
1

General Approach to Asynchronous Circuits
Simulation Using Synchronous FPGAs

Ruslan Dashkin and Rajit Manohar
Computer Systems Lab, Yale University, New Haven, CT 06520

{ruslan.dashkin, rajit.manohar}@yale.edu

Abstract—Using Field Programmable Gate Arrays (FPGAs)
for software and hardware verification and development is a
standard step in the digital Application Specific Integrated
Circuits(ASIC) design flow. However, asynchronous FPGAs are
not available on the market and commercially available FPGAs
provide support only for synchronous circuits. Although a lot of
research effort has been undertaken in order to use synchronous
FPGA to map asynchronous circuits, proposed solutions are
typically lacking automation and target specific circuit style
and sometimes specific FPGA vendor. In this work we present
an automated solution for asynchronous circuits mapping onto
the synchronous FPGAs. We build a synchronous model of
the original asynchronous circuit based on the event-driven
simulation concepts. Proposed approach supports a wide range
of circuit styles, including those with various timing assumptions
and complex circuitry structures incompatible with the standard
synchronous flow. We avoid using vendor specific features, so that
the model we generate can be implemented on any commercially
available FPGA. We provide an extensive evaluation of our
solution and demonstrate that our approach results in a speedup
factor of 1.3 × 105 against an asynchronous circuit simulator,
2.8 × 104 against commercial digital simulators, and is 16.5
times slower than the expected performance of the original
asynchronous circuit implemented as an ASIC.

Index Terms—FPGA, Asynchronous VLSI, Event-Driven Sim-
ulation, Prototyping

I. INTRODUCTION

Using Field Programmable Gate Arrays (FPGAs) for soft-
ware and hardware verification and development is a standard
step in the digital design flow. FPGAs are commonly used
for a rapid prototyping of synchronous designs expressed
in hardware description languages (HDL) such as Verilog
or VHDL. FPGA toolchains provide extensive support for
the widely used synchronous circuits and limited support for
asynchronous circuits. Asynchronous circuits, also called self-
timed, are circuits which do not use external clock signals.
Instead, these circuits rely on the handshaking protocols for
data sampling and operate only when valid data is available.
Asynchronous circuits have many potential advantages over
their synchronous counterparts, including energy-efficiency,
process variation resilience, avoidance of global clock distribu-
tion issues, etc. Asynchronous design methodology includes a
wide range of well-defined and accepted circuit families. Each
family has distinctive features that lead to better characteristics
in terms of area, power and/or performance.

Differences in the data sampling approach, complex timing
requirements and a wide range of design styles are the
reason why synchronous FPGAs are not well suited for the

direct implementation of asynchronous circuits. In particular
synchronous FPGAs are not guaranteed to be hazard free, their
precise timing characteristics are not readily available to users,
and automated placement and routing are not predictable. All
these make it challenging to map asynchronous circuits onto a
synchronous FPGA in a fully automated fashion. In addition,
dedicated resources for circuits like arbiters, configurable
delay lines or C-elements, crucial for many asynchronous
design approaches, are missing.

In this paper we present a new approach to the problem
of mapping asynchronous circuits onto synchronous FPGAs
for faster functional simulation. The input to our system is
a technology-independent gate-level netlist specified in the
ACT asynchronous hardware description language [1], [2].
Our approach supports a wide range of asynchronous circuit
families in a unified input format. The input is automatically
converted into a synthesizable synchronous Verilog model. The
model is functionally equivalent to the original asynchronous
design and can be mapped onto commercially available chips
using standard FPGA tools. Our approach is flexible and can
be used for a wide range of asynchronous circuit families.
Unlike many previous approaches, we do not specify prede-
fined building blocks and constraints on the circuit placement
and optimization. This allows us to use all the capabilities
of an FPGA, and results in good performance and resource
utilization.

Our translation preserves both the communication protocols
and gate topology of all the components of the original
asynchronous design, providing designers with a very precise
functional model of the circuit. At the conversion step, circuit
structures incompatible with the synchronous methodology
are translated into compatible synchronous equivalents. We
emphasize that our solution targets gate level simulation
rather than cycle accurate synchronous Register Transfer Level
(RTL) prototyping. We also note that our model has different
timing characteristics from the asynchronous Application Spe-
cific Integrated Circuit (ASIC) implementation, although we
guarantee that the relative timing constraints [3] are satisfied
and the functionality of the original circuit is preserved.

The main contribution of this paper is a unified and auto-
mated approach to mapping asynchronous circuits onto syn-
chronous FPGAs. Using our solution, different asynchronous
circuit styles can be translated into a synthesizable Verilog
model. We provide solutions for the correct implementation of
timing assumptions, arbiters and distributed drivers as well as
an extensive evaluation of the proposed approach. We demon-

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3131546

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2

strate a runtime comparison with an asynchronous simulator,
commercial and open source synchronous simulators, and with
an equivalent ASIC.

The rest of the paper is organized as follows: In Section II
we describe features from the ACT framework that are crucial
to support a wide range of circuit styles. Section III explains
in detail the insights that drive our implementation as well as
our approach to the translation and the algorithms we use to
convert asynchronous circuits into functionally equivalent and
synthesizable Verilog. Section IV presents experimental re-
sults, including comparison to asynchronous and synchronous
software simulators and an equivalent asynchronous ASIC.
Section V covers an overview of the related work and com-
pares our solution with existing approaches. Finally Section VI
describes our future plans.

II. SPECIFYING ASYNCHRONOUS CIRCUITS

There is a wide range of asynchronous circuit families.
Each circuit family has its own set of typical gates, as well
as different forms of timing assumptions required for correct
behavior. Instead of adopting a case-by-case approach to
describing and specifying each circuit family, for example,
by using a large collection of family-specific modules, we use
the ACT framework for asynchronous circuit design.

The ACT framework can be used to describe a wide
range of asynchronous circuits families in a unified syntax
and semantics. Although ACT supports different levels of
abstraction (e.g. behavioral versus structural descriptions), we
focus on the gate-level circuit description syntax. We also
ignore explicit gate sizing specification (transistor length and
width) since our goal is functional simulation.

A. Describing arbitrary gates

Logic gates are built with networks of P- and/or N-type
transistors to pull output signal up or down, i.e. to HIGH
and LOW logic levels respectively. In ACT both networks
can be specified with production rules. A general structure of
a Production Rules Set (PRS), i.e. gate description, is shown
below:

1 G+ → S ↑
2 G− → S ↓

Here, G+ and G− are mutually exclusive Boolean expressions,
S is the gate output and arrows specify signal transition
direction. When the guard G+ (G−) is true, the statement
S ↑ (S ↓) is executed, and the output of the gate S is pulled-
up (pulled-down) to V dd (GND). An example of the 2-input
NAND gate PRS is shown below.

1 ∼in1 | ∼in2→ out ↑
2 in1 & in2→ out ↓

We use logic OR (“|”) to specify parallel connection of the
transistors, logic AND (“&”) for serial connection, and NOT
(“∼”) for an inverted active level. The example above can be
interpreted as follows: when both inputs are set to HIGH
the output is set to LOW or when at least one input is set
to LOW the output is set to HIGH . This syntax is general

enough to specify both combinational and state-holding gates,
such as C-elements that are commonly used in asynchronous
logic.

B. Timing constraints

To provide a wide range of circuit design options, ACT sup-
ports the notion of a timing fork to define timing assumptions.
It has a form as shown below:

timing A(or ↑ / ↓) : B(or ↑ / ↓) < C(or ↑ / ↓)

Directions of the signals transitions are specified based on
design requirements. To define transition direction either no
symbol is used, which is interpreted as a stable state after any
transition, or a “↑” or “↓” is used to specify a LOW to HIGH
or HIGH to LOW transition respectively. The statement
above can be interpreted as follows: “after A changes, any
change in B should occur before C changes.” More precisely
this structure defines an illegal sequence of signals transitions.
An execution is illegal if the specified sequence is violated,
i.e. an update of C happens before an update of B without
intervening of A update. All other executions are valid.

