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Exact Timing Analysis for Asynchronous Circuits
with Multiple Periods

Rajit Manohar, Yale University

Abstract—The timing properties of asynchronous circuits can
be summarized using cyclic graphs that capture max-delay
constraints between signal transitions. There are many results
on the timing analysis problem, but they all make various
simplifying assumptions on the connectivity properties of the
underlying timing graph. Most results provide approximate
timing characteristics, with a few providing exact results on the
circuit’s timing behavior.

In this paper we provide results that exactly characterize
the timing properties for a more general class of max-delay
constraints. We show that the circuit can be partitioned into
regions with different periodicities, and provide an efficient
algorithm to compute all the periods of the system.

Index Terms—exact timing, asynchronous systems, periodic.

I. INTRODUCTION

ANalyzing the timing properties of asynchronous circuits
is a complex problem. Asynchronous circuits contain cy-

cles of gates, and characterizing their timing behavior requires
analyzing these cycles and their interactions. There are a num-
ber of results on the timing behavior of asynchronous circuits,
and they use graph-based abstractions to represent timing.
Event-Rule (ER) systems—and their finite versions repetitive
ER (RER) systems—are commonly used to capture the timing
behavior of asynchronous circuits [1], as are restricted classes
of Petri nets [2], [3] such as marked graphs [4], process graphs,
or timing constraint graphs. We use ER and RER systems
in this paper, as the most recent results in the literature that
we build on use this abstraction. RER systems also have the
benefit that they are a direct generalization of the timing graph
used by synchronous timing analysis, making them accessible
to those unfamiliar with asynchronous timing analysis.

Many asynchronous circuits have RER systems with prop-
erties that make them more amenable to analysis. For ex-
ample, RER systems corresponding to simple asynchronous
controllers or coupled controllers are often a single strongly
connected component [1]. Hence, many existing approaches to
asynchronous timing analysis make assumptions on the con-
nectivity properties of RER systems—in fact, most assume that
the RER system is strongly connected [1], [5]. Figure 1 shows
a bundled-data asynchronous pipeline, where one pipeline
writes to a register and another pipeline reads from the register.
In this example, the control logic for pipeline A would be in
one strongly connected component in the RER system, and
amenable to analysis using [5]. However, there is no path from
the datapath back to the control, hence the datapath is not
part of the strongly connected component. This assumption
was first weakened in [6], where it was assumed that the RER
system is critically connected (elaborated in Section II). In

Figure 1, the datapath for pipeline A is critically connected
to its control, and hence it can be included in the analysis.
The same holds for pipeline B. However, the combined cir-
cuit requires a more complex RER system model, since the
overall system is not critically connected, and communication
between pipelines A and B occur through a shared register.
Intuitively, the two pipelines may operate at different steady-
state frequencies. Ideally the implementation of a CAD tool
for timing analysis must be prepared to accept an arbitrary
RER system as input.

In this paper we weaken the connectivity assumption
further—no longer requiring that the RER system be critically
connected—and provide a complete analysis of the timing
properties of such RER systems. The analysis formalizes our
intuitive understanding of circuits such as those from Figure 1
discussed above, showing that we can analyze various parts of
the system separately and combine them to build a complete
model for the entire circuit. In particular, we show that the
RER system can be partitioned into a disjoint set of transitions.
Each set of transitions exhibit periodic behavior, but the
different sets can have different periodicity. Mathematically,
there can also be a set of degenerate transitions where an
infinite number of transitions occur at the same time; this is
an unphysical case and should be reported as an error by the
analysis engine. Based on the analysis, we show how these
sets and periods can be computed in an efficient manner.

II. BACKGROUND

A. Timing graphs for asynchronous circuits

In event-rule systems, a circuit is modeled by a set of events
E, and a set of rules R ⊆ E × E × R≥0. An event is often
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Fig. 1. Two bundled-data asynchronous pipelines interacting through a
shared register. The control circuit for pipeline A is in a strongly connected
component, as is the control circuit for pipeline B. The datapath logic for
each pipeline is critically connected to the respective control circuits. While
there are edges from the datapath of A to the datapath of B, B is not critically
connected to A.
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of the form 〈x ↑, i〉 or 〈x ↓, i〉, where i ≥ 0 is an integer
that captures the occurrence index of the signal transition
x ↑ (a zero to one transition on x) or x ↓ (a one to zero
transition on x) respectively. Rules are of the form e

α7→ f ,
where e, f ∈ E are events and α is a non-negative real
number that specifies a delay constraint. The rule specifies
that the earliest time event f (the target) can occur is α
time units after event e (the source). Multiple rules with the
same target correspond to multiple constraints that must all be
satisfied; therefore, ER systems capture AND-causality (a.k.a.
max-causality). There are also approaches that include OR-
causality (min-max causality); we restrict ourselves to AND
causality in this paper.

