
1

Mixed-Level Emulation of Asynchronous Circuits
on Synchronous FPGAs

Ruslan Dashkin and Rajit Manohar
Computer Systems Lab, Yale University, New Haven, CT 06520

{ruslan.dashkin, rajit.manohar} at yale.edu

Abstract—Delivering an FPGA-based emulation model to the
software and hardware development teams is one of the crucial
steps in the chip design process. The parallelism available on the
FPGA gives a performance boost necessary to speed up devel-
opment and verification processes and benefits both hardware
and software engineers. However, this step is challenging in the
asynchronous circuits design flow due to the limitations of the
commercially available FPGA platforms and Electronic Design
Automation (EDA) tools.

We present a comprehensive solution to the problem of asyn-
chronous design emulation on synchronous FPGAs by extending
prior work for emulating gate-level asynchronous designs [1].
Our framework supports asynchronous designs described at
the behavioral level in the Communicating Hardware Processes
language, the gate level, and hybrid designs that combine the two.
We also support designs where parts of the system use natively
synchronous logic. We show that our model for behavioral
emulation is up to 3 × 105 faster than CPU-based simulation
and up to 1.96× faster than the gate-level emulation model of
the same design.

We evaluate our toolchain using three real-world asynchronous
design examples. We present a case study where we use our flow
to emulate an asynchronous CPU on the synchronous FPGA and
use this hardware to boot a real-time operating system, Zephyr
RTOS. In this example, FPGA I/O interfaces use synchronous
Verilog IP, and the RISC-V core model is generated from the
asynchronous design.

Index Terms—FPGA, Asynchronous VLSI, Prototyping

I. INTRODUCTION

A typical asynchronous design flow starts with a behavioral
description in one of the languages based on Communicating
Sequential Processes (CSP) [2]. CSP is a message-passing lan-
guage suitable for describing highly parallel systems. Multiple
extensions of CSP were developed to accommodate the needs
of digital circuit designers, e.g., Tangram [3], Occam [4],
Balsa [5], Haste [6] or Communicating Hardware Processes
(CHP) [7]. After behavioral specification, circuits are syn-
thesized into a gate-level representation using various tech-
niques, such as Process Decomposition [8], Syntax-Directed
Translation [9], through the State Transition Graph [10], or
through the Control-Data Flow Graph [11], [12]. In the context
of this paper, we target asynchronous designs that use the
synthesis approach presented in [8]. In this methodology,
the CHP description is first synthesized into an intermediate
representation called Handshaking Expansion (HSE) and then
into the gate-level netlist described in Production Rules (PRS).
It is worth noting that behavioral to gate-level transition does
not necessarily happen for the entire project at once, and

the case when parts of the projects are at different levels of
abstraction is possible and valid. We call such step-by-step
transition an incremental design approach.

A behavioral level of abstraction does not require circuit-
specific details necessary for the gate level, which makes the
design process faster. A rapid transition from an idea to an
implementation makes it possible to start software develop-
ment and extensive functional verification early in the design
process. However, these steps require a high-performance
hardware prototype or an emulation system. FPGAs are the
primary candidates to satisfy this requirement and are broadly
adopted in the synchronous design flow. In the asynchronous
domain, this option is unavailable due to the absence of
asynchronous FPGAs on the market and the lack of support
for asynchronous designs in the commercially available syn-
chronous EDA flows and corresponding hardware. The only
way to resolve this issue is to run asynchronous designs on the
hardware originally developed for the synchronous domain. To
implement this idea, a CSP-like description can be converted
into a functionally equivalent model described in the languages
understood by the standard synchronous EDA tools, such as
Verilog HDL or VHDL, and in a way that would make this
model synthesizable.

Various teams in the industry and academia explored the
possibility of an automated generation of synchronous circuits
from a behavioral CSP-like description. The most common
approach is to use a Syntax-Directed Translation(SDT). So-
lutions from [13], [14] demonstrated an approach to a syn-
thesizable synchronous circuit generation from a Tangram
description. A method from [13] used a quick return to
zero communication protocol and clock gating. It targeted
mapping to the standard cell netlist for the synchronous ASIC
flow. A work in [14] presented a pulse-based communication
and targeted Xilinx FPGA implementation. Multiple papers
presented methods for translating circuits described in Occam
[15]–[19]. The paper [19] presented formal proof of the
compilation of Communicating Processes into clocked circuits.
An Occam subset mapping to OAL language and Algo-
tronix FPGA implementation are described in [15]. Occam
compilation into a proprietary netlist description and Xilinx
FPGA implementation are presented in [16], [17]. In [18],
authors synthesized synchronous circuits using proprietary
INMOS languages. The CHP-based framework presented in
[20] generated a non-synthesizable VHDL with an option
for synchronous-asynchronous co-simulation. In a recent work
[21], authors used a Cλash framework to describe CSP con-

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3479077

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2

structs, which were converted into VHDL and mapped onto the
FPGA. Finally, [22], [23] presented a Verilog library of non-
synthesizable modules called VerilogCSP for asynchronous
circuit simulation in the synchronous environment.

Although all mentioned works demonstrate excellent results
in compiling CSP-like circuit descriptions into synchronous
circuits, they have certain limitations. For example, some
of the generated circuits are not synthesizable and cannot
be implemented on FPGAs. Some circuits are described in
proprietary formats which are not publicly available. The
major drawback in all cases is that the input design must
be fully specified at the behavioral level. In other words,
these solutions assume a one-step synthesis from behavioral
to the gate level and prohibit an incremental transition. Such
functionality can benefit the asynchronous flow due to the
high flexibility in circuit design choices compared to the
synchronous design methodology.

This paper presents a unified approach to asynchronous cir-
cuits mapping onto synchronous FPGAs for high-performance
emulation. This solution is based on the Asynchronous Cir-
cuits Toolkit (ACT) [24], [25] and extends our previous
work [1] on gate-level emulation. The new solution works with
both behavioral and gate-level circuit descriptions in CHP and
PRS languages, respectively. It also supports an intermediate
circuit representation in HSE, as it uses a subset of CHP.
However, in the rest of the paper, we will only mention CHP,
implying support for HSE.