This feature permits ACT to be able to express a large
class of timing constraints and support a wide variety of
asynchronous circuits families. This is because relative timing
constraints [3]—a powerful mechanism for specifying timing
constraints in asynchronous control circuits—are readily ex-
pressed using timing forks.

C. Relative strengths for a single output

Some digital circuits rely on the relative drive strength of
pull-up and pull-down networks for correct operation. This
technique is also useful in the circuits with a resistive/passive
pull-up/-down. In the realization of such circuits, signal drive
strength is characterized by transistor geometry (i.e. width
W over length L ratio W/L). ACT supports labeling a
production rule as “weak” to express this requirement. The
general structure of a gate with weak networks is shown below:

1 G+
1 → S ↑

2 G−
1 → S ↓

3 [weak = 1] G+
2 → S ↑

4 [weak = 1] G−
2 → S ↓

Relative strength is commonly used in various memory cell
architectures [4]. An example of such circuit is a standard
register file cell shown in Fig. 1. In this example, the pull-up
transistors P1 and P2 should be weaker than the pull-down
transistors N1 and N2 to guarantee correct behavior of read
and write operations.

D. Arbiters

Arbiters or mutual exclusion elements are circuits used in
asynchronous designs to ensure exclusive state selection for
a group of signals. Reasoning about the correct operation of
an arbiter is based on the detailed analog properties of the
underlying circuit. To support arbiters without having to invoke
analog simulation, ACT provides directives that can specify a

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3131546

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

3

GND GND
GND

GNDtrue false

wr_t wr_f

P1

P2

Vdd

Vdd

N2

N1

N3

N4

N5

N6

Access_t

N7

Access_f

N8

Fig. 1: Register file memory cell transistor level schematic as
an example of a relative drive strength application.

Transistors P1 and P2 are weaker than N1 and N2 to
guarantee correct behavior for read and write operations.

set of mutually exclusive signals. This directive enforces the
mutual exclusion constraint regardless of the circuit specified
by production rules.

An example below shows the usage of an exclusive high
and exclusive low directive in the ACT language. The upper
row means that at most one signal in the parentheses can be
HIGH . The lower row means the opposite, that is at most
one signal can be LOW .

1 mk exclhi(a, b, c)
2 mk excllo(p, q, r)

Arbiters are useful in a variety of applications, e.g. on chip
routers [5] and clock domain crossing circuits [6].

E. Summary

The syntax above permits ACT to specify a wide range of
asynchronous circuits. In particular, the syntax supports quasi
delay-insensitive, speed-independent, relaxed quasi delay-
insensitive, as well as more aggressive circuit families such
as GasP and MOUSETRAP.

III. CIRCUIT MODELING AND IMPLEMENTATION

The ACT description can be viewed as specifying a list of
production rules (with optional weak directives) along with a
collection of mutual exclusion directives and timing directives.
The task is to translate this into a synchronous model synthe-
sizable for an FPGA that provides a valid simulation of the
asynchronous circuit.

To understand how we approach this translation process,
it is instructive to review how circuit simulators operate. A
circuit simulator is commonly implemented using a discrete-
event simulation engine, where a discrete event is a signal
state transition scheduled in a global time order. A change of
a signal state can propagate and cause other signals to change
at some future time. When a signal transition is initiated, it
takes a certain amount of time to switch the signal state. The
switching time period is determined by the delay model used in
the simulator. Such a simulation can be viewed as constructing
an execution trace of the computation.

A correct simulation is the one where the execution trace is
consistent with the circuit specification. In our case, this means
that the trace has to be consistent with the logic specified
by the production rules, the timing constraints and mutual
exclusion specifications.

To run a simulation on the synchronous FPGA, we rely
on the following approach. First, we build a synchronous
model of an original asynchronous circuit. In this model,
every original signal is assigned a corresponding synchronous
logic signal. Hence, in the end of each clock cycle we can
determine values of the asynchronous signals based on the
values of the respective synchronous signals. This corresponds
to a particular snapshot in time of the simulation. Second, the
evolution of the model, as the clock advances, is viewed as
constructing an execution trace of the asynchronous circuit.

We exploit the parallelism in the underlying FPGA to
execute a large number of parallel signal evaluations, including
those which do not change states. Unlike in CPU based solu-
tions, in our approach an idle firing does not incur additional
computational cost, i.e. without performance degradation. The
main consideration is that we have to ensure that parallel signal
changes are still consistent with the original asynchronous
circuit description. In particular, we have to ensure that the
specified timing constraints are respected by the synchronous
model.

This strategy gives us a significant improvement in the sim-
ulation run time compared to the software implementation as
will be shown in Section IV. The following sections describe
different strategies that we have developed to automatically
construct a synchronous model of an asynchronous circuit.

A. Option I: Unit delay gates

The simplest and the most direct approach to constructing a
synchronous model is to view each clock cycle as advancing
time by one unit, and also assume that we can simulate
asynchronous circuits using a unit delay model. Such an
approach is valid for both quasi delay-insensitive and speed-
independent asynchronous circuits that do not require any
additional timing constraints. However, it may not be sufficient
to guarantee that all timing assumptions are satisfied. We show
how timing constraints are handled in Section III-C.

The strategy to implement this unit delay model is the
following: (i) we introduce a flip-flop for each signal in the
asynchronous circuit. A logic state of this flip-flop corresponds
to the state of the original signal; (ii) we translate an ACT
specification to the appropriate Verilog syntax using the same
Boolean functions as described by the corresponding produc-
tion rules. We also translate mutual exclusion elements as
shown in Section III-E. This translation computes the correct
“next state” of the asynchronous circuit, given the “current
state” as determined by the values of all the flip-flops in the
circuit. It should be noted that each state computation is a fully
parallel process, i.e. all gates are evaluated simultaneously on
the FPGA.

To understand this approach consider the circuit example
in Fig. 2. It is an asynchronous circuit, where each gate in
a dashed box is described with a production rule set and

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3131546

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4

С

_Reset
A

B

CD

E

H

FG

Fig. 2: Gate level diagram of an asynchronous circuit to
demonstrate implementation of the synchronous simulation
approaches described in Section III-A and III-B. Each gate

in a dashed box is described with a set of Production Rules.
Signals are tagged with letters for clarity.

each signal is tagged with a capital letter A-H. Applying
Option I to this circuit results in the synchronous model
shown in Fig. 3a. As stated above for each original signal
we introduced a flip-flop, which for clarity is tagged with
the corresponding letter. These flip-flops store the state of the
model. At each simulation time step, i.e. at every clock cycle,
all the gates are evaluated and their next state is determined.
At every rising edge of the clock all new signals’ states are
stored in the assigned flip-flops updating the entire model state.
Fig. 4a demonstrates simulation progress of the model from
Fig. 3a. Using the same symbols and tags Fig. 4a illustrates
how signals values are propagated to the next simulation step
and how the next state of the circuit is determined. Such an
execution corresponds to the simulation trace where all gates
are executed in parallel and assigned a unit delay. This is a
reliable and straightforward way to model an asynchronous
circuit when the unit delay model results in a valid execution
trace. With the support of timing constraints discussed in
Section II-B and Section III-C this model can be correctly used
for modeling any asynchronous circuit family whose timing
requirements can be expressed using timing forks.

