
1

Maelstrom: A Logic Synthesis Technique for
Asynchronous Circuits

Karthi Srinivasan and Rajit Manohar
Computer Systems Lab, Yale University, New Haven, CT 06520

{karthi.srinivasan, rajit.manohar} at yale.edu

Abstract—A new synthesis method and corresponding open-
source tool, called Maelstrom, is introduced, that synthesizes CHP
programs into asynchronous circuits. The method is agnostic
to circuit family, and produces circuits that show significant
improvements over the state-of-the-art synthesis techniques for
asynchronous circuits in terms of energy, delay and area. The
method also supports different datapath implementations and
communication protocols. Pre-layout SPICE simulations of gen-
erated netlists of several CHP programs in a 65nm node indicate
significant performance benefits over the current state of the
art. Maelstrom has also been used to successfully synthesize
and fabricate a chip from an abstract high-level functional
description. This represents a qualitative improvement in logic
synthesis of asynchronous logic from behavioral descriptions.

Index Terms—Asynchronous circuits, Logic Synthesis, High-
level Synthesis, Micropipelines, Bundled Data Pipelines

I. INTRODUCTION

LOGIC synthesis is the process of converting an abstract
behavioral description of a circuit into a gate-level de-

scription that implements the specified behavior. For simple
descriptions, there are several “textbook” methods such as
Karnaugh maps and Quine-McCluskey minimization that start
with a sum-of-products expression for Boolean functions, and
then systematically optimize the Boolean formula. However,
as systems become larger, there is a need for the maintenance
of internal state of the circuit to support more complex com-
putations. This leads to a separation of the problem into two
components: the design of the computation or datapath logic,
which is typically combinational logic for arithmetic/logical
operations; and the design of the state machine or control
logic, which is typically sequential logic that controls the
computation performed.

In synchronous design, register-transfer level (RTL) hard-
ware description languages such as Verilog are used to specify
the underlying computation in a more user-friendly format.
The synthesis methodology translates the RTL into combina-
tional logic and clocked elements using a standard clocking
discipline. The problem of synthesizing the state machine (the
control path) is quite straightforward in synchronous design
since it is entirely controlled by a global timing reference—
the clock signal—that is used to perform a state update for
the controller. There are several ways to implement state
machines, such as using edge-triggered flip-flops, or level-
sensitive latches. Further, the communication between several
state machines is realized either through implicit communica-
tion at each clock edge, or through data transfer protocols such

the classic ready-valid protocol, which uses two additional
signals (ready and valid) to perform a data transfer with a
shared clock between the sender and receiver.

In asynchronous circuits, there is no global timing reference,
and hence the control path must be self-timed in some way.
There have been several proposed solutions to this over the
decades. One of the first methods to synthesize asynchronous
state-machines used Huffman flow-tables [1]. Huffman flow-
tables can be compiled into circuits by extending Karnaugh-
map style logic synthesis, and by introducing delay lines to
form a feedback loop to hold state. More recent methods
include burst-mode design [2], which is closely related to
synchronous design by virtue of its use of a local timing
signal that served the role of the clock. Both methods assume
a bound on the delay of local logic, and hence require timing
assumptions to ensure correct operation.

At the other extreme are delay-insensitive (DI) circuits,
which assume unbounded delays on gates and wires. However,
this restricts the class of implementable functions severely [3];
instead, a slightly relaxed version known as quasi-delay-
insensitive (QDI) circuits are often used. In the QDI model,
wire delays are assumed to be small relative to a sequence
of gate delays from an adversarial firing chain of gates, but
gate delays can be unbounded. Synthesis approaches for QDI
circuits include Martin’s synthesis method [4] of handshaking
expressions (HSE) to circuits, and Petrify [5], which translates
signal transition graphs to circuits. However, these methods
require an input description of the system that is at the level of
individual signal transitions—much lower level than the RTL-
level description used by synchronous circuits. Also, the syn-
thesis algorithms involve complete state-space exploration—
a slow step. These two issues renders these methods both
time-consuming and error-prone, since hand-translation and
optimization of the signal transitions is required to obtain high
quality circuits [6], [7].

In order to specify a complex asynchronous system at
a higher level, we use a popular behavioral abstraction of
asynchronous circuits known as Communicating Hardware
Processes (CHP), which is explained in detail in the following
section. CHP describes asynchronous circuits as a collection
of processes (similar to a state machine in the synchronous
context), each of which have some internal state and a behavior
defined by a program. Communication between processes is
performed via channels, governed by a handshaking protocol
for the transfer of data.

A key requirement for general-purpose logic synthesis of

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3572364

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

2

CHP to circuits is preserving the synchronization behavior
of the CHP input. This is a more complex problem in the
context of asynchronous circuits, since there is no single
timing reference that all processes agree upon. Furthermore,
changes in the synchronization behavior can in turn introduce
new behaviors in the program that did not exist earlier—
leading to functional errors [8]. Section II-A includes an
example to illustrate this subtle issue.

One such synchronization-preserving synthesis tool is the
open-source chp2prs [9], which is a direct (and unop-
timized) implementation of the syntax-directed translation
(SDT) approach to logic synthesis for asynchronous cir-
cuits [10], [11]. Balsa [12] is an optimized implementation
of SDT, providing an implementation that is supposed to be
as efficient as a (no longer available) commercial SDT tool
called Haste/TiDE [13]. Other approaches to the translation of
CHP programs into asynchronous circuits include high-level
synthesis techniques [14]–[17], but these approaches modify
the synchronization behavior of the input CHP. Hence, they
can only be used in limited scenarios where the original
program is slack elastic [8].

In this work, we present a new general-purpose approach
for translating CHP programs into gate-level asynchronous
logic, and an open-source implementation of our technique
(as part of [9]). Our goal is to perform sequential synthesis,
i.e. to obtain a circuit that implements the program exactly as
written, thereby respecting CHP synchronization semantics.
This provides an alternative to syntax-directed translation for
general-purpose logic synthesis of asynchronous circuits.

Our work makes several contributions to asynchronous logic
synthesis. The key novel features of our approach include:

• a set of rewrite rules that convert an arbitrary CHP pro-
gram into the concurrent composition of a fixed/templated
set of CHP building blocks (Section III-A,B,D–H) that is
equivalent to the original program;

• a three-way handshaking element with an efficient quasi
delay-insensitive circuit implementation that can imple-
ment the key CHP building block (Section III);

• an approach to synthesizing registers/storage elements
that reduces sharing between different ports in com-
parison to standard mux-based approaches in existing
synthesis engines for asynchronous logic (Section III-C);

• a method that automatically handles multiple channel
actions in an asynchronous design that is compatible with
the optimized register mapping strategy (Section III-I);

• an efficient translation of the building blocks into
other asynchronous circuit families, including GasP, and
MOUSETRAP (Section IV).

We compare our results to two existing tools for SDT,
showing significant improvements in area (39%), delay (50%),
and energy (58%) simultaneously, over the previous state-of-
the-art tool (Section V). For small designs, i.e. ones where
it is practical to hand-design and optimize circuits in order to
achieve the best possible implementation such as the primitive
dataflow components used by dataflow synthesis tools [14],
the circuits produced by our approach are on par with those
obtained manually. This means that our approach can be used
as the logic synthesis back-end for dataflow synthesis tools,

eliminating the need for a hand-designed dataflow library. We
believe our improvements represent a qualitative advance in
logic synthesis for asynchronous circuits.

II. PRIMITIVES AND BACKGROUND

A. CHP

CHP is a hardware description language used to describe
clockless circuits derived from C.A.R. Hoare’s Communicat-
ing Sequential Processes (CSP) [18]. In CHP, circuits are
described at an abstract level as processes, each of which have
some internal state, represented by variables, and a program
that determines the sequence of actions that this process
performs. Processes do not directly have access to internal
variables of other processes, but rather communicate values
across channels. Channels are unidirectional and ownership
of the sending and receiving sides of a channel are fixed.
If two processes need bidirectional communication then two
channels, with their relative orientations flipped, are needed.

A CHP program, which specifies the behavior of a process
can consist of the following constructs:

• Skip: skip is an elementary action that does nothing and
continues to the next action.

• Assignment: x := e is an elementary action that sets
the variable x to the value e , where e is an expression.
Since we often set Boolean variables to true or false ,
we introduce the short-hand notation x↑ and x↓ to
correspond to x := true and x := false respectively.

• Send: C !e is an elementary action that sends the value
of the expression e over the channel C . C ! is a dataless
send, where no value is sent over the channel, but a com-
munication is performed nevertheless for synchronization
purposes. Channels do not buffer values; hence, a send
will block until the corresponding receive is attempted,
and vice versa.