We present ACT2FPGA, an integrated toolchain that trans-
lates an asynchronous design in the ACT framework into a
synthesizable synchronous Verilog model, which functionally
replicates the original design. Using information in the ACT
input, it automatically generates interfaces between different
levels of abstraction to support an incremental design ap-
proach. The synchronous nature makes it easy to map the
generated model onto commercially available FPGAs using
standard EDA tools and to co-emulate it with the synchronous
IP libraries, for example, provided by FPGA vendors. To
analyze circuit behavior, one can use a built-in FPGA logic
analyzer, such as Xilinx ILA or Intel Signal Tap.

We note that the presented translation strategy does not
target a high-performance and energy-efficient synchronous
circuit implementation but instead focuses on the functional
equivalence and the possibility of a vendor-independent FPGA
implementation with minimal manual effort. Our models have
only one clock signal and do not require extensive timing
constraints to go through the place and route flow without
errors.

The rest of this paper is organized as follows: Section II
describes CHP language constructs and how they are used
to describe circuits. Section III dives into the CHP to Verilog
translation details. Section IV shows how we generate logic for
behavioral and gate-level communication. Section V summa-
rizes the functionality of the presented framework. Section VI
demonstrates an architecture of the generated model and a
case of a complex circuit translation and implementation on
the FPGA. Section VII presents Verilog synthesis results
for various designs and comparisons against the gate-level
emulation. Finally, Section VIII summarizes our work and

describes our plans.

II. SPECIFYING ASYNCHRONOUS CIRCUITS

This section provides a detailed description of the CHP
language constructs. We explain the syntax and the expected
behavior of each language statement.

A. CHP Syntax

• Sequential composition defines a strict order in which
statements separated by ‘;’ must be executed and com-
pleted. Each statement starts its execution only when its
predecessor is complete.

...;S1;S2; ...;Sn; ...

• Parallel composition defines a group of statements sep-
arated by ‘,’ which execute in parallel and complete in
an arbitrary order.

...;S1, S2, ..., Sn; ...

• Assignment stores the result of the expression E evalu-
ation into the variable v.

v := E

• Send transmits the result of an expression E evaluation
over the channel C.

C!E

• Receive stores the value transmitted over the channel C
into the variable v.

C?v

• Probe detects whether the channel C is ready to com-
municate.

C

• Selection provides a conditional execution to the pro-
gram. Selection statement waits until one of the condi-
tions G1, G2, ..., Gn(guards) is true and executes all the
statements in the corresponding branch.

[G1 → S1; ...
[]G2 → S2, ...
[]...
[]Gn → Sn; ...
]

If guards are mutually exclusive, the selection is called
Deterministic; if guards are independent, the selection
is called Non-Deterministc. To resolve non-determinism
among multiple true guards, an extra circuit responsible
for fair arbitration is added.

• While loop executes a corresponding sequence of state-
ments Sith while one of the condition G1, G2, ..., Gn

(guards) is true. All guards are reevaluated at the begin-
ning of each iteration. If all guards are false, the loop
terminates. Guards must be mutually exclusive.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3479077

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

3

TABLE I: CHP Expressions

Type Operation

Arithmetic
Addition: +, Subtraction: −,

Division: ÷, Multiplication: ×
Modulo Operation: %

Shift Logic shift left: �, Logic shift right: �,
Arithmetic shift right: ≫

Boolean Logic AND: &, Logic OR: |,
Exclusive OR: ⊕, Negation: ∼

Compare
Less: <, Less or Equal: ≤,

Greater: >, Greater or Equal: ≥,
Equal: ==, Not Equal: ! =

Concatenation {a, b, c}
Bit Extraction Single bit: a{i}, Range: a{i..j}

∗[G1 → S1; ...
[]G2 → S2, ...
[]...
[]Gn → Sn; ...
]

• Do-while loop executes a sequence of statement S while
guard G is true. Condition is checked at the end of each
iteration, and at least one iteration is always executed. A
“do-while” loop can have only one branch.

∗[S ← G]

B. Expressions

Table I demonstrates all arithmetic, logic, and bit-
manipulation operations supported in CHP.

C. Data Types

CHP supports two basic synthesizable types: int and bool.
Basic types can be used to compose complex user-defined data
types similar to the struct type in C language. Nested user-
defined types are legal as well. Along with the synthesizable
types, CHP supports pint, pbool, and preal parameters for
constructing parameterized circuits and non-synthesizable pro-
cesses.

D. Channel definition

CHP supports a chan type representing channels for com-
munication between processes. Channels are declared in the
following way:

chan(type)

where chan is a reserved word defining a channel instance,
type is a type of data transmitted over the channel. Data type
can be integer, boolean, or user − defined structure.

At the behavioral level, communication over a channel is an
abstract synchronization process, and a detailed handshaking
protocol specification is not necessary. One chan can be
connected to another chan of the same type, and correct
synchronization is always guaranteed. However, while tran-
sitioning to the gate-level implementation, one would want to
specify a precise communication protocol for each channel.

recv_up/
send_up

recv_rest/
send_rest

get/
set

recv_init/
send_init

Fig. 1: A flowchart diagram of a channel communication
protocol specification in ACT language.

It is necessary for the correct simulation when two processes
are specified at different levels of abstraction. ACT framework
supports syntax, which allows users to describe each phase of
the desired handshaking protocol. The syntax is shown below:

defchan my chan (bool var in, ...;
bool var out; ...){

methods {
recv init{...} send init{...}
get{...} set{...}
recv up{...} send up{...}
recv rest{...} send rest{...}

}
}

where the methods section contains two groups of methods –
one for the receiving channel and one for the sending channel.
recv init and send init are used to initialize the channel
after the global reset. get, recv up, and recv rest define
three steps of the receive operation: 1. Getting transmitted
data; 2. Completing synchronization; 3. Completing the rest
of the protocol. set, send up, and send rest define three
steps of the send operation: 1. Setting data to transmit; 2.
Completing synchronization; 3. Completing the rest of the
protocol. Figure 1 visualizes the above behavior in a flowchart
diagram.

These methods are specified using a subset of CHP where
only selections and assignments are allowed.

III. CHP EMULATION

This section presents our automated approach to converting
CHP programs into synthesizable and synchronous Verilog
models. We start with a general description of our approach.
Then, we demonstrate how each language structure is emulated
in Verilog.

A. General Idea

Our solution is based on the Syntax-Directed Translation
(SDT). SDT is a simple yet powerful compilation technique
driven by the program’s syntax. The idea is to construct an
output using pre-defined building blocks while traversing the
parse tree of the design description.