On one hand, an advantage of this solution is simplicity. It is
straightforward to implement, and this design has extremely
small amount of logic between flip-flops, making it easy to
operate at close to the peak frequency of the target FPGA chip.
Section IV demonstrates performance and resource utilization
results of this approach. On the other hand, this solution
requires one flip-flop per each gate and for large circuits
this number grows significantly which results in a waste of
memory and logic resources. The amount of logic between
flip-flops is small, which reduces the opportunity for logic
optimization and complicates mapping large designs onto the
FPGA. Moreover, it would cause a long propagation delay
in terms of clock cycles, i.e. even at a very high operating
frequency, the number of cycles for signal propagation in the
best case will be equal to the number of gates on the path in
the original asynchronous circuit. This increases the simulation
runtime of this mapping.

B. Option II: Reduced number of flip-flops
Our second approach is intended to improve resource uti-

lization and performance compared to the Option I. This
goal is achieved by a significant reduction of flip-flop usage.
A lower flip-flop to gate ratio provides FPGA tools with
an opportunity for logic optimization, and can reduce signal
propagation delay. In this case rather than assigning a flip-
flop for each signal, we introduce a set of three rules for
flip-flop placement sufficient to construct a synthesizable and
functionally equivalent synchronous model. The rules are
named CY C, SH and DIR to refer to the objects they are
applied to, and are detailed in the following paragraphs.

a) Rule 1 (CYC): The first rule is to cut loops in
the asynchronous circuit graph. We name this rule CY C to
refer to the CYCles it breaks. This prevents the synchronous
model from having any combinational cycles and makes it
synthesizable without any additional effort. Although, in some
cases cyclic circuits could be mapped onto the FPGA with the
assistance of vendor specific constraints/directives, we avoid
this approach, since our goal is a vendor-neural Verilog model.

b) Rule 2 (SH): The second rule for flip-flop placement
is applied to state-holding gates. Rule name SH stands for
State-Holding, to emphasize the fact that it is only applied to
this type of gate. A state-holding gate is a production rules
set where pull-up and pull-down networks can be turned off
simultaneously. This can be determined by a direct analysis
of the rules. Hence, when both networks are off, the output
of the gate maintains its previous state; we introduce a flip-
flop to hold the state of the gate, and use the flip-flop value to
generate the output when both pull-up and pull-down networks
are off. In terms of our synchronous model, this corresponds
to introducing a flip-flop in a feedback topology for the gate.

As an example of the benefits of this optimization, consider
the commonly used completion tree in asynchronous circuits.
It consists of a tree of state-holding C-elements. Having a
flip-flop only at the feedback connection reduces delay of this
structure from the tree depth with Option I to at most one unit.

It is worth noting that if a state-holding gate is a part of
a combinational loop we combine rules CY C and SH and
move the flip-flop from the feedback of the gate to its output
to improve resource utilization and avoid redundant flip-flops.

c) Rule 3 (DIR): The third rule for the flip-flop place-
ment is on the paths which directly connect inputs to the
outputs within an individual module and that have no flip-
flops from the previous two cases. The rule is named DIR
after the DIRect input-to-output paths it detects for flip-
flop insertion. The introduction of this rule means that we
can apply rule CY C within a module, without having to
analyze the entire circuit. In other words, this rule is used
to break loops locally without requiring global analysis of
the circuit topology. We experimentally determined that this
rule also results in good simulation performance by reducing
the length of combinational paths. Note that in some highly
modular designs this rule can be less effective and result in an
implementation closer to Option I. An example of this would
be if every gate were in a separate module.

This synchronous model has a different execution trace
compared to Option I. In particular, we can view each group of

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3131546

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

5

С

_Reset
A

B

CD

FG

E

H

(a)

С

_Reset
A

B

CD

E

H

FG

(b)

Fig. 3: Gate level diagrams of the synchronous models of the circuit from Fig. 2 implemented with: (a) Option I (Every
signal assigned a Flip-Flop); (b) Option II (Reduced number of Flip-Flops). All gates in dashed boxes are described with
Verilog using the same Boolean functions as in the Production Rules specification. Flip-flops are tagged using the same

letters as the corresponding signals in the original asynchronous circuit.

Circuit State 1

Simulation Time

С
A

B

E

F

D

H

С

G

Circuit State 2

С
A

B

E

F

D

H

С

G

Circuit State N

С
A

B

E

F

D

H

С

G

(a)

Circuit State 1

С
A

Simulation Time

Circuit State 2

С
A

Circuit State N

С
A

B

C

D

E

H

G

F

B

C

D

E

H

G

F

B

C

D

E

H

G

F

(b)

Fig. 4: Simulation progress diagrams of the synchronous models from Fig. 3 implemented with (a) Option I; (b) Option II.
Each dashed box represents the state of the model at one simulation time step, i.e. at every clock cycle. All gates in each
box are evaluated in parallel. Colored arrows demonstrate signal propagation from each model state to its successor. Black

arrows are internal signals.

gates between the flip-flops introduced by the proposed rules
as a directed acyclic graph. Vertices of the graph are gates and
edges are wires from the output of one gate to the input of
another. The subcircuit is completed by the edges that have
flip-flops or connected to the primary I/Os. The execution of
the asynchronous circuit corresponds to the firing of all the
gates in each acyclic portion of the graph in a topologically
sorted order and only once at each clock cycle. Such an
approach is a correct execution trace for both quasi delay-
insensitive and speed-independent circuits, but other circuit
families require this approach to be augmented as described
in Section III-C.

To clarify the goal of this approach, consider the same
circuit example in Fig. 2. Applying Option I to this circuit
results in the model shown in Fig. 3a, while Option II produces

model in Fig.3b. By following the rules stated above the
number of flip-flops in the model is reduced from 8 to 1.
In particular, we apply rules CY C and SH combined, i.e.
although a combinational cycle is detected, the path is checked
for state-holding gates and because of the C-element the cycle
is broken by moving feedback flip-flop to the gate output.
The circuit state is now stored in one memory cell, and in the
outputs of other internal signals (as labeled in Fig.3b). A single
clock cycle is sufficient to propagate the new signal state to the
rest of the circuit as opposed to Option I where multiple cycles
are needed—one per gate. We note that although the number of
flip-flops is reduced the circuit is still synthesizable and there
are additional opportunities for logic optimization compared
to the previous approach. Fig. 4b demonstrates simulation
progress of the Option II model. This figure clarifies how the

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3131546

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6

signal state is propagated to the next simulation step and why
it takes only one clock cycle. It is worth noting that with this
approach, logically we still have access to the values of the
signals which do not have an assigned flip-flop. Hence, this
model provides the same simulation precision as Option I.

There are various methods that can be used to identify
locations in the circuit that require flip-flops for rules CY C
and DIR. In our solution we use the depth first search
algorithm [7] to find cycles and direct input to output paths
in the graph. It is an inexpensive and efficient algorithm, with
linear time and space complexity.

Due to the heuristic in this approach for flip-flop placement,
sequential and combinational logic may be imbalanced with
significantly more combinational logic compared to flip-flops.
A small number of registers potentially makes the critical path
longer, negatively affecting the clock frequency. However, with
this approach signal propagation delay (in terms of the clock
cycle count) is much smaller, and logic optimization is more
efficient. We quantify this effect in Section IV. For example,
a logic optimization tool might optimize the inverter chains in
Fig.3b. Note that the logical values of those signals can still
be determined from the part of the state in the flip-flops.

C. Timing constraints

When an asynchronous circuit has certain timing constraints
that must be satisfied for correct operation, these constraints
are explicitly specified in the input description (Section II-B).