• Receive: C ?x is an elementary action that receives a
value over the channel C and stores it in the variable
x . C ? is a dataless receive, where the received value is
ignored, and only the synchronization is performed.

• Channel Access: C is a shorthand used some places in
this work, for either C ! or C ? when it is not relevant to
differentiate between the sending and receiving ends of
the channel.

• Channel Probe: C is a Boolean used determine if the
channel has a pending action to be completed. Both the
sending or the receiving end of a channel can be probed.
If the sender (receiver) probe is true, that means that the
receiving (sending) end is blocked waiting for the sender
(receiver).

• Sequential Composition: S ;T executes S followed by T ,
where S and T are any CHP programs.

• Parallel Composition: S ∥ T executes the programs S
and T in parallel, i.e. they may be executed in any order.

• Deterministic Selection: [G1 → S1[]...[]Gn → Sn]
where Gi, known as guards, are Boolean-valued expres-
sions and Si are CHP programs, known as branches. The
selection waits until one of the guards, Gi, evaluates to
true , then executes the corresponding program, Si. This
construct is similar to a switch-case statement in several

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3572364

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

3

programming languages. The guards must be pairwise
mutually exclusive, i.e. at most one of them can be true.
In any selection with two or more branches, the last guard
can also be an else , which is simply a shorthand for
writing ¬(∨

i
Gi), the negation of the disjunction of all

the previous guards. The notation [G] is shorthand for
[G → skip], which corresponds to waiting for G to
become true, then proceeding.

• Non-Deterministic Selection: [|G1 → S1[]...[]Gn →
Sn|] is identical to the deterministic selection except that
the guards do not have to be mutually exclusive. If two or
more evaluate to true simultaneously, then one is picked
arbitrarily (not necessarily at random). In a circuit, this
choice is implemented by a collection of arbiters. When
two or more guards evaluate to true simultaneously, it
can cause a metastable state in the arbiter. This metastable
state then resolves non-deterministically, giving the grant
to one of the branches of the selection statement. There-
fore, the digital model of this selection statement is also
non-deterministic in such a condition.

• Loop/Repetition: *[G1 → S1[]...[]Gn → Sn] is sim-
ilar to the deterministic selection statement. However,
once a branch has completed execution, the guards are
re-evaluated. If one is true (guards must be pairwise
mutually exclusive), then the corresponding branch is
executed, and the process repeats until none are true.
When this occurs, the loop terminates. Note that a loop
may terminate without executing any branch even once,
if all guards are false the first time it is reached. This
construct is similar to a while loop, with the difference
of having several possible branches instead of one. *[S]
is shorthand for *[true → S], which corresponds to an
infinite loop – one that perpetually executes S .

• Do-Loop: *[S ←− G] is similar to a loop, but first
executes S then evaluates the guard G . If it evaluates to
true , then the process repeats, until G evaluates to false .
Do-loops may only have a single branch. This construct
is similar to a do-while loop in programming languages.

The synchronization behavior of a CHP program is a result
of the organization of communication actions in the program.
Changing the synchronization behavior can modify the un-
derlying computation in a fundamental way. For example,
consider the following program that corresponds to a counter.

x := 0; *[[|INC −→ x := x + 1; INC ?
[] INC2 −→ x := x + 2; INC2?
[] READ −→ READ !x
[] ZERO −→ x := 0;ZERO? |]]

Now if we have an environment that executes the following
sequence of actions: ZERO !; INC !; INC2!;READ?v , then
we know that the value of v will be set to 3 in all possible
executions. On the other hand, if we change the synchroniza-
tion behavior of the environment to ZERO !; INC !; (INC2! ∥
READ?v), then the value of v is non-deterministic—it could
be either 1 or 3. Mapping a CHP program into dataflow
components often changes its synchronization behavior. In the
example above, since INC2 and READ are different channels
without any local data-dependency, dataflow decomposition

will by default permit their parallel execution [15], [19]—
resulting in erroneous executions.

It is known that if a CHP program is slack elastic, then
changing its synchronization behavior does not affect the
underlying computation [8]. In general (as seen here), a CHP
program need not be slack elastic. Hence, dataflow synthesis
tools like Fluid [14] only accept sequential programs that are
probe-free as input programs, which have been shown to be
slack elastic [8]. The approach to logic synthesis we present
here is general, and does not impose any such restriction.

B. Handshakes and C-Elements
In order to enable ease of description of circuit behavior

at a lower level, we use a language closely related to CHP,
known as handshaking expansions (HSE). HSE is identical
to CHP, with the additional constraint that all variables are
Boolean-valued, which makes it a natural choice for circuit-
level descriptions.

In order to provide some context for the synthesis of CHP to
circuits, we first describe some primitives. Firstly, the abstract
channels between processes need to be translated to operations
on wires/signals. Each channel in our synthesis is implemented
with two wires, the request and acknowledge. The process at
each end of the channel senses one wire and drives the other,
according to the four-phase handshake protocol. The process
that drives the request of a particular channel is known as the
active side and the side that drives the acknowledge is known
as the passive side. The protocol is as follows:

1) Initially both wires are low.
2) To initiate a communication, the active side sets the

request wire high.
3) When the passive side wishes to acknowledge, it sets

the acknowledge wire high.
4) To reset, after receiving the acknowledge, the active side

pulls the request wire low.
5) In response to request being lowered, the passive side

pulls the acknowledge low.
6) The channel is now back in its original state and another

handshake can be performed.
In our notation, this is written succinctly as:

Active : r↑; [a]; r↓; [¬a]
Passive : [r]; a↑; [¬r]; a↓

where [x] denotes waiting for x to be true. Note that the
four-phase handshake is not the minimal protocol for commu-
nication; there also exist two-phase handshakes where the first
two actions by themselves (on each side) constitute an entire
handshake synchronization. Instead of using the lowering to
just reset the channel variables, they can be used to perform
another handshake synchronization.

Next, we turn to the C-element half-buffer circuit [20]. C-
elements behave as follows:

1) If all inputs are low, then the output is low.
2) If all inputs are high, then the output is high.
3) In all other cases, they hold state (the output for the

previous inputs).
Fig. 1 (a) shows the implementation of a 2-input inverting

C-element. An additional inverter would be required on the

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3572364

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

4

Fig. 1: (a) Transistor-level implementation of a 2-input invert-
ing C-element. (b) C-element buffer circuit. P and A are two
channels. The C-element is on the passive side of P (drives the
acknowledge) and on the active side of A (drives the request).
(c) The initial token buffer, used as an implementation of
∗[S0;Sn+1], where S0 is active and Sn+1 is passive.

output of this gate to create a non-inverting C-element. Fig. 1
(b) shows the half-buffer circuit. The bubble on one input is
an inversion, and can be thought of as having an inverter on
that input. In effect, it waits for P .r ∧¬A.a to be true (false)
before raising (lowering) its output. The exact sequence is:

[P .r ∧ ¬A.a];P .a↑,A.r↑; [¬P .r ∧A.a];P .a↓,A.r↓

Upon inspection, it is evident that the C-element really se-
quences two handshakes, a passive one on P and an active one
on A. Effectively, it is an implementation of the process whose
CHP description is: *[P ;A], provided the process has the
passive side of channel P, and active side of channel A. P ;A
denotes a channel access on P followed by a channel access on
A. The loop *[..] denotes an infinite repetition of the enclosed
set of actions. Note that this is a popular circuit, and forms the
basis of the control circuits in Sutherland’s micropipelines [20]
and the first asynchronous microprocessor [21].

III. SEQUENTIAL SYNTHESIS OF CHP

In the previous section, implementation of CHP of the form
*[P ;A] was described. The obvious next step would be to
incrementally extend this to CHP of the form *[P ;C ;A]
where C is another channel, and the process under discussion
may have access to either the active or the passive side. In
order to perform a three-way handshake sequencing, it might
be tempting to use two C-element buffers and connect two of
their channels in a way so as to achieve a sequencing on the
intervening channel. However, a more efficient way to perform
this sequence of actions can be achieved with a single three-
input C-element as shown in Fig. 2.

The PAA element (Fig. 2) can be directly written as follows:

*[[P .r ∧ ¬A.a ∧ ¬C .a];P .a↑,C .r↑;
[¬P .r ∧A.a ∧ C .a]; P .a↓,C .r↓]

∥ *[[C .a];A.r↑; [¬C .a];A.r↓]

where the second process is simply a wire connecting C .a and
A.r . For the PPA (Fig. 2) element, the corresponding process
is:

*[[P .r ∧ ¬A.a ∧ C .r];P .a↑,C .a↑,A.r↑;
[¬P .r ∧A.a ∧ ¬C .r];P .a↓,C .a↓,A.r↓]

Fig. 2: The two kinds of sequencer elements, depending on
whether the middle channel is active or passive. If active, then
the sequencer is the PAA element, and vice versa.