We use the ACT framework to compile input projects into
C++ data structures. These structures are used to traverse and
analyze the design. Each process in the design hierarchy is
checked for having a behavioral or gate-level description in
CHP or PRS languages, respectively. If a process is defined
in PRS, it is skipped. We assume the entire sub-tree with a
PRS process at the root contains only PRS processes. This
assumption significantly simplifies the software but covers a

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3479077

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4

clock

S0_start

S0_compl

S1_start

S1_compl

S2_start

S2_compl

a b

c d

e f

g h

i j

k l

Fig. 2: A waveform demonstrating start/complete conditions propagation in the synchronous model emulating a sequence of
events in the original asynchronous circuit.

very large subset of designs. Processes described in CHP, on
the other hand, are our main target. To apply SDT, we specify
a set of building blocks, each corresponding to a specific
CHP structure. While traversing a program tree, we replace
each original CHP statement with a corresponding building
block described in Verilog. This process results in a tree
data structure preserving an original architecture and nodes
replaced with functional equivalents in Verilog.

Each building block includes a small state machine for the
local control and a data path logic such as guard expressions
or assignments. All state machines share a similar behavioral
model and operate in the synchronous domain, where each
state transition takes one clock cycle. First, in the initial state,
they wait for the start condition to begin execution. The initial
state depends on the type of the CHP statement (See following
subsections). Once execution completes, they switch to the
DONE state and generate a complete condition. In the general
case, a start condition for each state machine is either a signal
from a parent node or a complete condition from a predecessor.
However, the root node of each process tree does not have
either and requires a special circuit to generate an initial start
condition. Finally, since we work with the hardware, we expect
programs to run infinitely, which requires all state machines
to return to the initial state when an execution is over. In our
model, once in the DONE state, each state machine waits for
the return condition to switch back to the corresponding initial
state. Figure 2 shows a waveform demonstrating start/complete
behavior. It is important to note that the time between the start
and complete signals depends on the type of the statement, and
in the example, it is shown as one cycle just for simplicity.

An execution model described above matches an execution
model of CHP language and thus can be used for emulation.
This model allows a user to analyze the internal state and
interfaces of each process in the project.

In the following subsections, we provide more details about
how each CHP structure is implemented in our model.

B. Communication Channel

As mentioned in Section II, communication in asynchronous
circuits happens over the channels. At the behavioral level, a
communication action is an abstract event not tied to a specific
communication protocol. The only requirement is the presence
of a synchronization event. This model allows us to use a
simple valid/ready protocol, where valid is a sender’s signal

clock

ready

valid

data

Fig. 3: A waveform demonstrating a cycle-accurate timing of
the valid/ready protocol emulating synchronization events in
the original asynchronous circuit.

and ready is a receiver’s signal. A state when both signals are
high represents the synchronization event. This state only lasts
one clock cycle and must be reset after each synchronization.
This behavior prevents unwanted repetitive transactions. Along
with the valid/ready signals, such a channel can have a bus for
data transmission.

A waveform diagram showing valid timings of the imple-
mented protocol is shown in Figure 3. Both valid and ready
signals are assigned independently and can be set high at any
time.

We note that the described valid/ready protocol differs from
the one commonly used in the synchronous domain, as our
version emulates synchronization events with a handshake
while the synchronous version uses a clock signal for the
same purpose. Although our protocol has lower performance
and does not transfer data at every clock cycle, its behavior is
correct and suits our model well.

C. Switching Condition Types

In this section, we define three types of conditions state
machines use to transition between states and to generate start
and complete signals.

1) State condition signals when a state machine is in a
specific state. This condition is used in selection and
loop statements when a parent node needs to signal to
a child node that it can start execution or in a sequence
to notify the successor to start execution.

state condition = state == STATE N

2) Guard condition signals when a guard expression in a
selection or loop statement is true/false. A guard can
be defined with a boolean expression or a probe.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3479077

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

5

guard condition = boolean expression / probe

3) Communication completion condition signals when
both valid and ready signal are high. This condition
is used in send and receive state machines.

commun condition = C valid & C ready

The basic types can be used to compose more complex
conditions. Complex conditions are arbitrary combinations of
logically ANDed, ORed, and NANDed conditions. Complex
conditions are necessary to improve performance and guaran-
tee correct event scheduling.

D. Composition

In our solution, we view sequential and parallel composi-
tions as a set of rules on how start and complete signals are
propagated among the state machines.

Sequential composition requires each statement to terminate
before its successor can start execution. To satisfy this require-
ment, each complete condition is wired to all the subsequent
start conditions.

Parallel composition requires all statements in the parallel
group to terminate before the successor can start execution. For
that, we combine all complete conditions with a logic AND.
To guarantee synchronization and to prevent a repetitive false
execution, each state machine has the DONE state. This extra
state stops execution until the return condition is received.

GUARD
EVAL

BRANCH
STATE 1

BRANCH
STATE 2

BRANCH
STATE nDONE

...

G1

G2

Gn
start compl

ret

Fig. 4: A graph representation of the synchronous state ma-
chine emulating the behavior of the CHP Selection statement.
It consists of a GUARD EVAL state for the guard evaluation,
BRANCH STATEs to control child nodes and a DONE state to
indicate execution completion.

E. Selection

A general structure of the selection state machine is shown
in Figure 4. Initially, this machine remains in the GUARD
EVALUATION state. Once start condition is received, all
guards G1, ..., Gn are evaluated until one of them is true.
When a guard is true, a corresponding branch is taken by
switching to one of the BRANCH STATEs. Branch states are

GUARD
EVAL

BRANCH
STATE 1

BRANCH
STATE 2

BRANCH
STATE nDONE

G1

G2

Gn ...

start compl

ret

Fig. 5: A graph representation of the synchronous state
machine emulating the behavior of the CHP “While” loop.
It consists of a GUARD EVAL state for guard evaluation,
BRANCH STATEs to control child nodes and a DONE state to
indicate execution completion.

GUARD
EVAL

BRANCH
STATE DONE

G

start compl

ret

Fig. 6: A graph representation of the synchronous state ma-
chine emulating the behavior of the CHP “Do-while” loop.
It consists of a GUARD EVAL state for the guard evaluation,
a single BRANCH STATE for the child node control, and a
DONE state to indicate execution completion.

used to generate a start conditions for the child sequences. The
machine remains in the selected state until the last statement
in the branch completes execution. When this statement sends
back a complete condition, the selection machine switches to
the DONE state.