In our synchronous simulation models, the delay of the
combinational part of the circuit is ignored in terms of the
logical signal delay, i.e. it does not contribute to the total
propagation delay. Hence, to determine the actual simulation
delay from one signal to another we count the number of
flip-flops on the signal propagation path. To satisfy a timing
constraint, we have to make sure that the delay of the “slower”
signal is bigger than the delay of the “faster” signal. It means
that the number of flip-flops on the faster path must be strictly
less than on the slower path. It should be noted that it is
possible to have multiple paths connecting the same signals, in
which case we consider the worst case for the faster signal and
the best case for the slower signal. We compute the maximum
and minimum numbers of flip-flops from the source to the
destination point and if it is necessary we add extra delay to
the path by inserting additional flip-flops. Fig.5a and Fig.5b
show an example before and after insertion of extra flip-flops
respectively, so that the latter satisfies the condition below:

timing A(or ↑ / ↓) : B(or ↑ / ↓) < C(or ↑ / ↓)
We note that since we target a functional simulation we

consider the case when both up and down transitions of one
gate have the same delay.

By ensuring that timing constraints are satisfied, the gen-
erated model execution corresponds to a valid simulation
interleaving of the original asynchronous circuit.

We complete the description of synchronous model gen-
eration by showing how we handle production rules, mutual
exclusion constraints, and the hierarchical translation of sig-
nals that have multiple drivers in different parts of the design
hierarchy.

A

B

C

(a)

A

B

C

(b)

Fig. 5: Example of timing assumptions modeling approach.
(a) Violated timing constraint; (b) Satisfied timing constraint.

D. Production rule translation

As it is described in Section II-C PRS consists of up to
four transistor networks. As weak networks have smaller
drive strength at the circuit level, they are considered to have
lower firing priority in the simulation. The example below
shows how a generic PRS is converted into Verilog. It is safe
to arrange guards in the presented order because their mutual
exclusiveness is guaranteed by the design methodology. Also,
this order ensures that weak conditions have lower priority.

1 if (G+1) S ⇐ 1′b1;
2 else if (G−1) S ⇐ 1′b0;
3 else if (G+2) S ⇐ 1′b1;
4 else if (G−2) S ⇐ 1′b0;
5 else S ⇐ S;

Combinational gate translation can be simplified by re-
moving feedback connections. Since guard expressions of
a combinational gate are compliments of each other it is
guaranteed that the output will be updated at every simulation
time step. An example of the NAND gate translation is shown
below:

1 if (∼in1 | ∼in2) out ⇐ 1′b1;
2 else if (in1 & in2) out ⇐ 1′b0;

An example of a standard state-holding gate (the Muller C-
element) with a feedback connection is shown below:

1 if (∼in1 & ∼in2) out ⇐ 1′b1;
2 else if (in1 & in2) out ⇐ 1′b0;
3 else out ⇐ out;

E. Arbiter

To support arbiters or exclusion elements described in
Section II-D we implement a behavioral model of the cor-
responding analog circuit. The main idea is that if multiple
inputs are high or low, only one output should be high or
low respectively, until the driving input changes its value and

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3131546

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

7

Process 1

Gate
1

Gate
2

Process 2

Gate
3

Gate
4

Single Track
Connection

(a)

Process 1

Gate
2

Process 2

Multiplexing
Module

Gate
4

(b)

Fig. 6: Abstract example of the distributed drivers circuit.
(a) Circuit with a single track communication line; (b) FPGA

compatible solution for the single track circuit.

triggers arbiter to pick the next input request. Although it is
possible to implement such circuit on synchronous FPGAs as
in [8], we avoid using vendor specific constraints and use a
fully synchronous model. We also keep track of the previous
choice made by the arbiter using local state, to ensure that the
arbiter behaves in a fair fashion.

F. Hierarchical distributed drivers

A common practice in some asynchronous circuit method-
ologies are gates with distributed drivers. One case is when
transistor networks associated with a single gate are placed at
different levels of hierarchy. Another example are gates with
multiple drivers, i.e. not just the gate itself but multiple drivers
are distributed in the design—for example, to implement a
wired-OR operation.

Not all FPGA architecture supports direct implementation of
these structures. Therefore, our solution automatically detects
distributed drivers in the circuit hierarchy and converts them
into a synthesizable FPGA vendor-/chip-neutral synchronous
model. It does not change circuit functionality, does not require
manual constraints and does not contribute to the total signal
propagation delay.

The circuit in Fig.6a shows an abstract example of a single
track communication line. Such a communication approach
is used in the GasP and Single Track Full Buffer circuit
families. Two processes drive the same line and, for the sake
of illustration, we assume that Process 1 pulls the signal up
and Process 2 pulls the same signal down, i.e. the drivers are
distributed.

A challenge in a hierarchical translation approach arises
due to the problem of local variables, not accessible from the
scope other than where they are declared. For example, the
pull-up in Process 1 might use local variables only accessible

within Process 1, and the same situation is likely in Process 2.
This means that we cannot simply relocate the gate into one
of the two modules to eliminate the distributed driver. The
most straightforward way would be to flatten the circuit, i.e.
to recursively move both Processes contents to the higher level
of the design hierarchy until they appear at the same common
level. In the worst case this approach leads to a fully flattened
project to propagate local variables from the bottom level to
the top.

Instead, in order to preserve the hierarchy where it is
possible, we propose another solution shown in Fig.6b. As
mentioned earlier (Section II-C), each gate can have up to
four transistor networks. The two distributed circuit fragments
Gate 1 and Gate 3 (Fig. 6a) are split into four separate gates,
each of which represents either pull-up (arrow up), pull-down
(arrow down), weak pull-up (dashed arrow up) or weak pull-
down (dashed arrow down) network as shown in Fig.6b and
in the listing below:

1 S up ⇐ G+1 ;
2 S dn ⇐ G−1 ;
3 S wk up ⇐ G+2 ;
4 S wk dn ⇐ G−2 ;

(If the network is missing then it is assigned to a constant
zero and later removed from the circuit at the synthesis step.)
The port list for the modules is augmented with the newly
generated signals S up, . . ., S wk dn. A new module (shown
in green in Fig.6b) is introduced that combines all networks
with OR gates and that generates only one output as shown
in the code below:

1 if (S1 up|...|SN up) S ⇐ 1′b1;
2 else if (S1 dn|...|SN dn) S ⇐ 1′b0;
3 else if (S1 wk up|...|SN wk up) S ⇐ 1′b1;
4 else if (S1 wk dn|...|SN wk dn) S ⇐ 1′b0;

Finally, in Fig.6a, Gate 1 and Gate 3 outputs are used
internally as inputs to Gate 2 and Gate 4 respectively. Fig.6b
demonstrates how this problem is solved in our implementa-
tion. If such port is detected we create an extra input which
drives the new net back to the source process.

An analogous solution is applied to the signals with more
than one driver. All driving gates will be split in four and
directed to the multiplexing module which has single output
to drive a common signal.

However, we note that our solution cannot detect and resolve
distributed drivers related to the primary I/O interface of the
top level module. It is not clear how the environment should
behave in this case, as this depends on the context of the
overall system and the discipline adopted by the designer to
handle such signals. Hence, our translation assumes that the
primary I/O signals to the entire design are unidirectional and
are not a part of a multi-driver structure.

IV. EVALUATION

In this section we present our results of implementing
various asynchronous circuits on a synchronous FPGA, and
compare them to those obtained from the commercial and
open-source software simulators.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3131546

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8

merge copy source sink token

(a)

m
er
ge

co
py

so
ur
ce

si
nk

to
ke
n

to
ke
n

(b)

Fig. 7: (a) Basic dataflow elements; (b) Synthetic QDI circuit
generated with the set of dataflow elements.