These sequencer elements, which sequence three hand-
shakes, form the fundamental building block for program
synthesis. As the name suggests, they provide the ability to
implement a sequence of actions, which at an abstract level,
is precisely the CHP description of a process. These elements,
as well as the remaining control circuits described later for
each CHP construct constitute a control circuit library, which
is used as a basis set for implementing programs. All circuits
in this library, which will be described hereafter, are novel
contributions of this work.

A. Linear Programs

In order to build up to the complete synthesis methodology
for CHP, we start with the simplest kind: linear programs.
Linear programs are those where the CHP is of the form
*[C1;C2; ..;Cn], where each of the terms Ci are elementary
actions, i.e. assignments to local variables, sends or receives.
In order to synthesize this, note that each semicolon in the
program corresponds to a sequencing. Hence, this CHP can
be rewritten as:

*[S1;C1;S2] ∥ *[S2;C2;S3] ∥ ...
∥ *[Sn ;Cn ;Sn+1] ∥ *[S1;Sn+1]

where each of the Si are fresh channels. This rewriting
is useful since we already have circuits for the first n pro-
grams and synthesis would involve merely connecting them
appropriately, under the assumption that the first channel
action in any of the new programs is passive, and the third
is active. However, under this assumption, the last program,
i.e. *[S1;Sn+1] is not of the form implementable by the
sequencer elements, since it is an active action followed by
a passive action (enforced due to the other sides being passive
and active respectively). In order to implement this particular
program, we need a special initializer circuit known as an
initial token buffer (ITB), shown in Fig. 1 (c). As before, the
bubbles represent inversions, and since there is an inversion on
the output of the C-element, the initial state for the output is
high. From this, it is easy to see that the sequence of transitions
for this circuit is:

*[S1.r↑,Sn+1.a↓; [S1.a ∧ Sn+1.r];
S1.r↓,Sn+1.a↑; [¬S1.a ∧ ¬Sn+1.r]]

which corresponds to performing an active handshake on
S1 and a passive handshake on Sn+1, in parallel. In other
words, this circuit implements *[S1,Sn+1], which is slightly
different from what was required, which was *[S1;Sn+1].

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3572364

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

5

However, this is not an issue since S1 happening before Sn+1

is enforced by the rest of the circuit.
In order to understand the circuit topology, notice that the

rewritten CHP forms a ring, with each program synchronized
with two other programs, which are one step ahead and one
step back. Finally, the ITB ‘ties up’ the first and last ones,
closing the ring. Hence, any linear CHP can be implemented
using a ring of C-elements, as we have just demonstrated. The
channels, implemented by the request and acknowledge wires,
form the interface/connections within the ring.

Maelstrom performs precisely this in order to synthesize a
linear program. For each action in the program, a sequencer
element is instantiated, depending on the type of the action
(active/passive). The channels on either side of these elements
are then connected in the correct order, forming a chain. Fi-
nally, an ITB is instantiated, connecting the passive (incoming)
channel of the first sequencer element and the active (outgoing)
channel of the last sequencer element, to close the chain up
into a ring.

Finally, we observe that the behavior of the ring of se-
quencer elements is such that the first half-phase (assertion
of request and corresponding acknowledge) of handshakes
on all the channels Si are performed first, followed by the
second half-phase (deassertion of request and corresponding
acknowledge) on all the channels. Essentially, there is a wave
of 0-to-1 transitions propagating through the circuit, followed
by a wave of 1-to-0 transitions.

B. Parallel Actions
In prior sections, we have seen how to synthesize elementary

actions and linear sequences of elementary actions. However,
there are several more constructs in CHP which need to be
handled in order to obtain a complete synthesis method. The
first of these is the parallel construct. The parallel construct
allows several elementary actions to happen in parallel, i.e. in
any order, as opposed to the sequence, which defines a single
order on them. Consider the CHP fragment: *[..;B ,C ; ..].
Here, B and C may complete in any order. Our current
synthesis of linear programs is insufficient to handle this, since
we can only place a single sequencer element per action and
the connectivity defines the order in which they perform the
actions. Hence, we need another element, a parallelizer.

The two-way parallelizer is shown in Fig. 3(a). The prev
and next channels connect to the rest of the chain of se-
quencers. When prev .r is raised, the parallel split activates
both sequencer elements. The acknowledge on prev is sent
back only when both sequencer elements complete (by the C-
element in the parallel split). Further, the portion of the circuit
following this parallel is only activated when both actions B
and C complete (by the C-element in the parallel merge.
Finally, the acknowledge is split out into both sequencer
elements. The circuits for the N-way parallelizer would involve
having N-input C-elements in the parallel split and merge,
instead of 2-input C-elements.

C. Datapath Synthesis
In the previous sections, we discussed the synthesis of

simple CHP programs, yet this is only the half of the picture.

Fig. 3: a) The two-way parallelizer element, composed of two
parts: the parallel split and the parallel merge. b) Implemen-
tations of the elementary actions of CHP using the sequencer
elements. Store elements are data storage elements that capture
values. Eval elements are combinational circuits that compute
some function of variables. Note that an assignment is equiva-
lent to the combination of a send and a receive, from the point
of view of the datapath. Hence a send-receive pair is typically
known as a “distributed assignment.”

The C-elements that implement each elementary action also
need to communicate with the datapath to actually perform the
action. In the case of receives, the value that is received needs
to be captured in a state-holding element so that it is accessible
to the process later. In the case of sends, the expression to be
sent needs to be computed and routed to the data wires of the
channel that expose the value, in order for the environment to
read them. In the case of assignments, both are required, the
computation of a value and the placement in a data storage
element. Fig. 3(b) shows the exact interaction between the
control and data components. The channel between the control
and datapath, D , acts as a command channel, which causes the
datapath component to perform its action.

The actual implementation of these expression computation
(Eval) and data storage (Store) elements depend on the choice
of datapath circuit family. The conventional case where bits are
encoded on a single-rail, is known as the bundled-data datapath
family. Alternatively, instead of representing bits as single
wires, encoding them in one of several possible 1-of-N codes
results in the quasi-delay insensitive (QDI) datapath. Various
types of QDI datapaths have been designed previously [22].

For the bundled data circuit family, we use level-sensitive
latches as the storage (Store) elements, and use pulse-
generators in order to briefly make the latches transparent and
capture values. The acknowledge emanating from the Store
element is simply a delayed version of the request, with a
delay that corresponds to the capture delay of the latch. For
the computation (Eval) blocks, we need combinational logic
that implements functions of Boolean variables. We use the
ABC logic synthesis and verification system to generate these
circuits. For the Eval blocks, similar to the Store blocks, the
acknowledge returning to the control is a delayed version of
the request, with the delay matched to the delay of the com-
binational logic that implements the necessary computation.

1) Static Single Assignment Form: The choice of datapath
family is crucial to the design process, but it is not the only
one. Even within a single circuit family, there are several
ways of implementing the same datapath when variables are

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3572364

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

6

Fig. 4: The problem of sharing pulse generators across control
ports for the same latch. The most efficient way to implement
this is to have one pulse generator per control port.

assigned and used several times. For example, consider the
following CHP: *[A?x ;B !(x + 1);C ?x ;D !(x + 2)]. Here,
the variables x is assigned twice. Hence, it is necessary to
allow for the value of x to be written/updated from two places.
When translating this to hardware, x can be implemented with
either a single Store element with two write-ports, or as two
Store elements. For the bundled datapath family, this would
correspond to a single W -bit latch with a W -wide 2-to-1 mux,
or two individual W -bit latches (where W is the bitwidth of
the variable x). In general, for a variable that is assigned N
times in a program, it can be implemented as a single latch
with an N-to-1 mux, or as N separate latches. To determine
which strategy is better, it is necessary to count the number
of transistors that would be required to implement each.

First, notice that the problem of sharing pulse generators in
the single latch implementation is non-trivial. In general, each
variable (implemented by a latch) can be written from several
different parts of the program, and the pulse generator must
trigger when each of these control signals go high, irrespective
of the state of the others. Implementing this with a single pulse
generator would require a complex state machine that produces
a rising edge when each of the control signals are asserted.
Due to this, it is evident that the cheapest way to implement
this is in fact with several pulse generators - one per control
port - with the final latch clock signal being the logical OR of
the outputs of these circuits. Hence, we compare our datapath
implementation style with this style of using pulsed latches.