In the non-deterministic selection, when a mutual exclusion
of guards is not guaranteed, we instantiate a round-robin
arbiter module to match the behavior described in Section II. It
takes original guards as inputs and fairly picks only one output
to be set true. The Arbiter module was originally synchronous
and was implemented in Verilog.

F. Loop

Loops emulating state machines are shown in Figure 5 and
Figure 6 for the “while” and “do-while” loops respectively.

Similarly to the selection statement, a “while” loop starts
in the GUARD EVALUATION state. Once it receives the
start condition, all guards G1, ..., Gn are evaluated. If one
guard is true, the machine switches to the corresponding
BRANCH STATE to initiate the execution of a child sequence.
When the last statement in the branch generates a complete

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3479077

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6

ASSIGN DONE
start compl

ret

Fig. 7: A graph representation of a synchronous state machine
emulating the behavior of the CHP Assignment statement.
It consists of an ASSIGN state for the expression evaluation
phase and a DONE state to indicate completion. A square
waveform in the middle demonstrates that the assignment takes
a single clock cycle.

condition, the “while” loop machine switches back to the
GUARD EVALUATION state to reevaluate guards. This cycle
repeats until all guards become false. The loop terminates by
switching to the DONE state.

A “do-while” loop, on the other hand, guarantees an ex-
ecution of at least one iteration. It is initialized in the only
available BRANCH STATE. Once start condition is received,
a child sequence starts execution. When the last statement in
the sequence generates a complete condition, the “do-while”
machine switches to the GUARD EVALUATION state. If the
guard G is true, the loop returns to the BRANCH STATE; if
the guard is false, the loop terminates by switching to the
DONE state.

G. Assignment

An assignment state machine is shown in Figure 7. Initially,
it starts in the ASSIGN state. Upon receiving the start condi-
tion, this state machine immediately evaluates an expression
on the right-hand side of the assignment operator. It completes
the assignment by storing a new value to the variable on the
left-hand side and switching to the DONE state. Once in the
DONE state, a new value is available at the corresponding flip-
flop output. The assignment operation takes only one clock
cycle for all arithmetic and logic operations.

CHP assignment is equivalent to the non-blocking assign-
ment in Verilog.

H. Communication

A state machine emulating send and receive statements is
shown in Figure 8. When the “send” state machine receives a
start condition, it puts an expression evaluation result to the
data line and sets a valid signal to high. Both values become
available at the next clock cycle after the start condition
is high. When the start condition arrives at the “receive”
machine, it sets ready signal high. Once valid and ready are
high, communication is considered over, and both machines
switch to the DONE state, set valid and ready signals low and
a new data value becomes available in the receiver’s variable.
A Verilog equivalent of the data transfer is a non-blocking
assignment of the sender’s data value to the corresponding
receiver’s channel variable.

It is worth noting that the Probe statement does not have a
complex behavioral model and only acts as a guard condition.

SEND/
RECV DONE

start compl
rdy &

val

ret

Fig. 8: A graph representation of a synchronous state ma-
chine emulating the behavior of the CHP Send and Receive
statements. consisting of a SEND/RECV state for the syn-
chronization step and DONE state to indicate completion. A
rdy & val expression in the middle indicates a valid/ready
protocol synchronization event and a switching condition when
both signals are high.

In our channel model, Probe checks for the valid signal to be
high.

I. Data Types

Non-synthesizable data types are resolved at the ACT
framework compilation stage. Synthesizable int and bool
are replaced with Verilog reg/wire types depending on the
context, e.g., instance interconnects are wire type and an
internal variable storing assignment value is reg type.

IV. BEHAVIORAL AND GATE-LEVEL CO-EMULATION

This section describes how we generate glue logic for
CHP and PRS communication using SDT and a user-defined
channel specification.

Glue logic generation is one of the key features of our
solution. As mentioned in Section II, the ACT framework
provides a very flexible environment for the channel definition.
Users can specify any protocol they want using a CHP
language subset. Since our goal was to automate the process
as much as possible and not to use any extra files but those
required by the ACT framework, we use this specification to
generate a Verilog module connecting a valid/ready protocol
described in the previous section with a user-defined protocol.

All methods in the channel definition represent a sequence
of events described in CHP and can be put together separated
by ‘;’. Thus, rewriting all methods in the way shown in the
listing below is a valid interpretation of channel behavior:

SEND ≡
SEND INIT ;
∗[SET ; SEND UP ; SEND REST]

RECEIVE ≡
RECV INIT ;
∗[GET ; RECV UP ; RECV REST]

First, send and receive channels execute SEND INIT and
RECV INIT sections. These methods are executed only
once. After that, both channels fall into the infinite loops of
three main parts of the synchronization procedure.

Figures 9a and 9b show how we would like glue logic to be
placed in the generated Verilog model. This architecture can
be realized by simple modification in the code above. A listing

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3479077

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

7

Sending
CHP

Process

Receiving
PRS

Process

valid
ready
data

Glue
Logic

user-defined
channel

(a)

Receiving
CHP

Process

Glue
Logic

valid
ready
data

Sending
PRS

Process

user-defined
channel

(b)

Fig. 9: A glue logic for the behavioral and gate-level co-
emulation connecting communication channels at different
levels of abstraction. The diagram showing signals’ names and
directions for (a) the CHP sending and PRS receiving case,
(b) the PRS sending and CHP receiving case.

below demonstrates the final versions of both send and receive
processes.

SEND ≡
SEND INIT ;
∗[[CHP RECV];
SET ; SEND UP ; SEND REST ;
CHP RECV

]

RECEIVE ≡
RECV INIT ;
∗[GET ;

CHP SEND;
RECV UP ; RECV REST ;

]

CHP SEND and CHP RECV communication actions
are added to complete synchronization on the CHP side of
the glue process. The former executes communication when a
CHP process sends a value to a PRS process, and the latter
when a CHP process receives a value from a PRS process.

Send implementation starts with a Probe statement
[CHP SEND], which is interpreted as “wait for the
CHP SEND channel to be ready to communicate.” At the
physical level, this is equivalent to waiting for the valid signal
to be high and the data bus to hold a valid value. When this
condition is satisfied, the glue process executes communication
with the PRS side and only then completes communication
with CHP. This sequence represents a valid execution order,
satisfying slack elasticity condition [26].