A. Evaluation Setup

For the evaluation we used the Xilinx Virtex-7
FPGA (XC7VX690T-3FFG1761C). We used Vivado 2020.1
for FPGA synthesis and implementation steps. For software
evaluation we used both a commercial Verilog simulator and
the open source simulator Verilator. Both of them show
good performance results compared to other tools. To directly
simulate an asynchronous description, we used an open-source
prsim simulator which is a part of the ACT Toolkit. Note
that we expect prsim to be slower than just running the
Verilog model of the design, because it continuously monitors
the circuit being simulated for switching hazards and reports
those as errors in addition to monitoring all timing constraints
during a simulation run. All simulators produced the same
results in terms of the computation performed by the circuit
in question.

B. Circuits Diversity Evaluation

In this part we show the results of simulating a 15-stage
pipeline consisting of a sequence of 4-bit adders, where each
example is implemented using a different asynchronous style.

We use it to showcase the fact that our approach is capable
of supporting a wide range of asynchronous circuit families
with a unified translation approach.

This set of benchmarks is diverse enough to include a range
of timing assumptions, different handshaking protocols, and
examples of distributed drivers. Table I shows the numbers
of LUTs and Flip-Flops in columns 2 and 3 respectively.
Columns 4-5 show simulation runtime results for the FPGA
implementation and asynchronous software simulator. The
simulation scenario is simple and used for illustrative pur-
poses. The circuit takes all zeros at the input (4’b0000)
and propagates this vector to the output while incrementing
results at every stage so that the output is all ones (4’b1111).
A more comprehensive performance evaluation with longer
runtimes and bigger circuits is demonstrated in the following
sections.

TABLE I: Synchronous models synthesis results for the
circuit implemented in different asynchronous circuits styles

with various timing assumptions and synchronization
protocols

Family

Number
of LUT

Option I/
Option II

Number
of FF

Option I/
Option II

FPGA,
Option I/
Option II,

sec

Async.
Simulator

Prsim,
sec

Sutherland
Micropipeline

[9]

955 /
1109

1396 /
1247

7.1 · 10−7/
6.8 · 10−7 4.1 · 10−2

Mousetrap
[10]

1042 /
1103

1771 /
1336

8.5 · 10−7/
7.6 · 10−7 6.4 · 10−2

Click Element
[11]

1462 /
1439

1951 /
1156

9.7 · 10−7/
8.1 · 10−7 6.7 · 10−2

Quasi-Delay
Insensitive

[12]

1831 /
2145

2185 /
1870

4.1 · 10−7/
2.2 · 10−7 4.5 · 10−2

Relaxed
Quasi-Delay
Insensitive

[13]

1877 /
2228

2402 /
1997

4.6 · 10−7/
2.4 · 10−7 5.3 · 10−2

Scalable Delay
Insensitive

[14]

1447 /
1709

1754 /
1509

2.8 · 10−7/
1.5 · 10−7 5.3 · 10−2

GasP [15] 1027 /
1099

1650 /
1243

11.7 · 10−7/
11.4 · 10−7 7.0 · 10−2

Single Track
Full Buffer

[16]

936 /
1024

1500 /
1108

4.6 · 10−7/
4.3 · 10−7 3.3 · 10−2

C. Generated random QDI circuits

Our next set of benchmarks includes randomly generated
QDI circuits built of the cells from Fig.7a. An example of the
topology of such a circuit is shown in Fig. 7b.

The number of gates in the original asynchronous circuits
as well as the results of logic synthesis for the test circuits
are in columns 2–4 of Table II. Option II demonstrates a
significant improvement in the resource utilization—up to
1.92x for LUTs and up to 2.31x for FFs against Option I
as shown in column 5 of Table II. Note that in both cases, the
FPGA tools successfully applied optimizations to the circuit
so that the number of LUTs is less than the number of gates
in the asynchronous implementation. It means that although
Option I uses one flip-flop per gate and is expected to waste
FPGA resources, there was still room for optimization.

Columns 6-7 of Table II show performance results for both
solutions, the number of clock cycles required for the circuits
to go through their internal cycle and return to the initial state
and the ratio of Option I over Option II. This metric defines
how many clock cycles it takes to execute simulation of the
entire circuit starting from the request signal at the primary
input to the point when the next request can be sent. Both
solutions were successfully implemented at an FPGA target
frequency of 500MHz. However, the number of cycles required
by Option I, i.e. propagation delay, is almost twice that of
Option II. Such results meet our expectation because of the

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3131546

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

9

TABLE II: Benchmark results for the set of QDI circuits with a random topology (Section IV-C)

Name
Initial

number
of gates

Number
of LUT

Option I/
Option II

Number
of FF

Option I/
Option II

LUT ratio/
FF ratio

Number of
clock cycles
per internal

cycle
Option I/
Option II

Cycle
ratio

Async.
Simulator

Prsim,
sec

Commercial
Simulator
Option I/
Option II,

sec

Free
Simulator
Verilator
Option I/
Option II,

sec

FPGA
Option I/
Option II,

sec

FPGA
to

ASIC
Option I/
Option II

gb1 770 603 /
314

650 /
281

1.92 /
2.31

25 /
11 2.27 28.97 5.01 /

4.61
3.54 /
0.77

0.002 /
0.00088

46.38 /
20.41

gb2 1725 1368 /
765

1480 /
666

1.79 /
2.22

36 /
19 1.89 49.73 8.61 /

8.06
7.79 /
3.37

0.002 /
0.00106

33.54 /
17.69

gb3 3285 2610 /
1467

2818 /
1272

1.78 /
2.21

76 /
39 1.96 44.34 9.10 /

8.29
17.59 /

7.47
0.002 /
0.00102

28.49 /
7.31

gb4 8010 6455 /
3990

7106 /
3399

1.62 /
2.09

180 /
91 1.96 45.79 11.42 /

10.57
47.79 /
23.29

0.002 /
0.00102

32.54 /
16.45

gb5 13473 10703 /
6042

11597 /
5258

1.77 /
2.21

92 /
47 1.96 180.67 35.02 /

32.17
114.22 /

53.35
0.002 /
0.00102

33.67 /
17.20

gb6 28289 22564 /
13107

24586 /
11340

1.72 /
2.17

100 /
51 1.96 452.72 75.53 /

68.81
250.62 /
119.48

0.002 /
0.00102

29.73 /
15.16

gb7 56698 45220 /
26219

49239 /
22687

1.72 /
2.17

105 /
57 1.85 682.13 146.47 /

144.03
575.52 /
288.65

0.002 /
0.0108

31.41 /
17.05

gb8 114026 90916 /
52601

98951 /
45535

1.73 /
2.17

224 /
108 2.08 802.20 148.46 /

130.96
1267.65 /

586.44
0.002 /
0.00096

30.67 /
14.79

larger number of flip-flops used by Option I.
Columns 8-11 of Table II demonstrate FPGA runtime in sec-

onds compared with asynchronous simulator prsim, a com-
mercial simulator, and open source simulator Verilator.
The asynchronous simulator runs for one million unit delays
which is equivalent to one million clock cycles in the syn-
chronous domain for Option I. For Option II all simulation
runtimes are reduced by the cycle ratio from column 7. In
this case both FPGA models are several orders of magnitude
faster than their software counterparts. It should be noted
that the asynchronous simulator shows results comparable to
the synchronous simulators which means that our model has
reasonable advantages only in case of being implemented on
FPGA.

Finally, column 12 of Table II shows the operating fre-
quency comparison of the FPGA model versus a direct ASIC
implementation of the same circuit in a 28nm process technol-
ogy. The ASIC performance is obtained from an asynchronous
static timing analysis tool Cyclone [17]. Our target FPGA chip
is also built in a 28nm process. As can be seen, our approach
has a 7x to 46x slowdown compared to the ASIC imple-
mentation. This is about the same as mapping synchronous
circuits to synchronous FPGAs. However, the actual FPGA
implementation is fast enough to be used for the purpose of
functional verification of an ASIC and software development
prior to fabrication.