Suppose a variable is assigned N times in a program, and a
single pulse generator can be implemented with k transistors,
where k is a constant that is determined by the required
pulse-width for the latch to successfully capture data. We will
assume that the variable is a 1-bit variable for simplicity; the
results can be easily scaled to get the desired numbers for an
arbitrary bitwidth. In the first implementation, where we use
a single latch with muxes, we require 12 transistors for the
latch, 10(N − 1) transistors for the N -way mux, kN for the
N pulse generators, 3N for the N -way OR-gate, which results
in the required number of transistors:

NFET =

{
(13 + k)N + 2, if N > 1

(12 + k), if N = 1

Note that the 3N for an N -way OR-gate is actually a
lower bound, and the actual count is larger. In the second
implementation, we require 12N transistors for the latches,

and kN transistors for the pulse generators, resulting in
NFET = (12 + k)N , which is uniformly better than the
first implementation. Hence, we choose this for our datapath
implementation. This technique is effectively equivalent to
renaming variables every time they are assigned, and replacing
accesses of variables between two assignments with accesses
of the correct fresh variable. Thus each fresh variable is
assigned exactly once, and only accessed until another of the
fresh set is assigned. Effectively, we rewrite the CHP as:

*[A?x0;B !(x0 + 1);C ?x1;D !(x1 + 2)]

This is very similar to a standard representation in software
compilers, known as static single assignment form, which
makes program analysis easier [23]. Here, it has the added
benefit of reducing the transistor count.

D. Initial Conditions and Loop-carried Dependencies

So far, we have assumed that the CHP description of a
process is of the form *[P], where P is some sequence of
actions. However, not all program can be described by this
template. In some cases, there is a need for a defined initial
state, followed by a non-terminating program. For example,
consider the accumulator:

a := 0; *[X ?x ; a := a + x ;A!a]

Here, the initial assignment, a := 0 is crucial for the correct
operation of the process. Note that a is also a loop-carried
dependency, i.e. the value of a on one iteration of the loop is
needed for the next iteration. In general, we can have a list of
initial conditions, resulting in CHP of the form:

x1 := v1; ...; xn := vn ; *[P]

where {xk : k = 1..n} is some subset of all the variables used
in the program. Hence, we need additional circuitry in order to
implement this. In the context of our current implementation
scheme, this is quite straightforward. For each variable that
is initialized, we simply instantiate a latch that is initialized
to the required value on reset, and the downstream program
refers to the value on this latch until the next assignment to the
variable. Further, an additional assignment block that stores the
‘last’ value of the variable in the aforementioned initial-value
latch is created, effectively implementing the loop-carry action
that is needed for the next iteration of the loop to proceed
correctly. This assignment block occurs last in the sequence
of actions in P , after all actions in the original program have
been completed, guaranteeing that the correct value to carry
around the loop is available.

E. Deterministic Selections

In this section, we deal with the first construct in CHP that
encodes conditional executions. Consider the following CHP
fragment:

*[..; [G1 −→ S1 []G2 −→ S2 .. []Gn −→ Sn]; ..]

For the deterministic selection, each of the guards are
pairwise mutually exclusive, i.e. at most one of the guards may
be true. For the program to be free from deadlock, however, it

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3572364

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

7

Fig. 5: Implementation of a two-way selection construct,
composed of two parts: the selection split and the selection
merge. The interface with the datapath is as shown.

may not be the case that none of the guards are true when the
selection guards are evaluated; such CHP can be written but
is most likely a user error due to the fact that CHP selections
are blocking, i.e. if none of the guards are true, then the
program execution does not proceed past it, but instead waits
for some guard to become true. Once a guard is determined to
be true, the corresponding branch, which can contain any CHP,
is executed. After the completion of the branch, the execution
proceeds to the portion of the program after the selection.

From the description of selections, it is evident that this
is the first construct that requires a causal interaction be-
tween the datapath and the control circuits. The sequence
of actions/executions in prior programs could be statically
determined, but that is not the case here. The choice of branch
depends on the values of internal variables and may change
from one execution of the top-level loop (*[..]) to the next.
In order to implement this, we notice that we simply need
to split the request out forwards and merge the acknowledge
backwards, similar to the parallel case, but to the single correct
branch, instead of all branches.

The implementation of a two-way selection is shown in Fig.
5. The incoming request is routed to the datapath in order to
read out (Eval) the values of the guards. For simplicity of
exposition, they are shown to be encoded on a single rail,
i.e. the bundled data encoding, but other encodings are also
possible, as discussed earlier. This guard evaluation can be
thought of as a multiple-output Eval block, with the acknowl-
edge delay being the largest of the delays of the evaluators
for each of the guards. The read acknowledge, which implies
that the guard values have settled, is used by the selection
split to activate the appropriate branch. The selection split
also propagates the acknowledge from the activated branch
backwards. As before, the interface with the sub-programs are
in terms of request-acknowledge channels. Once the activated
sub-program completes, the control passes downstream to the
rest of the program, via the selection merge that combines the
requests and splits the acknowledges correctly. As in the case
of the parallel construct, this too can be easily extended from
a two-way to an N-way construct.

1) Φ-functions and Merging Logic: Our datapath synthesis
was designed with simplicity, and therefore transistor count,
in mind. However, selections and conditional executions intro-
duce an inconvenience. To illustrate the problem, we consider
the following CHP:

*[C ?c; [c = 0 −→ x := 4[]c = 1 −→ x := 8];X !x 2]

If each x was renamed every time it was assigned, then it
is not possible to determine before runtime the correct latch
whose output must be used to calculate the value that is sent
out over the channel X . In order to handle this, we introduce
logic at the end of every selection, that essentially acts as a
value merge, selecting the correct latch based on which branch
was taken in that selection. We only perform this for variables
that are used after the selection, in the downstream program.

In the static single assignment form mentioned earlier, this
is known as a Φ-function, which picks the correct value based
on which branch was taken in a program. This analysis of
detecting uses of variables is part of a larger live variable
analysis pass that is performed as a pre-processing step. The
instantiation of merging logic is performed automatically as
part of Maelstrom’s synthesis flow.

F. Non-Deterministic Selections

The other kind of construct that introduces choice is the
non-deterministic selection, which is quite similar to the
deterministic selection, except that several guards can be
true simultaneously. In this case, the process is allowed to
arbitrarily pick a branch with a true guard and proceed. Non-
determinism is typically introduced when probes of channels
are used as guards, since actions might be initiated on any
channel to the process, by the environment of the process. For
example, consider the non-deterministic merge:

*[[|X 1 −→ X1?x[]X 2 −→ X2?x|];Y !x]

Here, either channel may have an action pending, and the
process needs to arbitrate between the two choices. When
translating this to hardware, this necessitates the introduction
of an arbiter circuit. In general, N-way non-deterministic
selections can be implemented using an N-way arbiter. In
terms of our synthesis procedure, we rewrite the CHP as:

*[[|X 1 −→ X ′
1!X1;X1?[]X 2 −→ X ′

2!X2;X2?|]]

∥ *[[X
′
1 −→ X1?x[]X

′
2 −→ X2?x];Y !x]

where the first process is precisely implemented by the arbiter
circuit. The non-determinism has now been decomposed out
into a standard form that can be implemented by standard
circuits, leaving the original CHP with purely deterministic
selections. This process of decomposing out arbiters is per-
formed automatically as part of our synthesis flow.

G. Loops

The next target CHP construct is the repetition, also known
as a loop. So far, we have implicitly used a special case
of a loop to represent the top-level infinite repetition that
characterizes a circuit. In general, a CHP loop is of the form:

*[..; *[G1 −→ S1[]G2 −→ S2..[]Gn −→ Sn]; ..]

The guards are Boolean-valued expressions that are required
to be pairwise mutually exclusive, but may not be an else.
As opposed to selections, loops are non-blocking, i.e. if none
of the guards are true, then control passes past the loop to the
downstream program. If the loop consists of a single branch

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3572364

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

8

whose guard is the elementary Boolean expression true, then
the loop reduces to an infinite loop: *[true → S]. The top-
level infinite repetition *[S] that has been implicitly used
so far is essentially a shorthand notation for *[true → S].
Conceptually, loops are the most complex constructs in CHP
and the problem of synthesizing a circuit that implements
them in the general case is a difficult one. In the simple
case of a single branch, with a guard that is identically true,
we have shown in prior sections that a ring of C-elements
is a valid implementation. However, extending it to several
branches directly is quite complex and results in a circuit that
is expensive. Firstly, note that top-level loops with multiple
branches, i.e. ones of the form:

*[G1 −→ S1[]G2 −→ S2..[]Gn −→ Sn]

can be rewritten into a single-branch loop with a multi-branch
selection as:

*[[G1 −→ S1[]G2 −→ S2..[]Gn −→ Sn]]

Note that these are equivalent since loop guards can only
consists of local variables. If the first program is non-
terminating, then the behavior of the second program is
indistinguishable from that of the first. If the first program
terminates, i.e. all guards are false, then the second program
would be deadlocked since selections in CHP are blocking.
In this case as well, the behaviors of the two programs are
indistinguishable from the perspective of an external observer.
Hence, this rewrite is justified. This addresses the case for
when the multi-branch loop is at the top-level. Once this
rewrite has been performed, any remaining multi-branch loops
must be within another loop. In general, these are of the form
described at the start of this section. Instead of synthesizing
these loops directly, we excise them into a separate process.
This is justified by the fact that the circuit complexity for the
two strategies is almost identical.