Receive implementation starts with the GET method, which
guarantees that the PRS process executes the first phase of
the communication protocol by providing a valid data value
on the data bus. The valid signal on the PRS side can be
either implicit, as in dualrail QDI circuits, or explicit, as
in bundled-data circuits. Once the GET method is finished,
we can transmit data to the CHP process. The rest of the
PRS protocol is executed when CHP communication is over.
Again, this order of statements is necessary to satisfy the slack
elasticity condition.

Bash Script
CHP2FPGA

PRS2FPGA

EDA Tools

FPGA
Synthesis

Simulation

Project
Assembling

ACT Project

Verilog IPs

A list of PRS
processes

Generated
*.v files

Native
*.v files

.act

Top level
*.v file

Vendor specific
project files

Testbench
wrapper

FPGA
FPGA

firmware

Fig. 10: A flow diagram demonstrating all stages of the
emulation framework presented in this paper, along with the
data formats or types of the input and output files.

The presented approach to logic generation makes it pos-
sible to reuse the code we developed for the state machine
generation in the previous section.

V. FRAMEWORK SUMMARY

The presented ACT2FPGA framework is shown in Fig-
ure 10. An input to the framework is a project described
in ACT language. It can be CHP, PRS, or a mixed design.
In the first stage, a Bash script calls CHP2FPGA – the tool
performing translation proposed in this paper. CHP2FPGA
runs an analysis of the ACT project and does the following:
(i) translates CHP processes to Verilog and instantiates PRS
processes; (ii) generates a glue logic; (iii) outputs a list of
PRS processes. Next, the Bash script reads the output list
and calls PRS2FPGA [1] for each of the processes in the
list, producing missing Verilog models. Both CHP/PRS2FPGA
tools guarantee that the original interfaces of the processes are
preserved so that generated Verilog modules are connected
naturally. The output of this step is a set of files in the *.v
extension, one per each process. The next step is a project
assembly, where a user has the option to connect the generated
model to the modules originally described in Verilog. The
assembled project can be loaded into any FPGA EDA tool
due to the absence of vendor-specific code. From here, the
user decides whether to proceed with the simulation or to
synthesize the project and run it on the FPGA.

The generated model is fully synchronous, uses only one
clock signal, and is described exclusively using FPGA-friendly
and vendor-independent Verilog structures. These properties
make it easy to use any available commercial and open-source
EDA flow for either simulation or synthesis. For simulation,
users have to implement their own environment, generating

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3479077

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8

a clock signal, reset, and other I/O stimuli. For synthesis,
EDA tools usually require a set of design constraints in a
vendor-specific format. In general, only one clock constraint
and pin assignments are necessary to implement the model on
the FPGA. To improve the performance, one can implement
multiple independent clock domains, constrained placement,
etc. It is worth noting that our flow does not produce either a
simulation environment or design constraints.

We admit that the original model with one clock may
not result in the most efficient implementation. However,
as mentioned earlier, our goal is to provide a functionally
equivalent model that works as is. Any further performance
improvements are left to the users.

VI. CASE STUDY

A. Greatest Common Divisor

In this section, we present an example program to clarify the
architecture of the generated model. We use a GCD algorithm
described in CHP, which is shown in the listing below.

GCD ≡
∗[
IN1?v1; IN2?v2 ;
∗[v2 < v1 → v1 := v1 − v2
[]v1 < v2 → v2 := v2 − v1
];
OUT !v1

]

Figure 11a shows a parse tree of the CHP above. An outer
loop statement without explicit guards is interpreted as an
infinite loop with a single guard always set to true. Figure 11b
demonstrates what a generated model looks like. It consists
of 7 smaller state machines, one for each statement in the
original CHP. A start condition for the infinite loop state
machine is implicitly set to high as it is the root statement
in the design. Blue dashed arrows show the directions and
destinations of start/complete signals. Purple dashed arrow
shows the complete condition propagating from the send
statement back to the infinite loop in the branch state.

B. RISC-V CPU

This section presents the results of an asynchronous RISC-
V CPU emulation on a synchronous FPGA. The CPU was
originally designed in CHP and supported 32-bit implemen-
tations of the I, M, and C standard RISC-V extensions. The
architecture included:

• PLIC - Platform Level Interrupt Controller (RISC-V
Compliant)

• CLINT - Core Level Interrupt Controller (RISC-V Com-
pliant)

• Separate Instruction and Data Caches
• Memory-mapped GPIO and UART devices
The CPU was extensively verified using an asynchronous

circuit simulator and an open-source random instruction gen-
erator riscv-dv [27]. To port software, develop device drivers,
and extend the verification, we implemented an emulation
model of the CPU on the FPGA board Digilent Genesys 2.

INF LOOP

RECV RECV LOOP SEND

ASSIGN ASSIGN

(a)

RECV DONE

IN1

ret

SEND DONE

OUT

ret

RECV DONE

IN2

ret

GUARD
EVAL

BRANCH
STATE 1

BRANCH
STATE 2DONE

v1>v2

v2>v1ret

ASSIGN DONE

ret

ASSIGN DONE

ret

v2:=v2-v1

v1:=v1-v2

GUARD
EVAL

BRANCH
STATE

INF LOOP

DONE

ret

true

(b)

Fig. 11: Greatest Common Divisor case study. (a) A parse
tree of the CHP implementation of the algorithm. (b) An
architecture of a synchronous emulation model generated with
the framework presented in this paper.

The goal of this step was to boot an operating system, Zephyr
RTOS (Real-time Operating System), and run an application
that would demonstrate the functionality of all major units.

A block diagram of the project is shown in Figure 12.
A dashed dark grey box represents the FPGA board, where
pink blocks are the physical components and the light grey
box is the FPGA itself. The contents of the light grey box
show the FPGA firmware. Processes originally described in
CHP and converted into Verilog are blue, and processes
originally described in Verilog are orange. The yellow box
is the computer with a serial terminal.

To prepare the model for FPGA implementation, we lever-
aged the synchronous nature of the generated model and
co-emulated it with the originally synchronous processes.
The only requirement for such processes was to have an
interface with valid/ready communication protocol described
in Section III-H. Figures 13a, 13b, and 13c show three possible

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3479077

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

9

IN
TER

C
O

N
N

EC
T

MAIN
MEM

CHP
GPIO

Verilog
GPIO

ICACHE

DCACHE

L2
CACHE

FT232

Computer
+

Terminal

FPGABOARD
SD CARD

INTERFACE

C
PUCHP

UART
Verilog
UART

LEDs and
Switches

PLIC

CLINT

SD Card

Fig. 12: A complete architecture of an asynchronous RISC-V CPU emulation platform, including translated synchronous models
(blue), originally synchronous modules (orange), onboard components (pink), and PC (yellow).

