
diate inversion step.

Flexible & Energy-Efficient Accelerators
SCALO’s nodes build on our prior work, HALO [3]. In
addition to the PEs for single-site applications in HALO,
we incorporate new functionality to support distributed
applications. SCALO’s PEs can be reused across appli-
cations and have deterministic latency/power. Wide-
reuse PEs minimize design and verification effort
and on-chip area. Deterministic latency/power enables
simple and optimal application scheduling.

Figure 2b shows the processor in each SCALO
node. There are many PEs connected with pro-
grammable switches and a low-power RISC-V micro-
controller (MC) for miscellaneous functionality. The
switches can be configured to realize various process-
ing pipelines.

Our full paper [6] describes the design of the new
accelerators, but we provide an example highlighting
our approach. SCALO needs hardware LSH support
for four commonly used signal similarity measures—
Euclidean distance, cross-correlation (XCOR), DTW
distance, and EMD. Prior work has proposed an LSH

specifically for DTW [7], but we discover that by varying
this LSH’s parameters, it can also serve as a hash for
Euclidean distance and XCOR. Our discovery enables
the design of a single function that can generate hashes
for all three measures. The reconfigurability required
to support these different measures does not pose
an additional cost since the original DTW hash had
to be made configurable anyways to support various
deployments. To accommodate the LSH for EMD, we
identify a shared dot product with the LSH for DTW.
In sum, we design three PEs to support all LSHs:
dot product computation (HCONV), n-gram count and
weighted min-hash (NGRAM), and square root (EMDH).

Finally, the weighted min-hash calculation in the LSH
from prior work [7] uses a variable-latency randomiza-
tion step. We use an alternative method to guarantee
deterministic latency and power while preserving the
LSH property.

Optimal Power Tuning: Each of SCALO’s PEs
operates in its own clock domain, similar to our prior
work on HALO [3]. However, HALO supported only one
frequency per PE. This is not optimal for SCALO’s
applications, which sometimes operate on only on
a subset of electrode data. For example, seizure
propagation requires exact comparison for only a few
signals to remain under target response times. Running
PEs at only one target frequency even when input data
rates may be lower, wastes power.

We add support for multiple frequencies per PE, and
pick the lowest necessary to sustain a target data rate,
minimizing power. SCALO’s PEs support a frequency
f PE
max , high enough for the maximum data rate, and divide
it to f PE

max/k , where k is user-programmable. We use
multiple frequency rails to ensure the PE has the same
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(a) Seizure propagation analysis.

(b) Decoding movement intent.

(c) Spike sorting.

FIGURE 3: Overview of the BCI applications sup-
ported for online distributed processing in SCALO.
The colors of the steps are matched with Figure 1.

latency despite variable number of inputs.

Per-Implant NVM Storage
Each node integrates 128 GB NVM to store signals,
hashes, and application data (e.g., weight matrices,
spike templates). We co-design the NVM data layout
with PE access patterns to meet ms-scale response
times.

Networking
SCALO incorporates three networks. From our HALO
work [3], we retain the inter-PE circuit switched network,
and the wireless network to communicate with external
devices up to 10 m. We add a new wireless network for
intra-SCALO communication, using a custom protocol
with time division multiple access (TDMA).

Optimal System Scheduling
We use a software ILP-based scheduler to map tasks to
PEs and generate storage and network schedules. The
deterministic latency and power characteristics of our

system components makes optimal software scheduling
feasible. The scheduler takes as input the dataflow
graph of applications and queries, constraints like the
response time, and priorities of application tasks/stages
(e.g., seizure detection versus signal comparison). A
higher priority for a task ensures that more electrodes
signals are processed in it relative to the others when
all signals cannot be processed in all tasks.

Programming & Compilation
Clinicians or neuroscientists create programs in popular
high-level languages like MATLAB or TrillDSP to de-
scribe signal processing pipelines or interactive queries.
These are parsed into dataflow directed acyclic graphs
(DAGs). The DAG and the system’s configuration
(latencies and energy of the PEs) are used to formulate
an ILP, which is solved to map tasks to PEs and
schedule network access. This mapping is translated to
assembly code that can be run on the per-node MCs.

Experimental Setup
We realize SCALO with detailed physical synthesis
at a 28 nm fully-depleted silicon-on-insulator (FD-SOI)
CMOS process, undergirded by data from our prior
partial tape-outs of HALO at 12 nm. We use standard
cell libraries from STMicroelectronics and foundry-
supplied memory macros that are interpolated to 40 ◦C.

We assume that each node uses a standard 96-
electrode array to sense neural activity, and has a con-
figurable 16-bit ADC running at 30 KHz per electrode.
The ADC dissipates 2.88 mW for 1 sample from all 96
electrodes. Each node also has a DAC for electrical
stimulation, which can consume ≈0.6 mW of power. We
use the radio for external communication from HALO [3],
and use another radio from prior work [8] for inter-
implant communication. Finally, we estimate the storage
latency and power using NVSim.