In order to derive the ‘excision’ strategy for these loops,
recall that we have already computed live variable information
at all points in the program. Hence, we can extract this loop
out into a separate process, and insert data communications
appropriately in order for the loop to perform the correct
computation. As a simple example, consider the following
CHP, which computes the greatest common divisor of two
numbers via Euclid’s algorithm:

*[X ?x ;Y ?y ; *[x > y −→ x := x − y
[]y > x −→ y := y − x];O !x]

Here, the internal loop requires two values/inputs to operate
(x and y) and returns another value/output (x). In general, the
number of input and output variables can both be greater than
one. In this case, we simply concatenate them all and transmit
them as one, in order to minimize the umber of channel actions
required, which directly minimizes the control overhead.

To perform the excision, we factor out the loop into a
separate infinite loop, similar to factoring out code into a
function call. The rewritten CHP results in two loops operating
in parallel, properly synchronized through the fresh channels
Ls and Lf :

*[X ?x ; Y ?y ; Ls !{x , y},Lf ?x2; O !x2] ∥
c := 0;
*[[c = 0 −→ Ls?{x1, y1}, c := 1[]else −→ skip];

[x1 > y1 −→ x1 := x1 − y1
[]y1 > x1 −→ y1 := y1 − x1
[]else −→ Lf !x1, c := 0]]

The reader can verify that the CHP is equivalent to the
original and is now composed of two programs operating in
parallel, each of which contains only the top-level simple loop,
and can hence be synthesized based on techniques discussed
in prior sections.

We now state the general method to excise loops. Consider
any nested/internal loops of the form below:

*[..; *[G1 −→ S1[]G2 −→ S2..[]Gn −→ Sn]; ..]

The appropriate rewritten CHP for this is:

*[..;Ls !{x1, x2, .., xn},Lf ?{y1, y2, .., ym}; ..] ∥
c := 0;
*[[c = 0 −→ Ls?{x ′

1, x
′
2, .., x

′
n}, c := 1

[]c = 1 −→ skip];
[G ′

1 −→ S ′
1[]G

′
2 −→ S ′

2..[]G
′
n −→ S ′

n

[]else −→ Lf !{y ′
1, y

′
2, .., y

′
m}, c := 0]]

where G ′
i and S ′

i are the same as Gi and Si respectively,
with the variables replaced by their appropriate primed coun-
terparts. The variable c is a one-bit variable and hence one of
the two branches in the first selection will always be true. This
transformation is performed automatically as a pre-processing
step on the input CHP, prior to circuit generation. Finally, note
that there can be several levels of nesting of loops within other
loops and in this case, the excision is performed bottom up,
recursively.

H. Do-Loops

The method for handling do-loops is quite similar to
that of loops. Consider any internal do-loop of the form
*[..; *[S1 ←− G1]; ..]. The appropriate rewritten CHP for
this is:

*[..;Ls !{x1, x2, .., xn},Lf ?{y1, y2, .., ym}; ..] ∥
c := 0; *[[c = 0 −→ Ls?{x ′

1, x
′
2, .., x

′
n}, c := 1

[]c = 1 −→ skip]; S ′
1;

[G ′
1 −→ skip

[]else −→ Lf !{y ′
1, y

′
2, .., y

′
m}, c := 0]]

where G ′
1 and S ′

1 have the same meaning as in the case
of loops. As before, we are left solely with CHP contructs
for which the synthesis procedure is already defined. Finally,
an interesting observation to be made is that loops can be
converted to do-loops and vice versa. The conversion from a
do-loop to a loop is straightforward. The conversion of a loop
to a do-loop can be performed as follows. Consider a loop of
the form: *[G1 → S1[]G2 → S2..[]Gn → Sn].

This can be rewritten into a do-loop, with a simple guard
that essentially checks if the original loop has terminated, and
a selection inside it as shown below:

*[c := 1; [G1 −→ S1[]G2 −→ S2..[]Gn −→ Sn
[]else −→ c := 0] ←− c = 1]

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3572364

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

9

This conversion to do-loops is also a part of the pre-
processing that is performed in Maelstrom. Do-loops also have
the property of being easier to deal with from the perspective
of data-dependency analyses, since the body of the loop is
guaranteed to execute at least once. Since loops and do-loops
are inter-convertible as shown above, in the next section, we
will assume that loops have already been converted to the
equivalent do-loops and deal solely with these.

I. Multiple Channel Accesses

The synthesis procedure described so far has overlooked an
important issue, which will be addressed in this section. In
order to understand the source of the problem, first consider
the following simple CHP: *[X ?x ;X ?x ;Y !x]

This is a simple linear program of the form described in
Section III-A, and at first glance, might look like it can be
synthesized directly. According to the aforementioned method,
this would be rewritten as:

*[S0;X ?x ;S1] ∥ *[S1;X ?x ;S2] ∥
*[S2;Y !x ;S3] ∥ *[S0;S3]

When this is implemented as a circuit, there is now a
wiring conflict. Both X actions are on the same channel,
i.e. there is a unique pair of request and acknowledge wires
between the process and its environment, defining this chan-
nel. If two C-elements are instantiated, each driving the
request/acknowledge wire, this would result in multiple drivers
existing for the same node, which is incorrect. In order to
rectify this, the input CHP needs to be rewritten into a form
where each channel is accessed at most once in a single
iteration. Syntactically, this is equivalent to every channel
appearing at most once in the CHP description of the process.

This is achieved with the help of fresh channels that act as
aliases for the original channel. For the example above, this
can be achieved by introducing aliases X1 and X2. In order
to correctly manage accesses of these new channels and the
single old channel, a corresponding handler process is also
created, as follows:

*[X0?x ;X1?x ;Y !x] ∥
s := 0; *[X ?z ;
[s = 0 −→ X0!z , s := 1[]s = 1 −→ X1!z , s := 0]]

which results in the original channel (and all newly intro-
duced channels) syntactically accessed only once, which is
compatible with our circuit generation methodology as there
will be no longer be any multiple driver conflicts when each
channel access is realized with a circuit element. Essentially,
the handler process correctly sequences accesses of the chan-
nel based on their order in the original program. The case
of linear programs is straightforward, since the ordering of
the accesses of the fresh alias channels can be statically
determined. However, once control flow is introduced through
the use of selections and loops, there is extra information that
needs to be communicated to the handler process in order
for correct handling. To see how this works, consider the
following program fragment:

*[..; A?x ; ..;
[G1 −→ [G11 −→ ..[]G12 −→ A?x]; ..
[]G2 −→ ..]; ..;
*[..; A?x ; .. ←− G3]; ..; (p)
[G4 −→ ..[]G5 −→ ..]; ..]

where all accesses of A are explicitly stated, and a program
fragment (..) denotes arbitrary CHP that does not contain
accesses of A. Here, after replacing A with freshly generated
aliases, there is no sequencing on accesses of these aliases that
can be determined without actually executing the program,
since the sequence of channel accesses is data-dependent.
Hence, the handler process needs information about the exe-
cution state of the original program. To be precise, the handler
requires information about which branches were taken in the
program.

However, notice that complete state information does not
have to be transmitted. Intuitively, it is obvious that if there
are selections/loops where the channel is not accessed at all,
then the choice of branch in that particular selection/loop is
inconsequential to the channel access handler. In the example
above, once the program is at point p, the handler does not
need to know whether G4 or G5 was true, since there are no
accesses of A within that selection and regardless of which
branch is taken, the next access will occur at the one marked
in red.

In order to generate the handler process, we first perform a
pre-processing step, which involves building a state table from
the CHP program. A CHP program, like any other program,
is a directed graph, with vertices representing elementary
actions and edges representing control flow; and translating
this into a state transition table is straightforward to achieve.
The annotated CHP, with channel accesses of A replaced by
accesses on freshly generated alias channels {Ai} is shown
below:

*[..; 1 A1?x ; ..;

[G1 −→ 8 [G11 −→ 9 ..[]G12 −→ 2 A2?x]; ..

[]G2 −→ 5 ..]; 4 ..;

*[3 ..; A3?x ; .. ←− G3]; 6 ..;

[G4 −→ ..[]G5 −→ ..]; 7 ..]

where the numbers in red encode the state of the program.
A state transition table that corresponds to this is shown in
Table I (left). For convenience, the state encoding is chosen
such that states {1, .., n} are the states where an alias access
occurs, but this is not necessary for correctness. The condition
True is used to denote an unconditional state transition.