D. Synchronous circuits converted to asynchronous

In this part of evaluation we used circuits converted from
existing synchronous benchmarks into asynchronous logic
using the same library of element as in the previous section
(Fig.7a). During the conversion a fan-out was translated as

a tree of copy elements and any gate as a merge tree. The
topology of this group of benchmarks significantly differs
from those in the previous section and extends the results
inclusiveness.

Columns 2-5 Table III shows the results of the logic
synthesis. In this case LUT utilization improvement is up to
1.82x and FF utilization improvement is up to 2.52x.

Columns 6-7 of Table III show results of the implementation
of benchmarks including the number of clock cycles per full
internal circuit cycle and Option I to Option II ratio. In this
case both solutions were implemented at clock frequency of
500MHz. However, the cycle time is better for Option II. Thus,
the total runtime in seconds (see columns 8-11 of Table III for
Option II is better for this set of circuits as well.

Finally, a comparison to the ASIC performance with the
same feature size as in the previous section matches with our
expectations (Column 12 of Table III). In this case FPGA
model is 10x to 67x slower than ASIC.

Table IV presents a summary of the performance results for
this set of benchmarks. It shows geometric mean values of
the ratios of the FPGA over ASIC performance as well as the
simulators runtime over FPGA simulation for Option I and
Option II. Our FPGA simulation demonstrates a significant
speedup of multiple orders of magnitude against all software
simulators and relatively small slowdown against an ASIC
implementation.

E. Further Optimization

It should be noted that all our benchmarks could easily fit
on the FPGA chip we targeted, however we understand that
if circuit gets closer to the full FPGA capacity it may cause
frequency reduction especially in case of Option II with high

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3131546

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

10

TABLE III: Benchmark results for the set of QDI circuits with the topology obtained from the original synchronous circuits
(Section IV-D)

Name
Initial

number
of gates

Number
of LUT

Option I/
Option II

Number
of FF

Option I/
Option II

LUT ratio/
FF ratio

Number of
clock cycles
per internal

cycle
Option I/
Option II

Cycle
ratio

Async.
Simulator

Prsim,
sec

Commercial
Simulator
Option I/
Option II,

sec

Free
Simulator
Verilator
Option I/
Option II,

sec

FPGA
Option I/
Option II,

sec

FPGA
to

ASIC
Option I/
Option II

s27 148 130 /
85

151 /
64

1.53 /
2.36

24 /
12 2 4.83 1.29 /

1.29
0.41 /
0.24

0.002 /
0.001

35.19 /
17.59

c432 1776 1394 /
875

1684 /
668

1.59 /
2.52

82 /
41 2 4.83 5.44 /

4.27
11.20 /

3.13
0.002 /
0.001

30.75 /
15.37

s838x 3970 3380 /
1916

3861 /
1525

1.76 /
2.53

92 /
41 2.22 99.14 24.49 /

16.93
22.63 /
11.26

0.002 /
0.0009

67.45 /
30.06

c7552 12979 10328 /
6316

12357 /
4941

1.64 /
2.50

42 /
21 2 396.51 98.03 /

75.48
114.08 /

66.49
0.002 /
0.001

20.43 /
10.21

s9234x 28560 24595 /
13529

27387 /
10884

1.82 /
2.52

84 /
42 2 526.67 118.39 /

90.77
275.48 /
156.50

0.002 /
0.001

30.59 /
15.29

s15850 49125 43431 /
23813

48450 /
19222

1.82 /
2.52

138 /
69 2 671.09 135.10 /

104.95
544.65 /
304.71

0.002 /
0.001

31.58 /
15.79

tv80 66485 56518 /
30972

62631 /
24908

1.82 /
2.52

106 /
53 2 1402.82 243.58 /

178.89
735.69 /
409.08

0.002 /
0.001

33.13 /
16.56

TABLE IV: Simulation runtime comparison summary for the
set of benchmarks with a predefined topology.

Option I Option II
FPGA to ASIC 33.54 16.49

Asynchronous Simulator prsim to FPGA 6.21× 104 12.60× 104

Commercial Simulator to FPGA 1.76× 104 2.79× 104

Free Simulator Verilator to FPGA 2.63× 104 2.76× 104

combinational to sequential logic ratio. To improve throughput
of the synchronous model a standard technique such as a
C-slow retiming [18] can be applied to simultaneously run
multiple simulation scenarios. It is a safe method which
supports feedback loops and based on adding extra flip-flops
to the circuit. An option of adding extra flip-flops can be easily
adopted in both our translation approaches.

V. RELATED WORK

Existing solutions can be split into three main categories:
(i) Direct mapping; (ii) Asynchronous FPGA architectures;
(iii) Synchronous emulation. Each approach is discussed in
detail in the following subsections. In the end we summarize
the difference between our solution and those presented in this
section.

A. Direct mapping

There were many successful attempts to directly map asyn-
chronous circuits onto synchronous FPGAs i.e. to preserve the
clockless nature of the original design. This approach is not
just based on the clock signal removal from the chip. Usually
it is achieved by a set of timing and/or placement constraints
to prevent uncertainty in the relative placement of modules
and to satisfy timing assumptions.

As noted in Section I, a lack of key circuit blocks in com-
mercially available FPGAs is one of the reasons why they are
not well suited to asynchronous designs. Thus, implementing
delay lines, C-elements and arbiters is one of the goals of the
direct mapping approach. Multiple works proposed solutions
that use available FPGA primitives to emulate the required
behavior. Hazard free implementation of the C-element on
LUT based FPGAs were introduced in [8], [19], [20]. Con-
trollable delay lines can be implemented with LUTs or Carry
Chains connected in series as suggested in [21], [22]. However,
as the FPGA interconnection delay is not predictable, the
delay margins have to be large and be accompanied by a set
of placement constraints to ensure correctness of the timing
assumptions. An arbiter implementation with analog nature
based on the pinned placement is shown in [8].

Another goal of the direct mapping is to provide a method-
ology for the correct, predictable and reproducible implemen-
tation of an entire circuit. One way to achieve this goal is to
handcraft a library of crucial building blocks whose behavior
has been shown to be correct and leave the configuration of the
delay-insensitive part of the circuit to the designer. Predefined
elements are usually covered by placement and optimization
constraints. [19], [23]–[25] provided such cell libraries. An
early work [24] targets 2-phase bundled data circuits and
while using fixed blocks, it relies on automated placement
and routing to meet timing constraints. [23] provides a library
of dataflow blocks for 2-phase bundled data circuit without
automating delay line design. [19], [25] both target QDI
circuits. The former presents a C-element library and the
latter a library of QDI Boolean functions. In these cases
an isochronic fork assumption is respected by an appropri-
ate physical relative placement constraint. Another group of
methods relies on the iterative analysis of the implementation
results and adjustment of timing and/or placement constraints

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3131546

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

11

as well as updating delay lines if necessary to ensure correct
operation. A complete methodologies for the bundled data
circuits designs are presented in [8], [26], [27]. In addition
to bundled data circuits [28] showed a method for speed
independent circuits mapping.

The main limitations of the solutions mentioned above
compared to our proposed technique include: (i) necessity for
manual and/or scripting assistance to ensure correct circuit
operation; (ii) specific circuit family implementation; (iii) ven-
dor/chip specific features involvement. All these limits a user’s
ability to reuse these solutions if the design style is changed
or the FPGA platform is switched to another vendor.

B. Asynchronous FPGA

An asynchronous FPGA architecture is a good way to avoid
the complications of preserving the asynchronous nature of
the design while mapping it to reconfigurable logic. Various
solutions were proposed in [29]–[33]. FPGA architectures
[29], [32] explicitly support self-timed circuits alongside with
synchronous circuits. [29], [31], [33] demonstrate architectures
designed specifically for self-timed designs. However, such
FPGAs while being perfect candidates for asynchronous cir-
cuits implementation, are not easily available to the researchers
in the same way as synchronous FPGAs are. Hence, our
approach is more accessible to researchers looking for high-
performance simulation of asynchronous circuits.