CHP
Model

Verilog
IP

ready
data

valid

(a)

PRS
Model

Glue
Logic

valid
ready
data

Verilog
IP

user-defined
channel

(b)

PRS
Model

Verilog
IP

user-defined
channel

(c)

Fig. 13: An environment for the behavioral and gate-level syn-
chronous models co-emulation with native Verilog processes
connected through the abstract and user-defined communica-
tion channels. (a) CHP to Verilog abstract channel connection;
(b) PRS to Veriog abstract channel connection through the glue
logic; (c) PRS to Verilog user-defined channel connection.

types of connection to the generated model, i.e., via an abstract
channel to CHP or PRS through the glue logic or via a user-
defined channel directly to PRS. Such functionality can be
useful when an FPGA vendor provides a soft IP for the
on-chip components, such as transceivers, and users with
asynchronous designs only need to write interface wrappers
instead of designing new IPs. More details about our use cases
are presented in the following paragraphs.

In Figure 12, the CPU block is the main execution pipeline.
It is connected to the Instruction and Data Caches and through
the interconnect to the rest of the system.

The purpose of the main memory (MAIN MEM) unit
was to communicate with an external memory. In simulation,
this block emulated this behavior with a C function. In the

emulation, the main memory unit acted as an interface to the
physical memory, which we emulated with an SD Card. We
used the SD Card without a file system and uploaded OS
memory images directly to the memory. A simple L2 Cache
was added to slightly reduce off-chip communication traffic
by storing eight 512-bit lines. The cache communication was
64-bit, and SD Card minimal block size was 512-bit, which
justified the use of an extra layer in the memory subsystem.
The L2 Cache was connected to the main memory unit with
a valid/ready protocol, as mentioned earlier.

In the diagram, both IO interfaces UART and GPIO have
two parts – one described in CHP, responsible for data
processing, storage, and configuration, and another described
in Verilog for data sampling and, in the case of UART, seri-
alization/deserialization. Corresponding parts were connected
with the valid/ready protocol.

The assembled project was successfully synthesized and
implemented on the synchronous FPGA using Xilinx Vivado
EDA. Zephyr RTOS was uploaded to the SD Card. The OS
was configured for our chip and board and included necessary
device drivers for PLIC, CLINT, GPIO, and UART. Figure 14
shows the terminal window on the computer and the FPGA
board. The yellow box shows where an SD Card is plugged
on the back side of the board. The blue box shows the UART
port for communication with the computer. The CPU prints
messages to the terminal via UART. The first message is sent
during the OS boot process (line 1). Execution starts with the
configuration of UART (line 2), Timer (line 3), and GPIOs
connected to the LEDs (line 4) and Switches (line 5). After the
configuration, the main application starts (line 6). For the sake
of the experiment, the main loop in the application computed
the Fibonacci sequence. Every second, the Timer triggered an
interrupt (lines 11, 17). Manually toggling switches (Figure 14
red box) triggered GPIO input interrupts of different kinds,
e.g., negative (line 14) and positive edges (line 16). Finally,
sending hexadecimal symbols via serial interface (line 19)
triggered UART receiver interrupts and set the corresponding
output values to the LEDs (Figure 14 green box).

The emulation model was very useful in the software debug-

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3479077

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

10

Fig. 14: A demonstration stand with a serial terminal and an FPGA board containing RISC-V CPU emulation platform
(Figure 12) running Zephyr RTOS.

ging process. Although booting an OS itself cannot guarantee
the correctness of the hardware design, as an addition to
our existing test suite, it extended functional coverage and
helped us to catch several bugs. Additionally, testing interrupts
in the asynchronous simulator was problematic. By using
the emulation model, we covered execution scenarios for
the External and Timer interrupts and tested the exception
handling mechanism implemented in the pipeline.

VII. EVALUATION

In this section, we present the results of FPGA models
synthesis. All results were obtained using a Xilinx design flow.

A. Glue Logic Synthesis

In this section, we present the results of the glue logic
synthesis. As an example, we use a QDI channel shown below.

defchan a1ofN (int〈N〉 d; bool a)
{

methods {
send init { (, i : N : d[i]−) }
set { [([]i : N : self = i → d[i]+)] }
send up { [a] }
send rest { (, i : N : d[i]−); [∼ a] }

recv init { a− }
get { [([]i : N : d[i] → self := i)] }
recv up { a+ }
recv rest { [(&i : N :∼ d[i])]; a− }

}
}

This code snipped describes a full 4-phase handshake for a

TABLE II: Synthesis and simulation results for the QDI
channel a1ofN, where N is a data width.

Channel
type

Send
(LUT/FF)

Receive
(LUT/FF)

Send
Delay

Recv
Delay

a1of1 15/13 11/10 30 15
a1of2 21/16 17/13 30 15
a1of4 32/22 29/18 30 15
a1of8 43/32 49/25 30 15

QDI channel where data is represented in a one-hot encoding
and an acknowledge signal is active high. Table II shows the
results of the synthesis. Columns 2 and 3 demonstrate resource
utilization for various encoding configurations, starting from
a simple single rail format up to 1 of 8 encoding. Columns 4
and 5 show the number of cycles it takes to complete one
transaction on the channel, i.e., from the beginning of the
communication till the end, when a new communication can
be initiated. In this particular case, these numbers are constant
across different encodings; however, it is not guaranteed for
all data types and depends on the user’s specification.

B. Behavioral and Gate level Verilog models comaprison

This section presents the results of a comparison between
our previous solution [1] and the one presented in this paper.
In [1] we showed how the gate-level description of an asyn-
chronous circuit can be converted into a functionally equiva-
lent synchronous Verilog model and mapped onto synchronous
FPGA. We proposed two approaches to model generation
where Option I was the model generated with the original
algorithm, and Option II was a resource-optimized version of
the same model. In this evaluation, we reuse the synthesis and
runtime results for Option II from paper [1] (Section IV.C

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3479077

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

11

Table II). As benchmarks, we use the same QDI circuits that
were randomly generated and consist of standard control cells
such as split, merge, source, drain, etc. This comparison aims
to show the difference in resource utilization and performance
rather than prove that one is better. Both solutions serve their
purpose well and contribute to the framework’s functionality.