The state transition table can be optimized as follows to
remove redundant transitions. Consider state 5, where there is
no alias access. The only possible state transition from here
is an unconditional one to state 4. Hence, the seventh row
in Table I (left) can be removed and the second row can
be modified such that the resulting state for that row is 4
instead of 5. Precisely the same optimization can be applied
to the transition from 6 to 7, and several others. This is in
effect, computing the transitive closure of the unconditional
state transitions, when the source state is one where an alias
access does not occur. The final optimized state table is shown

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3572364

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

10

TABLE I: State Transition Table for CHP with Multiple
Channel Accesses for Channel A, before (left) and after (right)
optimization.

Current Condition Next
State State

1 G1 8
1 G2 5
8 G11 9
8 G12 2
9 True 4
2 True 4
5 True 4
4 True 3
3 G3 3
3 ¬G3 6
6 True 7
7 True 1

Current Condition Next
State State

1 G1 8
1 G2 3
8 G11 3
8 G12 2
2 True 3
3 G3 3
3 ¬G3 1

in Table I (right), and the corresponding annotated CHP is
shown below:

*[..; 1 A1?x ; ..;

[G1 −→ 8 [G11 −→ ..[]G12 −→ 2 A2?x]; ..
[]G2 −→ ..]; ..;

*[3 ..; A3?x ; .. ←− G3]; ..;
[G4 −→ ..[]G5 −→ ..]; ..]

Once this optimized state encoding and transition table have
been generated, the handler process can be generated. We
simply introduce communications of branch decisions on fresh
channels and construct the handler process as a state machine:

*[..; A1?x ; ..; Cg1!(G1? 0 : 1);
[G1 −→ Cg2!(G11? 0 : 1);

[G11 −→ ..[]G12 −→ A2?x]; ..
[]G2 −→ ..]; ..;
*[..; A3?x ; ..; Cg3!(G3? 0 : 1)←− G3]; ..;
[G4 −→ ..[]G5 −→ ..]; ..]

∥ s := 1;
*[[s = 1 ∨ 2 ∨ 3 −→ A?x[]else −→ skip];

[s = 1 −→ A1!x , (Cg1?c;nxt := (c = 0)? 8 : 3)
[]s = 2 −→ A2!x ,nxt := 3
[]s = 3 −→ A3!x , (Cg3?c;nxt := (c = 0)? 3 : 1)
[]s = 8 −→ Cg2?c;nxt := (c = 0)? 3 : 2
]; s := nxt]

The reader can verify that these two process in parallel do
indeed implement the required behavior. Note that in practice,
we actually re-encode the states {1, 2, 3, 8} as {0, 1, 2, 3} since
this would enable us to represent the s and nxt variables with
only two bits. In case several channels are accessed more
than once, there are more handler process that need to be
generated, one per channel that is accessed multiple times. The
entire procedure described here is performed automatically by
Maelstrom as a pre-processing step, before circuit synthesis.

IV. ADDITIONAL SYNTHESIS STYLES

A. Two-Phase Datapath Circuits

As described earlier, at the end of section III-A, the positive
transition wave that propagates through the circuit completes
before the negative transition wave starts. This fact allows us
to extend our approach to also support data processing on both

Fig. 6: The PAA and PPA sequencer elements for the Mouse-
trap pipeline circuit family.

phases of the handshake easily, i.e. use a two-phase protocol
instead of a four-phase.

In order to achieve this, we first need to change the datapath
circuitry so that it is triggered on both edges, instead of just the
positive. For the bundled data circuit family, this simply means
changing the pulse-generator for the latch to trigger on both
edges. For the QDI circuit family too, there exist straightfor-
ward ways to effect a similar change. Next, the implementation
of selections assumes that a handshake will only occur on one
of the branches, and will reset before another branch is used.
To convert this to a two-phase compliant circuit, we need to
replace the OR-gates used in the selection with XOR-gates,
and replace the 2-input AND-gates in the selection split with
2-input XOR gates.

We note that using a two-phase protocol presents a minor
overhead in terms of circuit complexity and thus area. Further,
the power consumption of the datapath is also theoretically
doubled. However, the throughput of the system doubles as
well, as expected, and this is a fair trade. For designs where
power constraints are relatively relaxed, having the option to
obtain a 2× improvement factor with no added design effort
presents a significant advantage.

B. Other Control Circuit Families

So far, we have built our synthesis strategy upon the fun-
damental C-element micropipeline. But, as mentioned earlier,
the methodology is agnostic to the underlying circuits that
are actually used to build the control-flow ring elements. As
long as sequencers, parallel and selection blocks can be built,
then the synthesis strategy can be used. In Figs. 6 and 7,
we show the 3-action sequencers for the MOUSETRAP [24]
and GasP [25] circuit families. We omit the parallelizers and
selection splits and merges, but it is easy to see how these can
be constructed, following the same reasoning as for the QDI
family. These sequencers have the same timing constraints as
the FIFO control circuits that they are derived from. These
constraints need to be obeyed in order for correct operation,
unlike the QDI control circuits.

Fig. 7: The PAA and PPA sequencer elements for the GasP
pipeline circuit family.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3572364

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

11

For the MOUSETRAP family, the ITB that initializes the
ring, and the parallel split/merge elements are exactly the
same as the ones that are used for the C-element family. The
selection split and merge elements are slightly different due
to the nature of the controller. Reset is incorporated into the
ITB and the latches, which reset with their output low.

The GasP family sequencers can also be derived from the
GasP FIFO control circuit. The ITB strategy for GasP is
significantly different, since it uses a single wire (referred to as
the “state conductor”) for sequencing. Here, ring elements can
be connected in a loop, with all state conductors initially high.
The ITB is simply a pulse generator that pulls the first state
conductor low when Reset is deasserted. As time progresses,
the ring will oscillate without any explicit resetting by an
ITB. Again, the selection and parallel blocks can be derived
following similar reasoning as before.

We show the complete synthesized circuit for the merge
program (*[C ?c; [c = 0 → L0?x[]c = 1 → L1?x];R!x])
in Fig. 8. We show the circuits obtained for the QDI and
the Mousetrap control families. The datapath circuits that are
obtained are exactly the same for both cases.

V. EVALUATION

Maelstrom was used to automatically synthesize complex
CHP programs into circuits, in a 65nm technology node. As
mentioned before, for combinational logic that implements
datapath arithmetic, we use the ABC logic synthesis system for
our results [26]. We use the standard combinational synthesis
script resyn2 [27], provided with ABC. We also support the
open-source Yosys [28] tool (which uses ABC under the
hood) and Cadence’s Genus synthesis system as alternatives
for combinational logic synthesis. Since we use a single-rail
bundled datapath and match the delay in the control path
using delay lines, the output circuits from ABC are allowed to
glitch, as long as they settle within the time constraint imposed

by the delay line. For comparison, we synthesize equivalent
Balsa programs to Verilog using the Balsa synthesis system
[12], and generate a SPICE netlist from the generated Verilog
output. Despite Balsa’s age, it is the latest complete general-
purpose (i.e. supporting slack elastic and inelastic programs)
logic synthesis tool for asynchronous circuits in the literature.
We also compare against chp2prs, an existing naıve SDT
method for translating CHP to circuits.

A. Quantitative Results

We report cycle time (a.k.a. cycle period, the inverse of
throughput) [29]–[31] and energy-per-cycle metrics from pre-
layout SPICE simulations. We also report layout area from
a placed, power-routed and global-routed design of 100 in-
stances of each circuit. The reported number is an average,
per-instance area, across the 100 instances. The results of
our comparison are summarized in Table II, and we use the
geometric mean to compare normalized metrics (where 1.0
corresponds to Maelstrom). Across our test cases, on average,
our synthesis method shows an average improvement of 39%
in area, 50% in cycle time, and 58% in energy-per-cycle over
the Balsa synthesis method. We would also like to note that
the test case complexity is somewhat limited since Balsa-
generated Verilog netlists for more complex programs often
displayed incorrect functionality, and these issues could not
be resolved due to Balsa no longer being an active project.

The 2-phase results represent the case where the datapath
is activated on both phases of the handshakes that propagate
through the ring, instead of just on the positive half-phase. The
results from Maelstrom 2-phase are in line with what would
be expected, with approximately half the cycle-time (0.52×)
and energy-per-cycle (0.55×) of Maelstrom. The area for
Maelstrom 2-phase is slightly higher due to the added circuit
complexity of activating the datapath in both phases (1.04×).
Note that the cycle time results for the 4-phase synthesis can be

Fig. 8: Synthesized circuit for a merge. Primary inputs and outputs to the process are shown in red. Control-data interface
wires are shown in blue. a) Datapath circuit. b) QDI C-element-based control circuit. c) Mousetrap-based control circuit.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3572364

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

12

TABLE II: Results From SPICE Simulations of Synthesized CHP and Equivalent Balsa programs in a 65nm process. Lower
values are better across all metrics. Averages are geometric means, with larger numbers corresponding to greater factors of
improvement for Maelstrom. Maelstrom 2-phase produces larger circuits but performs better in terms of delay and energy.