C. Synchronous Emulation

Another approach to asynchronous circuits mapping onto
commercial FPGAs is based on synchronous emulation de-
scribed in [34]. This solution uses predefined synchronous
behavioral analogs of the basic asynchronous components used
for Tangram [35] syntax-directed translation into asynchronous
circuits. Instead of the actual signal transitions they use pulse
based logic, where each transition is represented with a single
pulse. Thus, 2-phase and 4-phase two wire handshake proto-
cols with arbitrary design functionality can be implemented.
The drawback of the pulse based approach is that it is less
precise and would require extra resources to keep track of the
current state of the control signals. In contrast, our approach
can handle a much wider class of asynchronous circuits with
various control circuit topologies and preserves an original
gate structure and communication protocols.

D. Translation differences: an example

A simple asynchronous pipeline component is one with
a single input and output channel, where the channels use
request and acknowledge signals to implement a handshake
protocol. A linear array of such components can be used to im-
plement an asynchronous pipeline. To highlight the difference
between our proposed translation and existing approaches, we
show the translation of this basic asynchronous circuit using
different approaches.

Fig.8 shows a linear pipeline controller, where each stage
has 4 ports: REQ LEFT an input request signal from the
previous stage, ACK RIGHT is an input acknowledgment

signal from the next stage, REQ RIGHT is an output
request signal to the next stage and ACK LEFT is an output
acknowledgment signal to the previous stage. Fig.9a shows
the original asynchronous circuit implementation, where ‘C’
stands for the C-element and one of its inputs is inverted.
The delay box represents an implementation of a delay line.
Fig.9(b,c,d,e) show various possible mappings of this circuit
to FPGAs.

a) Direct Mapping: One possible direct mapping ap-
proach incorporating multiple proposed solutions is shown in
Fig.9b. It uses a hazard free LUT based C-element([19]) and
a delay line constructed of a 1-input LUT chain ([21]). In this
approach all modules are placed at fixed locations to guarantee
hazard free control signal implementation and the delay line
is marked so that the tools do not optimize it away. For more
complex gates, resolving the same issues can be more difficult
and resource inefficient.

b) Synchronous Emulation: The synchronous emulation
approach described in [34] is shown in Fig. 9c. The C-element
behavior is emulated with a predefined Join module. The Join
element itself is implemented using an adder with the sum
output connected back to one of the adder inputs through
the flip-flop, and the carry signal connected to the module
output. Delay lines require the manual addition of chains
of flip-flops. It should be noted that control gates that do
not match the pre-existing set of blocks cannot be translated
without manually extending the set. Also, since pulses are
used to represent signal transitions, the current state of the
synchronous circuit cannot be directly used to determine the
state of the asynchronous circuit being emulated.

c) Asynchronous FPGA: A potential solution for asyn-
chronous FPGA mapping is shown in Fig. 9d. In this example
we consider an FPGA Slice architecture proposed in [32]. We
do not state that the presented mapping is precise, however,
we emphasize that the underlying architecture is sufficient to
place the necessary modules in one Slice and to guarantee
a hazard-free implementation. It is shown that the LUT can
be configured with a state-holding function and have a legal
feedback connection. Also, the configurable delay line is built-
in and does not waste extra FPGA resources.

d) Proposed Solution: Finally, Fig.9(e) is an implemen-
tation based on our approach. The C-element is mapped onto
a 3-input LUT with a stable feedback connection through the
flip-flop. The delay line is a chain of flip-flops. No assumptions
about the underlying FPGA are necessary beyond what is
already required to map standard synchronous logic. Also, the
FPGA tools are free to optimize any of the combinational
logic in the usual way. We note that the presented circuit
is automatically generated from the asynchronous description
and involves no adjustment either manual or using scripts to
ensure a correct implementation on the FPGA.

E. Summary

Table V summarizes the synchronous FPGA solutions where
column 2 shows the supported asynchronous circuit families,
column 3 shows the total number of the supported control
circuit topologies in all mentioned families (e.g. Mousetrap,

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3131546

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

12

REQ_LEFT REQ_RIGHT

ACK_RIGHTACK_LEFT
Stage (i-1) Stage (i) Stage (i+1)... ...

Fig. 8: C-element linear pipeline controller structure.

ACK_RIGHT

Inverter

Pre-defined Pulse
Based Module (Join)

Inverter

Inverter

Delay
(No automation)

Delay

Pre-defined
C-Element

C
ACK_RIGHT

ACK_LEFT

REQ_RIGHT
REQ_LEFT

LUT3
LUT 1 LUT 1 LUT 1Delay ...

ACK_LEFT

ACK_RIGHT

REQ_LEFT

REQ_RIGHT

LUT 1

...
REQ_RIGHT

ACK_LEFT

REQ_LEFT

CLK

Delay

Pre-defined
C-Element

LUT3
LUT 1 Configurable

Delay

ACK_LEFT

ACK_RIGHT

REQ_LEFT

REQ_RIGHT

C-Element
(Synchronous Model)

LUT3
LUT 1

ACK_LEFT

ACK_RIGHT

REQ_LEFT

Delay
(Automated)

...
REQ_RIGHT

CLK

a) b)

c)
d)

e)

Inverter

+
Carry

Sum

Fig. 9: A set of solutions for the asynchronous circuits implementation and FPGA mapping. (a) Muller Pipeline Stage
Asynchronous Circuit Implementation; (b) Synchronous Implementation of a Muller Pipeline Stage with Pulses; (c)

Synchronous Emulation of a Muller Pipeline Stage; (d) Asynchronous Implementation of a Muller Pipeline Stage; (e)
Synchronous Simulation of a Muller Pipeline Stage.

GasP, Micropipelines etc.), column 4 shows whether prede-
fined blocks are used, and column 5 shows whether this
solution targets a specific FPGA vendor. Notably, our approach
is the only one that can support a wide range of circuits in a
vendor-neutral manner.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed two approaches to the syn-
chronous simulation of asynchronous circuits on commercially
available FPGAs. We showed how to convert an asynchronous
circuit description in ACT into a synthesizable and func-
tionally equivalent Verilog model, as well as techniques to
optimize resource utilization. Our solution supports several
crucial implementation features, including timing constraints,
arbiters, and distributed drivers. Both approaches demonstrate
good performance results, however Option II is superior in
terms of resource consumption. Although the performance
results are relatively close there are cases when imbalance

in combinational and sequential logic for Option II may lead
to a significant drop in clock frequency. Thus, having two
different solutions provides users with the flexibility to make
area/performance trade-offs.

It should be noted that our benchmarks fit on one FPGA
chip which in the real world scenarios of FPGA prototyping
may not be the case. The most significant slowdown will
occur when the circuit reaches maximum FPGA capacity,
and requires interchip communication lines and multi FPGA
mapping.

Our future work will be focused on the following problems.
First, we will try to find a better way to reduce the number
of flip-flops, so that it will not affect maximum frequency but
still achieve good results in resource optimization. Second,
we are exploring multi FPGA partitioning, which is a very
important goal because of rapidly growing sizes of integrated
circuits. At the same time it should be done while minimizing
performance losses.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3131546

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

13

TABLE V: Comparison of the solutions flexibility for the asynchronous circuits mapping onto the synchronous FPGAs.