Electrophysiological data: We use publicly available
electrophysiological datasets for our evaluation. For
seizure detection and propagation, we use data from
the Mayo Clinic of a patient (label “I001_P013") with
76 electrodes implanted in the parietal and occipital
lobes. This data was recorded for 4 days at 5 KHz, and
is annotated with seizure instances. We upscaled the
sampling frequency to 30 KHz, and split the dataset to
emulate multiple implants. For spike sorting, we use
three datasets. Our data sources are described in [6].

Alternative system architectures: Table 1 shows the
systems that we compare SCALO against. SCALO
No-Hash uses the SCALO architecture but without
hashes. Central No-Hash uses a single processor
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without hashes like most existing BCIs. The processor is
connected to the multiple sensors using wires. Central
is another single-processor design, but uses hashes like
SCALO. Finally, we have HALO+NVM, which uses a
single HALO processor from prior work [3], augmented
with an NVM to support our applications. Since this
design does not have our new PEs, it uses the RISC-V
processor for tasks like hashing.

TABLE 1: Alternative BCI architectures.

Design Architecture Comparison Communication

SCALO (Proposed) Distributed Hash, Signal Wireless
SCALO No-Hash Distributed Signal Wireless
Central No-Hash Centralized Signal Wired
Central Centralized Hash, Signal Wired
HALO+NVM Centralized Hash, Signal Wired

Evaluation Highlights

Comparing BCI Architectures
We compare BCI architectures using their “maximum
aggregate throughput” per application. This value is the
throughput achieved over all nodes for an application
when it is the only one running on SCALO. Aggregate
throughput is calculated by increasing the number
of electrode signals (and ADCs) that the node can
process until the available power is fully utilized, or
response time is violated. We consider a total of 11
implanted sites, which result in the highest seizure
propagation throughput for SCALO and SCALO No-
Hash. Our original paper [6] evaluates designs with
varying number of implants.

Figure 4 shows the performance results. We sep-
arate seizure detection and signal similarity in the
seizure propagation application since the former is local
while the latter is distributed. Among the centralized
designs, HALO+NVM does not have SCALO’s new
PEs but has the same performance as Central and
Central No-Hash for seizure detection and SVM-based
movement intent (MI SVM). This is because the PEs in
HALO+NVM are sufficient for these tasks. On the other
hand, HALO+NVM is 10–100× worse than Central
for the remaining tasks because they are run on a
slow microcontroller. For the spike sorting application,
despite using hashing, HALO+NVM has a 40% lower
throughput than Central No-Hash because checking
for hash collisions on the microcontroller is slower than
running an exact comparison on a PE in Central No-
Hash. This performance gap highlights the need for
hardware acceleration.

Central No-Hash has 250× and 24.5× lower
throughput than Central for signal similarity and spike
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FIGURE 4: Maximum aggregate throughput of
SCALO and alternative architectures for 11 nodes.
sorting respectively. These tasks benefit from hashes
while Central No-Hash does not support hashing.

Central performs best among uniprocessor designs.
However, the processor is the bottleneck for multi-site
interfacing, and Central has 10× lower throughput
than SCALO for all applications. One exception is the
movement intent with the Kalman filter (MI KF) applica-
tion, where, SCALO also centralizes the computations,
resulting in a similar throughput.

SCALO No-Hash does not use hashing and per-
forms worse than Central for signal similarity and spike
sorting.

Finally, SCALO has the highest throughput for all
applications. SCALO’s LSH features enable scaling to
more implants. Compared to HALO+NVM, which is the
state of the art, SCALO’s processing rates are 10×
higher for seizure detection and MI KF and are up to
385× higher for the remaining applications.

Application Performance
We measure application-level performance via through-
put for seizure propagation, number of intents per
second for the movement applications, and the spikes
sorted, for various node counts.

Seizure propagation has multiple inter-related tasks
since seizure detection can run concurrently with hash
or DTW comparison, and there is a choice between
sending more hashes or signals in the given response
time. Hence, it is necessary to specify priorities for
these tasks to determine the application performance.
Although a clinician determines the ultimate choice of
weights, we evaluate three sets of weights.

Figure 5a shows the maximum weighted aggregate
throughput for seizure propagation with different weight
choices (in the format; seizure detection:hash com-
parison:DTW comparison). With equal priority for all

6

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3411881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



tasks, throughput increases linearly up to 506 Mbps,
achieved at 11 nodes. The highest throughput per node
is achieved at this node count.
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(a) Weighted throughput of
seizure propagation.
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(b) Movement intents per
second.

FIGURE 5: Application level metrics on SCALO.

Figure 5b shows the maximum number of intents
detected per second on SCALO. SCALO significantly
outperforms conventional MI SVM and MI NN, which
offer only 20 intents per second and for a few electrodes
(not shown in the figure). For MI KF, the most complex
MI application, SCALO also supports 20 intents per
second but can process up to a total of 384 electrodes,
up to 4 nodes for a 96-electrode node.

Finally, SCALO sorts up to 12,250 spikes per second
per node by using hashes to match spikes with preset
templates on the NVM. For reference, leading off-device
exact matching algorithms sort up to ≈15,000 spikes
per second but use multicore CPUs or GPUs. The
sorting accuracy of SCALO is within 5% of that achieved
by exact template matching.