ER systems are represented by graphs, where the vertices
are events, and the edges correspond to rules. Edges are
labelled with the delay constraint α corresponding to the rule.
ER systems are acyclic graphs, and are typically infinite.

The timing simulation of an ER system t̂(·) maps events to
a real number (the time), and captures the time at which the
event occurs. The timing simulation is defined recursively by

t̂(f) = max{t̂(e) + α | e α7→ f ∈ R}

ER systems have initial events ι, where the set on the right
hand side of the equation above is empty; for those events,
t̂(ι) is defined to be zero.

Asynchronous digital circuits have oscillatory behavior, so
the sets E and R for a typical circuit are infinite. However, the
actual circuits themselves are finite structures. This is captured
by modelling the oscillatory behavior of the circuit using a
finite structure called a repetitive ER (RER) system [1]. An
RER system captures one iteration of the circuit, as well as the
timing constraints between one iteration and the next. An RER
system consists of a set of transitions T and rule templates
RT ⊆ T ×T ×R≥0×{0, 1}. A transition is often of the form
x ↑ or x ↓, and a rule template is of the form t

α,ε7→ u where
t, u ∈ T are transitions, α ≥ 0 is a delay, and ε is either 0 or
1. The corresponding ER system is obtained by constructing
the event set E = T × N, and rule set R as

R = {〈t, i〉 α7→ 〈u, i+ ε〉 | t α,ε7→ u ∈ TR, i ∈ N}

Rule templates that have ε = 0 relate transitions that have the
same occurrence index (i.e. are part of the same iteration);
those with ε = 1 relate transitions from one iteration to
the next. RER systems can be represented by graphs, where
the vertices are transitions, and the edges correspond to rule
templates. Edges are labelled with the delay α from the
corresponding rule template, and also marked with a tick when
ε = 1. RER systems are cyclic structures. An example of a
circuit and its corresponding RER system is shown in Figure 2.

Given a path p in the graph corresponding to an RER
system, the delay along the path δ(p) is given by the sum
of the values of α for all the edges in the path, and ε(p) is
given by the sum of the values of ε along the path. The key
performance measure for an RER system is its cycle period.
The cycle period p? is defined as the maximum value of the
ratio δ(c)/ε(c) for any cycle c in the RER system graph. A
cycle that achieves the value of p? is called a critical cycle. It
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Fig. 2. Example of an asynchronous circuit and its corresponding RER
system. The system is initialized so that the initial events are 〈x0↑, 0〉 and
〈x1 ↑, 0〉. Edges with ε = 1 are denoted with a tick mark, and delays are
omitted for clarity. A fragment of the ER system corresponding to the RER
system is also shown.

should be clear that it suffices to examine only simple cycles
of the RER system when finding a critical cycle [1].

B. Major prior results

RER systems were introduced by Burns to model asyn-
chronous circuits with AND-causality [1]. His work assumed
that RER systems are strongly connected, and showed that
such RER systems are, on average, periodic with period
p?. Similar results were also obtained by Murata [2] and
Magott [3]. Hulgaard showed that strongly connected RER
systems eventually become exactly periodic [5]. Hua general-
ized the exact periodicity result of Hulgaard to RER systems
that were not strongly connected, but where all transitions were
reachable from a critical cycle [6]. Hua also provided bounds
for the time required to reach this steady-state behavior. The
strongest results [6] show that there is an unfolding factor M ,
and an integer K such that

t̂(〈s, i+M〉) = t̂(〈s, i〉) +Mp? ∀s ∈ T, i ≥ K (1)

This shows that after an initial finite period (determined by
K), the gap between transitions that are M occurrence indices
apart is precisely M times the cycle period p? of the RER
system.1

In this paper, we generalize the results of Hua to arbitrary
RER systems. We impose no requirements on the connectivity
structure of RER systems, and show that the transitions can
be partitioned into sets, with each set being exactly periodic
with its own (p?,M) pair. We also provide a polynomial-time
algorithm for computing both the sets as well as the cycle
periods for an RER system.