Project Circuit Family Control Topologies Predefined Blocks Vendor Specific

[19] QDI, 2-phase
bundled-data 2 Yes No

[26] 4-phase
bundled-data 1 No No

[23] 2-phase
bundled-data 1 Yes Yes

[28]
4-phase

bundled-data,
Speed independent

2 Yes Yes

[24] 2-phase
bundled-data 2 Yes Yes

[25] QDI 1 Yes Yes

[8] 2-phase
bundled-data 1 Yes Yes

[27] 4-phase
bundled-data 1 No Yes

[34] 2-phase/4-phase
bundled-data 2 Yes No

Our
Solution

2-phase/4-phase
bundled-data,

QDI, rQDI, SDI,
GasP, STFB

8* No No

*We note that although we demonstrate only 8 examples, our solution will work for all circuit which timing assumption can be specified using a timing fork.

REFERENCES

[1] Rajit Manohar, “An open-source design flow for asynchronous circuits,”
Government Microcircuit Applications and Critical Technology Confer-
ence, March 2019.

[2] ACT Framework. [Online]. Available: https://github.com/asyncvlsi/act/
[3] K. S. Stevens, R. Ginosar, and S. Rotem, “Relative timing,” IEEE Trans.

Very Large Scale Integr. Syst., vol. 11, no. 1, p. 129–140, Feb. 2003.
[4] D. M. H. Neil H. E. Weste, CMOS VLSI Design A Circuits and Systems

Perspective, 4th ed. Pearson, 2011.
[5] A. Ghiribaldi, D. Bertozzi, and S. M. Nowick, “A transition-signaling

bundled data noc switch architecture for cost-effective gals multicore
systems,” in 2013 Design, Automation Test in Europe Conference
Exhibition (DATE), 2013, pp. 332–337.

[6] A. Lines, “Asynchronous interconnect for synchronous soc design,”
IEEE Micro, vol. 24, no. 1, pp. 32–41, 2004.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[8] K. Bhardwaj, P. Mantovani, L. P. Carloni, and S. M. Nowick, “Towards
a complete methodology for synthesizing bundled-data asynchronous
circuits on FPGAs,” in 2019 IEEE/ACM International Symposium on
Low Power Electronics and Design (ISLPED), 2019, pp. 1–6.

[9] I. E. Sutherland, “Micropipelines,” Commun. ACM, vol. 32, no. 6, p.
720–738, Jun. 1989.

[10] M. Singh and S. M. Nowick, “Mousetrap: High-speed transition-
signaling asynchronous pipelines,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 15, no. 6, pp. 684–698, 2007.

[11] A. Peeters, F. t. Beest, M. d. Wit, and W. Mallon, “Click elements:
An implementation style for data-driven compilation,” in 2010 IEEE
Symposium on Asynchronous Circuits and Systems, 2010, pp. 3–14.

[12] A. J. Martin, The Limitations to Delay-Insensitivity in Asynchronous
Circuits. New York, NY: Springer New York, 1990, pp. 302–311.

[13] C. LaFrieda and R. Manohar, “Reducing power consumption with
relaxed quasi delay-insensitive circuits,” in 2009 15th IEEE Symposium
on Asynchronous Circuits and Systems, 2009, pp. 217–226.

[14] A. Takamura, M. Kuwako, M. Imai, T. Fujii, M. Ozawa, I. Fukasaku,
Y. Ueno, and T. Nanya, “Titac-2: an asynchronous 32-bit microprocessor
based on scalable-delay-insensitive model,” in Proceedings International
Conference on Computer Design VLSI in Computers and Processors,
1997, pp. 288–294.

[15] I. Sutherland and S. Fairbanks, “Gasp: a minimal fifo control,” in
Proceedings Seventh International Symposium on Asynchronous Circuits
and Systems. ASYNC 2001, 2001, pp. 46–53.

[16] M. Ferretti and P. A. Beerel, “Single-track asynchronous pipeline tem-
plates using 1-of-n encoding,” in Proceedings 2002 Design, Automation
and Test in Europe Conference and Exhibition, 2002, pp. 1008–1015.

[17] W. Hua, Y.-S. Lu, K. Pingali, and R. Manohar, “Cyclone: a static timing
and power analysis engine for asynchronous circuits,” ASYNC, 2020.

[18] S. Hauck and A. DeHon, Reconfigurable Computing: The Theory and
Practice of FPGA-Based Computation. Morgan Kaufmann, 2007.

[19] Q. T. Ho, J.-B. Rigaud, L. Fesquet, M. Renaudin, , and R. Rolland,
“Implementing asynchronous circuits on LUT based FPGAs,” FPL,
2002.

[20] C. Pham-Quoc and A. Dinh-Duc, “Hazard-free Muller gates for imple-
menting asynchronous circuits on Xilinx FPGA,” in 2010 Fifth IEEE
International Symposium on Electronic Design, Test Applications, 2010,
pp. 289–292.

[21] J. N. Lassen, “FPGA prototyping of asynchronous networks on chip,”
Master’s thesis, Technical University of Denmark, 2008.

[22] P. D. Ferguson, A. Efthymiou, T. Arslan, and D. Hume, “Optimising
self-timed FPGA circuits,” in Proc. Euromicro Conference on Digital
System Design: Architectures, Methods and Tools, 2010, pp. 563–570.

[23] A. Mardari, Z. Jelcicová, and J. Sparsø, “Design and FPGA-
implementation of asynchronous circuits using two-phase handshaking,”
ASYNC, 2019.

[24] E. Brunvand, “Using FPGAs to implement self-timed systems,” Journal
of VLSI signal processing systems for signal, image and video technol-
ogy, no. 6, p. 173–190, 1993.

[25] Y.-F. E. Chang, R.-Y. Huang, and J.-H. R. Jiang, “Effective FPGA
resource utilization for quasi delay insensitive implementation of asyn-
chronous circuits,” ASYNC, 2019.

[26] H. Saito, N. Hamada, T. Yoneda, and T. Nanya, “A floorplan method
for asynchronous circuits with bundled-data implementation on FPGAs,”
in Proceedings of 2010 IEEE International Symposium on Circuits and
Systems, 2010, pp. 925–928.

[27] J. Furushima, M. Nakajima, and H. Saito, “Design of an asynchronous
processor with bundled-data implementation on a commercial field
programmable gate array,” Informatica (Slovenia), vol. 40, 2016.

[28] A. Motaqi, M. Helaoui, S. Aghlimoghaddam, and M. R. Mosavi, “De-
tailed implementation of asynchronous circuits on commercial FPGAs,”
Analog Integrated Circuits and Signal Processing, vol. 103, no. 3, p.
375–389, 2020.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3131546

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

14

[29] S. Hauck, S. Burns, G. Borriello, and C. Ebeling, “An FPGA for
asynchronous circuits,” IEEE Des. Test. Comput., vol. 11, no. 3, pp.
60–69, Fall, 1994.

[30] R. Payne, “Self-timed field programmable gate array architectures,”
Ph.D. dissertation, University of Edinburgh, 1997.

[31] R. Manohar, “Reconfigurable asynchronous logic,” in Proc. Custom
Integrated Circuits Conference, 2006, pp. 13–20.

[32] J. V. Manoranjan and K. S. Stevens, “An a-FPGA architecture for relative
timing based asynchronous designs,” in 2014 International Conference
on ReConFigurable Computing and FPGAs (ReConFig14), 2014, pp.
1–6.

[33] N. Huot and H. Dubreuil and L. Fesquet and M. Renaudin, “FPGA
architecture for multi-style asynchronous logic [full-adder example],” in
Design, Automation and Test in Europe, 2005, pp. 32–33 Vol. 1.

[34] J. O’Leary and G. Brown, “Synchronous emulation of asynchronous
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 16, no. 2, pp. 205–209, 1997.

[35] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij, “The
vlsi-programming language tangram and its translation into handshake
circuits,” in Proceedings of the European Conference on Design Au-
tomation., 1991, pp. 384–389.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3131546

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