Path to Deployment
We are planning ex vivo tests in mice with neuroscien-
tists at the Yale School of Medicine’s Center for Brain
& Mind Health, and the Wu Tsai Institute for the Brain
Sciences. Additionally, we are connecting with multiple
other research groups beyond Yale to refine SCALO’s
design to meet their needs.

Other Aspects of a Multi-Implant BCI
Making multi-implant systems viable requires address-
ing research and engineering beyond processing that
SCALO targets. These include efficient radios, power
delivery systems like wirelessly chargeable batteries,
novel packaging methods to deploy processing close
to the sensors, and safe surgical procedures.

BCI radios safe for implantation are growing in
efficiency (e.g., [8]). However, they still offer only 0.1×
the data rate needed to process neural signals at line

rate. This makes communication the most stringent
constraint, than even power, for most of our applications.

Power delivery is an open problem for both dis-
tributed and single-implant BCI design. Recent BCIs are
using implanted rechargeable batteries with inductive
power transfer [9]. Some BCIs include hubs that are
chest-implanted or scalp-mounted, which can serve as
wired sources of power for the implants. The hub itself
could be powered by removable or wirelessly charged
batteries. There has also been recent work on energy-
harvesting brain implants based on glucose fuel cells,
RF circuits, the flow of blood and cerebrospinal fluid,
or other techniques [10]. While such systems offer sub
1 mW today and are yet to mature, they hold significant
promise in realizing wireless distributed BCIs.

Another consideration is the design of suitable
electrodes and their packaging with processing. We
have assumed that the processor could be deployed
close to the sensor. This could be done by bonding
the electronics alongside or behind electrode arrays,
or using flexible, biocompatible materials when the
BCI is realized through electrode strips placed on the
surface of the brain. Certain emerging BCI designs
(e.g., Neural Dust [11]) use extreme-miniaturized, free-
floating “motes” that can collect neural data, and it is an
open problem to identify how compute can be added
to these systems.

New Computer Architecture and
Systems Considerations

SCALO sets the stage for new computer architecture
research to expand the performance of the compute
and memory subsystems in BCIs, and to augment
necessary features like reliability and security.

Various research groups have demonstrated new
BCI designs targeting applications that are different from
ours, e.g., [2], [4]). SCALO provides the ideal platform
to combine such modules and advance implantable
BCIs, thanks to its GALS design that allows each
accelerator to run independently. We are keen on
exploring methods, e.g., leveraging automated program
synthesis methods to augment SCALO with such new
compute capabilities.

Another important line of work is to expand the
role of the memory subsystem in augmenting BCI
performance. BCI deployments can use different types
of sensors/stimulators with varying electrode counts and
sensing rates. An ideal BCI processor would interoper-
ate across all such deployments as long as the incoming
data throughput remains below the system rating (e.g.,
46 Mbps per node as with SCALO). However, this is
difficult to achieve because the memory structures

7

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3411881

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



inside the PEs are fixed, which limits the maximum
number of electrodes that can be read, even if we were
to reduce their sensing rate to keep the total ingestion
throughput below the maximum rating. We have been
exploring the possibility of swapping data between the
PEs and the NVM to overcome this problem [12]. We
foresee significant innovation to support such features
in BCIs, typical in conventional processors, but under
extreme resource constraints.

A relevant aspect as we expand BCI use cases
is to rethink the role of the CPU. Currently, SCALO
takes the CPU out of the loop for execution and even
network and storage access. However, this creates its
own challenges like restricting the system to use only
static scheduling and fixed processing patterns, and
thus limiting the overall adaptability. A key research
direction is to explore what level of CPU involvement
is optimal, and if the CPU can still be replaced using
more accelerators specializing in system services, such
as those beginning to appear for conventional systems.

Finally, there is significant new research to
strengthen other key features of an implanted BCI,
such as reliability, security, and privacy. Being implanted,
there are numerous sources of failure that are atypical in
systems design, such as the formation of scar tissue on
electrodes, micromovements of the implants in the brain,
interference with external electronic systems, network
errors in the brain tissue, and leakage of blood and
cerebrospinal fluid, all of which need to be modeled
and protected against. We can also foresee novel
security challenges that can use external interference
to disrupt the functionality of the devices, or gain
unintended access with potentially fatal outcomes,
which require novel architecture measures to defend
against. Additionally, there is also a new aspect of
understanding the role of architecture in facilitating their
ethical use and the impact of ethics and policy on BCI
architecture, since these devices blur the distinction
between the self and the prosthetic.

Overall, we believe our work stimulates new re-
search toward high-precision and high-bandwidth neural
interfaces that also broadly advance computer architec-
ture and system design.

Conclusion
SCALO enables BCI interfacing with multiple brain
regions and provides, for the first time, on-device
computation for important BCI applications. SCALO’s
design principles—i.e., its modular PE architecture,
fast-but-approximate hash-based approach to signal
similarity, support for low-power and efficiently-indexed
non-volatile storage, and a centralized planner that

produces near-optimal mapping of task schedules to
devices—can be instrumental to success in other power-
constrained environments like IoT (internet of things)
as well.
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