C. Definitions

An obvious property of the timing simulation t̂(·) is the
following:

t̂(e) = max{δ(p) | p is a path from an initial event to e}

1Hulgaard’s result can be viewed as the same property as equation (1), but
for strongly connected RER systems.
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This follows immediately from the recursive definition of the
function t̂(·). The main previous result shows that the timing
simulation for critically connected RER systems is periodic.

Definition 1 (periodicity). Given an RER system R =
(T,RT ), set S ⊆ T , and p ∈ R, we define a predicate
periodic(R, S, p) to mean that there exist integers K and M
such that

∀s ∈ S : t̂R(〈s, i+M〉) = t̂R(〈s, i〉) +Mp ∀i ≥ K

If the same condition holds for an ER system E that contains
all the events and rules induced by the RER system R, we use
the predicate periodic(E , S, p) to have the same meaning as
above for the timing simulation of the ER system.

From prior work, we know that

Theorem 1 ([6]). Consider an RER system (T,RT ) where
every transition is reachable from some transition on a critical
cycle. Let (E,R) be the ER system obtained from the given
RER system. Then periodic(E , T, p?) holds, where p? is the
cycle period of the RER system (T,RT ).

We need a simple Lemma that observes that changing the
times of any initial event does not modify the periodicity
property of the timing simulation. Technically, we introduce
fresh events that are used to modify the times of some events
of the form 〈s, 0〉. Burns refers to such systems as pseudo-
repetitive ER systems, because they correspond to a finite ER
system followed by a repetitive ER system [1].

Lemma 1. Consider an RER system (T,RT ) where every
transition is reachable from some transition on a critical cycle.
Let (E,R) be the ER system obtained from the given RER
system. Let EI be a (fresh) finite set of events, and let RI be
a set of rules that are contained in EI × (T × {0}) × R≥0.
Let t̂′ be the timing simulation of the new ER system E =
(E ∪ EI,R ∪ RI). Then periodic(E , T, p?) holds, where p?

is the cycle period of the original RER system (T,RT ).

Proof. (Sketch) The only difference between the two ER
systems is the time of initial events—the EI events are used
to potentially change the time of the initial events to some
non-zero quantity. The value of the time of initial events does
not affect any of the results from [6] regarding the periodicity
property, since the results focus on the steady-state behavior
of the ER system.

III. GENERAL RER SYSTEMS

To analyze general RER systems, we will examine multiple
distinct RER systems simultaneously. Given an RER system
R = (T,RT ), its timing simulation is denoted as t̂R to make
it clear that the timing simulation is the one corresponding to
the RER system R.

A. Degenerate transitions

Consider the RER system ({x, y}, {x 0.5,07→ y}). Building the
ER system and computing the timing simulation, we observe
that for all i,

t̂(〈x, i〉) = 0 t̂(〈y, i〉) = 0.5 .

x and y are degenerate transitions, and we would like to
eliminate transitions of these types as they have trivial timing
simulations. Furthermore, such an RER system does not
correspond to a physical circuit since an infinite number of
events occur at a single point in time. Note that this degeneracy
holds for any transition that is not reachable from a cycle in
the RER system, as we establish next.

Lemma 2 (degenerate transitions). Let S ⊆ T be the set of
transitions that are not reachable from any cycle in an RER
system (T,RT ). Then there exists a K such that for all i > K
and s ∈ S, there is a constant c such that

t̂(〈s, i〉) = c

Proof. For i > |T | and s ∈ S, consider all paths from some
initial event to event 〈s, i〉. All such paths must be of length
less than |T |; otherwise, some transition t on the path must
repeat, violating the assumption that s cannot be reached from
any cycle in the RER system.

Each path π will be of the form 〈a0, ε0〉, 〈a1, ε1〉, . . .,
〈an−1, εn−1〉, 〈s, i〉. Observe that if there is a path from a cycle
to ai, there is also a path from the same cycle to s. Hence,
all transitions a0, . . ., an must be members of S—in other
words, paths to initial events can only refer to transitions from
S. Furthermore, for any such path, ε0 > 0 by the selection of
i > |T | since 0 ≤ εk − εk−1 ≤ 1.