Table III demonstrates synthesis results of the gate and be-
havioral level models and CPU and FPGA total run times. For
the readers’ convenience, the bottom row in the table shows
the columns’ indices. Column 2 shows the number of process
nodes in the project hierarchy. Columns 3-4 demonstrate
synthesis results for the gate and behavioral level models,
respectively. The upper numbers show LUT utilization, and
the lower numbers show Flip-Flop utilization. Column 5 shows
the CHP over PRS ratio of LUT(upper) and Flip-Flop(lower)
counts. Columns 6-11 contain performance results. In columns
9-11, the upper number corresponds to the CHP version of
the circuit and lower to the PRS version. Column 6 shows the
CHP over PRS synthesized model frequency ratio. Column
7 shows the average number of cycles each model takes
to complete an internal cycle and return to the initial state.
This metric defines the number of cycles it takes from a
request on the primary input to the point where another
request can be accepted. Column 8 shows the ratio of the
numbers from column 7. Column 9 shows the total compilation
and simulation runtime in a popular commercial synchronous
circuit simulator. Column 10 shows the total runtime of a CPU-
based asynchronous circuit simulator. In this paper, we use an
updated version that supports both CHP and PRS simulation.
Column 11 shows the FPGA runtime to bring the circuit to the
same state as in the CPU-based simulation. Finally, column 12
shows PRS over the CHP FPGA model runtime ratio.

The results show that FPGA models for both behavioral
and gate levels are similar in resource utilization and target
frequency. Slightly bigger resource utilization can be explained
by a higher overhead for an abstract model description and
a good resource optimization approach for the gate level
model described in [1]. Similar frequencies, with a slight CHP
slowdown for larger benchmarks, are explained by greater
resource utilization. It is worth noting that the PRS model
outperforms the CHP model in the commercial simulator (Ta-
ble III Column 9), while original circuits in the asynchronous
simulator (Table III Column 10) behave in the opposite way.
A better performance of CHP in the former case is explained
by the complexity of the gate-level simulation, where various
physical parameters of the transistors and the circuits are vali-
dated at runtime, e.g., relative transistor strength or interfering
signals. Simulating CHP, on the other hand, is much easier
because it does not have complex physical and timing proper-
ties. However, the emulation model of PRS only replicated
the functionality of the original circuit and does not have
all its physical properties making the model computationally
lightweight. At the same time, the CHP version has a much
higher overhead on the control logic, which triggers longer
simulation runtime. The FPGA runtime of a CHP model is
better than the runtime of a PRS model due to a shorter cycle
time, and at the same frequency, it takes from 0.52× to 0.64×
PRS time to compute the same result.

C. Experimental Results

In this part, we demonstrate the experimental results of our
solution being used for a variety of real cases. Table IV shows
synthesis results for:

• Greatest Common Divisor algorithm implementation
with 32-bit operands;

• Fibonacci Sequence N-th element generator in a 32-bit
numbers range;

• RISC-V CPU – a 32-bit implementation of IMC exten-
sions and Physical Memory Protection.

• Neuromorphic Compute Core – a single unit imple-
menting a brain-inspired computation model with spiking
neural networks.

• Network Interface Card implementation with asyn-
chronous elements.

These models demonstrate that the resulting target fre-
quency depends not just on the size of the source CHP but
on its complexity and design style.

We note that the RISC-V CPU, neuromorphic computing
core, and network interface card were both co-emulated with
native Verilog modules.

VIII. CONCLUSION

In this paper, we presented a complete toolchain for asyn-
chronous circuits emulation on the synchronous FPGAs. We
demonstrate an automated methodology for CHP to Verilog
translation and a generation of glue logic to connect be-
havioral and gate-level models. We showed a case study of
asynchronous and synchronous circuit co-emulation. Finally,
we demonstrated how our previous work [1] is combined with
the presented solution. Generated models are synthesizable and
demonstrate good performance results, providing developers
with an environment for hardware and software development
and debugging. The resulting CHP and PRS models have
similar performance, making the integration process easier
with minimal performance loss.

An improvement to the current solution could be the op-
tion of using Block RAM on FPGA chips to reduce LUT
utilization. Bypassing some of the conditions in the control
state machines could be a good way to improve model
performance. However, it must be done carefully to avoid
direct combinational paths through the buffers and, as a result,
combination cycles.

IX. ACKNOWLEDGMENT

We would like to thank users of our tools for providing their
valuable feedback and synthesis results:

• Congyang Li from AVLSI Lab, Yale University
• Amirmohammad Nazari from Prof. Robert Soulé’s Lab,

Yale University
• Leo Liu from Brains In Silicon Lab, Stanford University

REFERENCES

[1] R. Dashkin and R. Manohar, “General Approach to Asynchronous
Circuits Simulation Using Synchronous FPGAs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 41,
no. 10, pp. 3452–3465, 2022.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3479077

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

12

TABLE III: Benchmark results for the set of circuits with a random topology implemented in CHP and PRS (Section VII-B).

Name

Total
number

of
nodes

Number
of

LUT /
Flip-Flop

(PRS)

Number
of

LUT /
Flip-Flop

(CHP)

CHP/
PRS

LUT ratio/
FF ratio

CHP /
PRS

Model
Freq.
ratio

Cycle
time

CHP /
PRS,
clock
cycles

CHP /
PRS
Cycle
time
ratio

Commer.
Simulator
runtime
CHP /
PRS,
sec

Async.
Simulator
runtime
CHP /
PRS,
sec

FPGA
runtime
CHP /
PRS,
sec

FPGA
runtime

ratio,
sec

gb1 100 314 /
281

431 /
404

1.37 /
1.43 1 7 /

11 0.64 9.88 /
4.61

6.39 /
19.05

0.00056 /
0.00088 0.64

gb2 200 765 /
666

974 /
914

1.27 /
1.37 1 12 /

19 0.62 14.02 /
8.06

11.11 /
31.31

0.00067 /
0.00106 0.63

gb3 400 1467 /
1272

1858 /
1742

1.27 /
1.37 1 21 /

39 0.54 13.71 /
8.29

10.51 /
28.82

0.00055 /
0.00102 0.54

gb4 800 3990 /
3399

4651 /
4312

1.17 /
1.27 1 47 /

91 0.52 16.16 /
10.57

11.58 /
31.52

0.00052 /
0.00102 0.52

gb5 1600 6042 /
5258

7584 /
7150

1.26 /
1.36 1 25 /

47 0.53 48.84 /
32.17

43.81 /
119.46

0.00054 /
0.00102 0.53

gb6 3200 13107 /
11340

16152 /
15078

1.23 /
1.33 1 27 /

51 0.53 100.66 /
68.81

96.86 /
269.52

0.00054 /
0.00102 0.53

gb7 6400 26219 /
22687

32149 /
30212

1.23 /
1.33 0.95 34 /

57 0.60 199.76 /
144.03

222.86 /
596.47

0.00067 /
0.00108 0.63

gb8 12800 52601 /
45535

63256 /
60740

1.20 /
1.33 0.74 58 /

108 0.54 250.57 /
130.96

250.01 /
616.26

0.00070 /
0.00096 0.81

Column
index 2 3 4 5 6 7 8 9 10 11 12

TABLE IV: Generated FPGA models synthesis results for a variety of real projects.