Program CHP Method Area Cycle Time Energy
µm2 Ratio ns Ratio pJ Ratio

Maelstrom (2-phase) 299 (310) - (1.04) 0.35 (0.22) - (0.61) 0.10 (0.06) - (0.60)
Buffer *[L?x ;R!x] chp2prs 1258 4.22 4.25 12.01 0.86 8.48

Balsa 510 1.71 1.32 3.73 0.36 3.58
*[L1?x1;R1!x1;L2?x2; Maelstrom (2-phase) 1498 (1557) - (1.04) 2.73 (1.44) - (0.53) 0.61 (0.40) -

Sequence R2!x2;L3?x2; chp2prs 3595 2.83 25.66 9.40 3.60 5.90
R3!x3;L4?x4;R4!x4] Balsa 2084 1.64 6.22 2.28 2.67 4.38
*[L1?x1,L2?x2,L3?x3, Maelstrom (2-phase) 1553 (1620) - (1.04) 1.06 (0.56) - (0.53) 0.61 (0.37) - (0.61)

Parallel L4?x4;R1!x1,R2!x2, chp2prs 5178 3.32 6.24 5.89 6.97 11.37
R3!x3,R4!x4] Balsa 2527 1.62 1.94 1.83 1.19 1.94

*[L1?x1, Maelstrom (2-phase) 1215 (1236) - (1.02) 2.42 (1.26) - (0.51) 0.35 (0.23) - (0.67)
Adder L2?x2; chp2prs 2022 1.66 6.38 2.64 2.52 7.28

R!(x2 + x1)] Balsa 2760 2.27 3.31 1.37 0.94 2.71
*[L1?x1, Maelstrom (2-phase) 2420 (2470) - (1.02) 3.66 (1.91) - (0.52) 0.51 (0.32) - (0.63)

Multiplier L2?x2; chp2prs 3114 1.29 5.71 1.56 2.68 5.27
R!(x2*x1)] Balsa - - - - - -
*[C?c;L?x ; Maelstrom (2-phase) 684 (711) - (1.04) 1.45 (0.73) - (0.51) 0.28 (0.18) - (0.66)

Split [c = 0 → R1!x chp2prs 2879 4.21 10.05 6.93 2.85 10.33
[]c = 1 → R2!x]] Balsa 1316 1.93 2.33 1.61 0.39 1.42

*[C?c; Maelstrom (2-phase) 1124 (1193) - (1.06) 1.63 (1.13) - (0.69) 0.30 (0.15) - (0.50)
Merge [c = 0 → L1?x chp2prs 2981 2.56 15.14 9.29 2.36 7.87

[]c = 1 → L2?x];R!x] Balsa 2051 1.82 2.59 1.59 0.44 1.45
Maelstrom (2-phase) 4930 (5072) - (1.03) 17.22 (8.93) - (0.52) 9.83 (5.03) - (0.51)

GCD chp2prs 8881 1.81 374.52 21.75 85.60 8.71
Balsa 6488 1.31 37.64 2.19 28.35 2.89

Maelstrom (2-phase) 3921 (4043) - (1.03) 20.65 (11.87) - (0.57) 8.43 (4.53) - (0.54)
Fibonacci See Appendix A chp2prs 8150 2.08 212.65 10.30 104.80 12.44

Balsa 5983 1.53 57.12 2.77 17.33 2.06
Maelstrom (2-phase) 14275 (14543) - (1.02) 27.23 (15.65) - (0.57) 18.50 (9.60) - (0.52)

Bresenham chp2prs 19276 1.44 312.39 11.47 163.20 8.82
Balsa 20107 1.51 64.12 2.35 44.80 2.42

Average Balsa vs. Maelstrom (1.0) 1.64 1.99 2.38
excluding Balsa vs. Maelstrom 2-phase (1.0) 1.58 3.84 4.30
multiplier Maelstrom 2-phase vs. Maelstrom (1.0) 1.04 0.52 0.55

improved significantly by the use of asymmetric delay lines
which match the logic delay on the positive half-phase but
have much lower delay on the other phase where computation
is not performed; this improvement applies to circuits where
datapath delay dominates, and we plan to incorporate this
improvement in future work. Balsa’s sequencer optimizations
preclude this natural extension to 2-phase datapath activation,
as opposed to the (unavailable) Haste/TiDE tools, which
could be configured to produce 2-phase circuits. The primary
reason that the SDT approach is outperformed by Maelstrom
is the difference in the core sequential synthesis algorithm
(Section III). SDT works by having a statement request the
execution of a sub-statement, wait for its completion, and
then report that the statement is complete [10]. Applying this
repeatedly leads to a “telescoping” effect—the execution of
nested statements are “telescoped” by the outer statements
waiting for completion. Maelstrom’s approach avoids this
overhead, leading to better cycle time.

The cycle time (and therefore the throughput) of an asyn-
chronous circuit that is synthesized by a sequential method
depends on the exact input CHP specification. For example,
consider the two following programs:

*[L1?x1;L2?x2; [x1 > x2 −→ y := (x1 − x2);R!y
[] else −→ y := (x2 − x1);R!y]]

*[L1?x1,L2?x2;R!((x1 > x2)?(x1 − x2) : (x2 − x1))]

It should be clear that from an I/O perspective, both per-
form the same operations—that of calculating the absolute
difference of the two inputs. But the first version evaluates
(x1 − x2) and (x2 − x1) conditionally, unlike the second
one that computes both. When synthesized, the circuit that
is produced for the first program is much more expensive
than that of the second due to the presence of selections,
extra assignments, and multiple channel accesses. The circuit
for the first (second) program has an area of 7453 (2899)
µm2, cycle time of 6.80 (3.02) ns, and energy per cycle
of 2.96 (1.05) pJ. The process of analyzing and optimizing
programs can be performed at the CHP level, and we plan to
incorporate CHP re-structuring optimizations of this kind into
our design flow in the future. Further, the throughput of an
asynchronous circuit is also input-dependent, and varies from
cycle to cycle. Hence, the average throughput is the pertinent
measure. Note that the delay introduced by the controller is
small since it is just a single gate per program statement, and
the overwhelming majority of the delay arises from the delay
of the combinational logic that implements the computation,
except for circuits like FIFOs that have no logic.

Finally, it is important to note that the circuits using this
method are practically on-par with hand-designed dataflow
circuits when we examine small designs where it is practical
to make the comparison. In particular, the building blocks
for dataflow circuits (function, split, merge, copy, initial

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3572364

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

13

TABLE III: Results From SPICE Simulations of Maelstrom-
synthesized circuits for large CHP programs.

Design L-1 L-2 L-3 L-4
CHP Statements 20 31 64 28

Total Runtime (s) 1.59 7.98 6.53 7.83
Maelstrom Runtime (%) 10.17 10.10 11.39 22.99

ABC Runtime (%) 76.72 76.70 75.66 56.01
I/O Runtime (%) 13.11 13.20 12.95 21.00

Area (µm2) 7081 44731 42238 72063
Cycle Time (ns) 1.12 7.10 34.9 47.2

Energy (pJ) 0.99 6.22 32.37 38.37

token, buffer, source, and sink [14], [32]) have the same
area/delay/energy compared to those automatically generated
by Maelstrom. In particular, this means that existing dataflow
synthesis tools like Fluid can be implemented using CHP-to-
CHP mapping followed by Maelstrom, rather than requiring
their own custom circuit library.

In the past it was significantly easier to generate asyn-
chronous circuits that implement a given program correctly
using SDT, but it took significantly more effort to generate
circuits with performance similar to hand-optimized designs.
Our work demonstrates a path to high quality automated asyn-
chronous logic synthesis, and presents a significant advance-
ment in the logic synthesis methodology for asynchronous
circuits.

Table III summarizes results from running Maelstrom on
larger programs. The runtime is dominated by ABC and the
interface (I/O) between ABC and Maelstrom, which requires
printing expressions for ABC to synthesize. Large expres-
sion trees in the fourth test case causes Maelstrom’s data-
dependency analysis, which is required to instantiate registers
correctly, to take up a larger fraction of the runtime.

B. Functional Verification

Synthesis tools are a foundational component of any EDA
flow, as the entire infrastructure depends on the accuracy
and integrity of the synthesized circuits. The correctness of
the circuits generated by these tools directly impacts the
functionality and performance of the final chip. To ensure this,
we have integrated a robust and extensive suite of tests for
automated regression testing within Maelstrom. These tests go
well beyond the simple programs listed in Table II, providing
a more thorough verification process.