The second observation is that for i > |T |, path π =
〈a0, ε0〉, 〈a1, ε1〉, . . ., 〈an−1, εn−1〉, 〈s, i〉 is a path from an
initial event to 〈s, i〉 iff π+ = 〈a0, ε0 + 1〉, 〈a1, ε1 + 1〉, . . .,
〈an−1, εn−1 + 1〉, 〈s, i+ 1〉 is a path from an initial event to
〈s, i + 1〉. This follows from the fact that the ER system is
generated from the RER system with rule templates, and that
ε0 > 0.

Let A0 ⊂ S be the set of transitions that correspond to
the zeroth event 〈a0, ε0〉 for any path π to an event 〈s, i〉 for
s ∈ S. Since ε0 > 0, that means that there is no rule template
that has a0 as its target; hence, t̂(〈a0, i〉) = 0 for all i > |T |,
a0 ∈ A0.

Let Ai ⊂ S be the set of transitions that correspond to the
ith event 〈ai, εi〉 for i > 0. If a transition occurs in more than
one such path with different indices i, select the largest value
of i to assign the transition to an A-set.

We use induction to show that if the timing simulation is
constant for events 〈s, k〉 for k > |T | and s ∈ Aj (j ≤ i),
then it is constant for the events 〈s, k〉 for k > |T | and
s ∈ Ai+1. The only rule templates that have transitions from
Ai+1 as a target have a source in Aj (j ≤ i)—-which have a
constant timing simulation by the induction hypothesis. Hence,
the timing simulation for 〈ai+1, k〉 will also be a constant for
k > |T |, since the set of paths for 〈ai+1, k〉 correspond to the
same set of rule templates for all k > |T |.

B. Sub-RER systems

In what follows, we assume that the RER system has no
degenerate transitions as those can be handled by the analysis
in Lemma 2. (One way to view Lemma 2 is to say that
degenerate events have a cycle period that is zero.)
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Construction 1 RER system decomposition
1: i, n← 0, 0
2: (T0, RT0)← R
3: R0 ← (T0, RT0)
4: while (Ti, RTi) has cycles do
5: n← i
6: p?i ← critical cycle ratio of Ri
7: Ci ← {c|c is a transition on any crit. cycle of Ri}
8: T ′i ← {t|t ∈ Ti ∧ t is reachable from Ci}
9: Ti+1 ← Ti − T ′i

10: RTi+1 ← RTi|Ti+1

11: R′i ← (T ′i , RTi|T ′
i
)

12: Ri+1 ← (Ti+1, RTi+1)
13: i← i+ 1
14: end while

Definition 2. Given an RER system R = (T,RT ), the sub-
RER system of R induced by S ⊆ T is the RER system given
by (S,RT |S) where RT |S = RT ∩ S × S × R× {0, 1}.

Given a subset S ⊂ T of transitions, the sub-RER sys-
tem corresponds to the constraints that are only related to
transitions in S. Transitions in (T − S) can be also viewed
as resulting in a sub-RER system. There will also be rule
templates that relate transitions in S and (T − S) to each
other; we refer to these as cross rule templates, as they cross
the boundary of the two sub-RER systems.

Definition 3. Given an RER system R = (T,RT ), a partition
of R induced by S ⊂ T is given by the two sub-RER systems
induced by S and T − S, along with the set of cross rule
templates RT× given by RT× = RT − (RT |S ∪RT |(T−S)).

A special case of a partition is when all the edges in RT×
have their source transition in S. We refer to this case as an
acyclic partition.

Definition 4. An acyclic partition of an RER system R =
(T,RT ) induced by S ⊂ T is a partition whose cross rule
templates satisfy RT× = RT ∩ (S × T × R× {0, 1}).

Lemma 3. Let the partition of RER system R = (T,RT )
induced by S ⊂ T be acyclic, and let RS denote the sub-RER
system (S,RT |S). Then

t̂R(〈s, i〉) = t̂RS
(〈s, i〉) ∀ (s, i) ∈ S × N

Proof. This follows immediately from the definition of the
timing simulation, since: (i) there is no path from any event
in (T − S)×N to any event in S ×N by the assumption that
the partition is acyclic; and (ii) the timing simulation of an
event 〈s, i〉 is equal to the maximum delay of paths to 〈s, i〉
from the set of initial events.

C. The general case

Lemma 3 provides a way to study the timing simulation of
complex RER systems through their sub-RER systems. Armed
with this Lemma, we construct a sequence of RER systems
using Construction 1.