Project LUT FF DSP Frequency,MHz Board
32-bit GCD 124 71 0 500 Digilent Genesys 2

32-bit Fibonacci 83 171 0 500 Digilent Genesys 2

32-bit RISC-V CPU 13872 8990 3 20 Digilent Genesys 2

Neuromorphic Computing Core 12388 2702 0 100 Digilent Genesys 2

Network Interface Card 35397 91638 0 250 Xilinx Alveo 250

[2] C. A. R. Hoare, “Communicating Sequential Processes,” Commun. ACM,
vol. 21, no. 8, p. 666–677, aug 1978.

[3] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij,
“The VLSI-Programming Language Tangram and Its Translation into
Handshake Circuits,” in Proceedings of the Conference on European
Design Automation, ser. EURO-DAC ’91. Washington, DC, USA: IEEE
Computer Society Press, 1991, p. 384–389.

[4] I. Inc., Occam Programming Manual. Prentice Hall Trade, 1984.
[5] Edwards, Doug and Bardsley, Andrew, “Balsa: An Asynchronous Hard-

ware Synthesis Language,” The Computer Journal, vol. 45, no. 1, pp.
12–18, 2002.

[6] Nielsen, Sune Fallgaard and Sparsø, Jens and Jensen, Jonas Braband and
Nielsen, Johan Sebastian Rosenkilde, “A Behavioral Synthesis Frontend
to the Haste/TiDE Design Flow,” in 2009 15th IEEE Symposium on
Asynchronous Circuits and Systems, 2009, pp. 185–194.

[7] A. J. Martin, “Synthesis of asynchronous VLSI circuits,” California
Institute of Technology, Tech. Rep. CS-TR-93-28, 1991.

[8] A. Martin J, “Compiling Communicating Processes into Delay-
Insensitive VLSI Circuits,” Distributed Computing, 1986.

[9] S. M. Burns and A. J. Martin, Syntax-directed Translation of Concurrent
Programs into Self-timed Circuits, 1988, pp. 35–50.

[10] J. Sparsø, Introduction to Asynchronous Circuit Design. Independently
Published, 2020.

[11] M. Tranchero, L. M. Reyneri, A. Bink, and M. de Wit, “An automatic
approach to generate haste code from simulink specifications,” in 2009
15th IEEE Symposium on Asynchronous Circuits and Systems, 2009, pp.
175–184.

[12] Nielsen, S.F. and Sparso, J. and Madsen, J., “Towards behavioral

synthesis of asynchronous circuits - an implementation template target-
ing syntax directed compilation,” in Euromicro Symposium on Digital
System Design, 2004. DSD 2004., 2004, pp. 298–305.

[13] A. Peeters and K. Van Berkel, “Synchronous handshake circuits,” in
Proceedings Seventh International Symposium on Asynchronous Circuits
and Systems. ASYNC 2001, 2001, pp. 86–95.

[14] J. O’Leary and G. Brown, “Synchronous emulation of asynchronous
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 16, no. 2, pp. 205–209, 1997.

[15] W. Luk, D. Ferguson, and I. Page, “Structured Hardware Compilation
of Parallel Programs,” in Selected Papers from the Oxford 1993 Inter-
national Workshop on Field Programmable Logic and Applications on
More FPGAs. Abingdon EE&CS Books, 1994, p. 213–224.

[16] I. Page and W. Luk, “Compiling Occam into Field-Programmable Gate
Arrays,” FPGAs, Oxford Workshop on Field Programmable Logic and
Applications, vol. 15, pp. 271–283, 1991.

[17] R. M. Peel and B. M. Cook, “Occam on Field-Programmable Gate
Arrays-Optimising for Performance,” in Communicating Process Archi-
tectures, Proceedings of WoTUG, vol. 23, 2000, pp. 227–238.

[18] I. Inc., “Compiling Occam into silicon,” INMOS, Technical Note 72-
TCH-023.

[19] J. O’Leary, G. Brown, and W. Luk, “Verified compilation of communi-
cating processes into clocked circuits,” Formal Aspects of Computing,
vol. 9, pp. 537–559, 1997.

[20] M. Renaudin, P. Vivet, and F. Robin, “A design framework for asyn-
chronous/synchronous circuits based on CHP to HDL translation,” in
Proceedings. Fifth International Symposium on Advanced Research in
Asynchronous Circuits and Systems, 1999, pp. 135–144.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3479077

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

13

[21] Frits P. KUIPERS , Rinse WESTER , Jan KUPER and Jan F.
BROENINK, “Mapping CSP Models to Hardware Using CλaSH,” in
Communicating Process Architectures, 2016.

[22] A. Saifhashemi and P. A. Beerel, “High level modeling of channel-
based asynchronous circuits using Verilog,” in Communicating Process
Architectures 2005. IOS Press, 2005, pp. 275–288.

[23] P. A. B. Arash Saifhashemi, “SystemVerilogCSP: Modeling Digital
Asynchronous Circuits Using SystemVerilog Interfaces,” in Communi-
cating Process Architectures, Proceedings of WoTUG, 2011, pp. 287–
302.

[24] Rajit Manohar, “An Open-Source Design Flow for Asynchronous Cir-
cuits,” Government Microcircuit Applications and Critical Technology
Conference, March 2019.

[25] ACT Framework. [Online]. Available: https://github.com/asyncvlsi/act/
[26] Manohar, Rajit and Martin, Alain J., “Slack elasticity in concurrent com-

puting,” in Mathematics of Program Construction. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998, pp. 272–285.

[27] riscv-dv. [Online]. Available: https://github.com/chipsalliance/riscv-dv

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3479077

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