It is clear that construction 1 terminates, since each loop
iteration reduces the cardinality of the finite set Ti by at
least one. We remark that, on termination, the set Tn+1 is
empty because degenerate transitions have been eliminated.
The algorithm constructs a sequence of sub-RER systems
R0, . . ., Rn. The key idea is that we partition the original
RER system into sub-RER systems, where each sub-RER
system satisfies the property needed by [6]—namely, that all
transitions are reachable from a critical cycle. R0 contains the
critical cycle and reachable transitions from the original RER
system. This also means that the critical cycle period p?1 of R1

must be strictly smaller than p?0. Also, any cross edges between
R0 and (T1, RT1) must originate from T1 by construction
of T ′0. The net result is that construction 1 guarantees that
p?0 > p?1 > · · · > p?n.

Our approach to analyzing the timing simulation of the
original RER system is to build it incrementally from the
sub-RER systems produced by construction 1. To this end,
it is helpful to define a collection of auxiliary RER systems
R′i = (Ti, RTi) from construction 1.

The RER systems constructed by construction 1 have the
following relationships by the way they are constructed:

1) R0 is the original RER system (lines 2–3);
2) Ri is partitioned into sub-RER systems Ri+1 and R′i,

and periodic(R′i, T ′i , p?i ) holds (lines 6–12);
3) The partition is acyclic—any cross edges are from Ri+1

to R′i, as T ′i contains all transitions reachable from the
set of critical cycles of Ri (lines 7–8);

4) Ti =
⋃n
k=i T

′
k, and the sets T ′k are disjoint;

5) Rn+1 is empty as degenerate transitions have been
eliminated.

Given these properties of the construction, we remark that

Lemma 4 (cross edges). Given the sequence of RER systems
R′0, . . ., R′n with transition sets T ′0, . . ., T ′n, any rule template
from the original RER system is in T ′i × T ′j × R≥0 × {0, 1}
where j 6= i satisfies j > i.

Proof. This is immediate from the acyclic nature of the
partitions.

We now build the timing simulation of the original RER
system by analyzing the sequence of RER systems we have
constructed.

Lemma 5 (base case). Given an RER system R and the
sequence of RER systems R′i with transition sets T ′i from
construction 1, then the predicate periodic(Rn, T ′n, p?n) holds.

Proof. The proof of this is immediate from Lemma 4 and
Lemma 3, since Rn = R′n is a sub-RER system obtained by
an acyclic partition of R induced by transition set T ′n.

Lemma 6 (induction step). Let R be an RER system, and
Ri be the the sequence of RER systems from construction 1.
Furthermore, assume that for all l satisfying k < l ≤ n, the
predicate periodic(Rk+1, T

′
l , p

?
l ) holds. Then for all l such

that k − 1 < l ≤ n, the predicate periodic(Rk, T ′l , p?l ) holds.

Proof. By the induction hypothesis, we know that for l satis-
fying k < l ≤ n, the predicate periodic(Rk+1, T

′
l , p

?
l ) holds.
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Consider the RER system Rk = (Tk, RTk). By construction,
Tk = Tk+1 ∪T ′k. Furthermore, T ′k induces an acyclic partition
of Rk. Hence, by Lemma 3,

∀i, s ∈ Tk+1 : t̂Rk
(〈s, i〉) = t̂Rk+1

(〈s, i〉)

Hence, periodic(Rk, T ′l , p?l ) holds for k < l ≤ n.
Consider the events in T ′k. From [6], we know that R′k

satisfies periodic(R′k, T ′k, p?k), and p?k > maxk<l≤n p
?
l . The

ER system corresponding to Rk has three types of rules: those
that relate transitions from Tk+1 (contained in the ER system
for Rk+1); those that relate transitions from T ′k (contained in
the ER system for R′k); and those that are from Tk+1 to T ′k.

Consider a rule template s
α,ε7→ t where s ∈ Tk+1 and t ∈ T ′k.

Suppose s ∈ T ′l for l > k. We know that for i > K, there is
an Ml such that

t̂Rk
(〈s, i〉) = t̂Rk

(〈s,K + (i mod Ml)〉) +Mlp
?
l × bi/Mlc

Furthermore, we know that the RER system R′k also satisfies
periodic(R′k, T ′k, p?k). All the constraints from R′k are present
in the ER system for Rk. Hence, paths that determine the
timing simulation in Rk include all paths from R′k. The latter
paths imply that

t̂Rk
(〈t, i〉) ≥ t̂Rk

(〈t,K + (i mod Mk)〉) +Mkp
?
k × bi/Mkc

Since p?k > p?l and α is finite, for i large enough the rule
〈s, i〉 α7→ 〈t, i+ε〉 can be deleted from the ER system obtained
from Rk without changing its timing simulation.

Hence, after a finite number of iterations, all cross rules
from transitions in Tk+1 to transitions in T ′k can be deleted
without changing the timing simulation. Hence, after a fi-
nite number of iterations, the ER system is the same as
the one obtained by taking the union of the rules from
Rk+1 and R′k without including any cross rules. Hence, by
Lemma 1, the timing simulation for events in T ′k satisfies
periodic(Rk, T ′k, p?k). This concludes the proof.

This construction is used to establish the main result.

Theorem 2 (multi-periodicity). Given an RER system R and
the sequence of RER systems with transition sets T ′i from con-
struction 1, for all j satisfying 0 ≤ j ≤ n, periodic(R, T ′j , p?j ).

Proof. This follows by induction from Lemma 5 and
Lemma 6, since R0 is the original RER system R.

D. Algorithm for computing periods

Based on construction 1, we can compute all the periods for
the RER system by the algorithm below. We denote SCC as the
algorithm that computes strongly connected components of a
graph, and returns a partition of the vertices corresponding to
the components, and YTO as the algorithm that computes the
critical cycle ratio of the graph using the Young-Tarjan-Orlin
algorithm [7], which is similar to the Karp-Orlin algorithm [8]
but uses Fibonacci heaps to reduce computational complexity.

Algorithm 2 Cycle period computation
1: T ← SCC(T,RT )
2: U ← ∅
3: while C ∈ T has cycles do
4: pC ← YTO(C,RT |C)
5: U ← U ∪ {C}
6: T ← T − {C}
7: end while
8: while U 6= ∅ do
9: X ← argmaxX∈U pX

10: Y ← {X}∪ components reachable from X in (T,RT )
11: pX is the cycle period for all components in Y
12: U ← U − Y
13: end while
14: Components remaining in T are degenerate

The complexity of this algorithm is dominated by YTO,
since the rest of the algorithm has complexity that is linear
in the size of |RT |—the number of edges in the timing
graph. (Since the graph is connected, |RT | ≥ |T | − 1). Hence
the overall algorithm has complexity O(|T ||RT | log |RT |), or
complexity O(|RT ||T |+|T |2 log |T |) when implemented with
Fibonacci heaps [7]. This complexity corresponds to the case
when YTO is executed on the entire graph—i.e. when the
graph is a single strongly connected component. Since the
time complexity of YTO increases faster than linearly with
the size of the graph, partitioning the graph into components
and running YTO on the individual components takes less
time than the case where the entire graph is one strongly
connected component. Hence, O(|RT ||T | + |T |2 log |T |) is
a valid complexity bound. Note that since the average fanout
of a typical circuit is usually bounded by a small constant,
the size of |RT | is typically O(|T |); hence using a Fibonacci
heap is unlikely to improve the asymptotic complexity of the
algorithm.

IV. DISCUSSION

We have provided a complete characterization of the peri-
odicity properties of RER systems, and hence asynchronous
circuits that can be described using AND causality. Our work
extends a sequence of previous results. Early results in the con-
current systems literature showed that the asymptotic behavior
of the timing simulation is periodic for strongly connected
RER systems. This was followed by results that showed that
strongly connected RER systems were in fact exactly periodic.
Most recently, it was shown that the RER system need not be
strongly connected for the exact periodicity property to hold—
in sufficed that the RER system was critically connected. This
paper completes the analysis, showing that the transitions in
any RER system can be partitioned into (possibly empty)
degenerate transitions, and sets of transitions that each are
exactly periodic but where different sets have different peri-
odicity. Our analysis also led to a simple method to compute
the partitions and the cycle periods of the partitions, re-using
algorithms from the literature.

This analysis can serve as the foundation for the implemen-
tation of a timing engine for asynchronous circuits. Degenerate
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transitions can be reported as potentially erroneous—or, more
likely, an error in the input to the timing analysis engine
since such transitions are unphysical. Interactions between
circuit components that have different periodicity should also
be flagged. Such interactions can appear in the timing graph
for multiple reasons, including design errors, an error in the
construction of the timing graph due to approximations in
graph construction, or because the design has been specifically
engineered to operate correctly in spite of such interactions.
Finally, both the period and the M parameter can be reported
for each component.
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