The automated regression tests are designed to synthesize
and evaluate CHP programs at multiple levels of complexity,
ranging from basic examples to larger, more complex designs.
By testing at the level of production-rules, i.e. gate-level, these
tests ensure that Maelstrom handles complex control flow
correctly and that the synthesized circuits perform as expected.

In addition to this, the test suite also covers the different
datapath and control styles supported by Maelstrom. This
ensures that the tool can generate correct implementations
for diverse design styles, making it a reliable part of the
ACT EDA flow. This rigorous testing ensures that the output
from Maelstrom meets the high standards required in hardware
design, contributing to a stable and reliable workflow for
designers.

Fig. 9: GDS view of the MD5 hash accelerator chip fabricated
in the Skywater 130nm process node.

C. MD5 Hash Accelerator
Maelstrom was also used to automatically synthesize CHP

that implements the MD5 hashing algorithm into a transistor-
level netlist. The physical design was performed using the
ACT design flow [33], in the Skywater 130nm process node.
The tape-out was completed using the Caravel test harness
from efabless, as part of the chipIgnite solution. The final
GDS sent to the foundry is shown in Fig. 9.

VI. RELATED WORK

Due to the high overhead of SDT (Section V), recent
work on asynchronous circuit generation has been focused on
dataflow-based synthesis [7], [14], [32], [34], [35]. Dataflow
synthesis decomposes a CHP program into the concurrent
composition of several smaller elementary CHP programs with
a fixed structure (dataflow building blocks)—which corre-
sponds to CHP-to-CHP translation. To complete logic syn-
thesis, hand-optimized parameterized circuits for the dataflow
building blocks are generated. However, dataflow decom-
position adds concurrency and relaxes the synchronization
behavior of the original CHP program. For example, two
data-independent actions that were sequential in the origi-
nal program may be executed concurrently in the dataflow
version [19]. The CHP-to-CHP transformation introduced by
dataflow synthesis is only valid for slack elastic programs, a
condition that usually requires whole program analysis or syn-
tactic restrictions on CHP [8]. High-level synthesis tools for
asynchronous circuits such as Fluid [14] are correct because
CHP constructs that can lead to slack elasticity violations are
absent in C/C++—the source language for Fluid. In other
words, SDT is the only previously known general-purpose
logic synthesis approach that translates general CHP programs
into asynchronous circuits.

VII. CONCLUSION

In this work, we presented a new technique to synthesize
behavioral descriptions of asynchronous circuits into gates,
and a tool that automatically compiles CHP into these circuits.
The approach is agnostic to the underlying control circuit
family. The proposed method starts from known high-quality
pipeline circuits and uses a simple way to construct sequencer
and control-flow elements from them that form a basis set
for the synthesis. The method also presents a clear separation
between control and datapath circuits, which enables the
use of different datapath families. The resulting open-source
(available via [9]) synthesis tool improves on the existing state-
of-the-art synthesis techniques by a significant factor, in terms
of performance metrics such as energy, delay and area.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3572364

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

14

APPENDIX A
CHP for the iterative GCD computation algorithm:

*[X ?x ;Y ?y ; *[x > y −→ x := x − y
[]y > x −→ y := y − x];O !x]

CHP for the 2n-th Fibonacci number generation algorithm:

*[N ?n, x := 0, y := 1; *[n > 0 −→ x := x + y ;
y := x + y ;n := n − 1];O !x]

CHP for Bresenham’s Line Algorithm (assuming x0 ≤ x1):

*[X0?x0,X1?x1,Y0?y0,Y1?y1; dy := y1 − y0,
dx := x1 − x0;D := 2(dy)− dx ;
*[x0 ≤ x1 −→ Px !x0,Py !y0;
[D > 0 −→ y0 := y0 + 1,D := D − 2(dx)
[]else −→ skip];D := D + 2(dy), x0 := x0 + 1]]

REFERENCES

[1] S. H. Unger, “Hazards and delays in asynchronous sequential switching
circuits,” IRE Transactions on Circuit Theory, vol. 6, no. 1, pp. 12–25,
1959.

[2] S. M. Nowick and D. L. Dill, “Automatic synthesis of locally-clocked
asynchronous state machines,” in IEEE International Conference on
Computer-Aided Design, pp. 318–319, IEEE Computer Society, 1991.

[3] R. Manohar and Y. Moses, “The eventual c-element theorem for delay-
insensitive asynchronous circuits,” in IEEE International Symposium on
Asynchronous Circuits and Systems, pp. 102–109, 2017.

[4] A. J. Martin, “Synthesis of asynchronous vlsi circuits,” Tech. Rep. CS-
TR-93-28, California Institute of Technology, 1991.

[5] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,” IEICE Transactions on
information and Systems, vol. 80, no. 3, pp. 315–325, 1997.

[6] R. Manohar, “An analysis of reshuffled handshaking expansions,” in
Proceedings Seventh International Symposium on Asynchronous Circuits
and Systems. ASYNC 2001, pp. 96–105, IEEE, 2001.

[7] A. M. Lines, “Pipelined asynchronous circuits,” Master’s thesis, Cali-
fornia institute of Technology, 1995.

[8] R. Manohar and A. J. Martin, “Slack elasticity in concurrent computing,”
in Mathematics of Program Construction (J. Jeuring, ed.), (Berlin,
Heidelberg), pp. 272–285, Springer Berlin Heidelberg, 1998.

[9] R. Manohar, “chp2prs: Syntax-directed translation of chp programs into
production rules.” https://github.com/asyncvlsi/chp2prs, 2023.

[10] S. M. Burns and A. J. Martin, “Syntax-directed translation of concurrent
programs into self-timed circuits,” in Conference on Advanced Research
in VLSI, 1988.

[11] K. van Berkel and M. Rem, “Vlsi programming of asynchronous circuits
for low power,” in Asynchronous Digital Circuit Design, pp. 151–210,
Springer, 1995.

[12] D. Edwards and A. Bardsley, “Balsa: An asynchronous hardware syn-
thesis langugae,” The Computer Journal, vol. 45, no. 1, pp. 12–18, 2000.

[13] H. S. Inc. https://web.archive.org/web/20090323054030/http://www.
handshakesolutions.com/, 2009.

[14] R. Li, L. Berkley, Y. Yang, and R. Manohar, “Fluid: An asynchronous
high-level synthesis tool for complex program structures,” in 2021 27th
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pp. 1–8, IEEE, 2021.

[15] C. G. Wong and A. J. Martin, “High-level synthesis of asynchronous
systems by data-driven decomposition,” in Proceedings of the 40th
annual Design Automation Conference, pp. 508–513, 2003.

[16] S. Taylor, D. Edwards, and L. Plana, “Automatic compilation of data-
driven circuits,” in 2008 14th IEEE International Symposium on Asyn-
chronous Circuits and Systems, pp. 3–14, IEEE, 2008.

[17] J. Hansen and M. Singh, “A fast branch-and-bound approach to high-
level synthesis of asynchronous systems,” in 2010 IEEE Symposium on
Asynchronous Circuits and Systems, pp. 107–116, IEEE, 2010.

[18] C. A. R. Hoare, “Communicating sequential processes,” Communica-
tions of the ACM, vol. 21, no. 8, pp. 666–677, 1978.

[19] R. Manohar, T.-K. Lee, and A. J. Martin, “Projection: A synthesis
technique for concurrent systems,” in Proceedings of the Fifth Inter-
national Symposium on Advanced Research in Asynchronous Circuits
and Systems, pp. 125–134, IEEE, 1999.

[20] I. E. Sutherland, “Micropipelines,” Commun. ACM, vol. 32, p. 720–738,
jun 1989.

[21] A. J. Martin, S. M. Burns, T.-K. Lee, D. Borkovic, and P. J. Hazewindus,
“The design of an asynchronous microprocessor,” SIGARCH Comput.
Archit. News, vol. 17, no. 4, pp. 99–110, 1989.

[22] A. J. Martin, “Asynchronous datapaths and the design of an asyn-
chronous adder,” Formal Methods in System Design, vol. 1, pp. 117–137,
1992.

[23] A. V. Aho, M. S. Lam, and J. D. Ullman, Compilers: Principles,
Techniques & Tools. London, England: Pearson Education, 2007.

[24] M. Singh and S. M. Nowick, “Mousetrap: High-speed transition-
signaling asynchronous pipelines,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 15, no. 6, pp. 684–698, 2007.

[25] I. Sutherland and S. Fairbanks, “Gasp: A minimal fifo control,” in
Proceedings Seventh International Symposium on Asynchronous Circuits
and Systems, pp. 46–53, IEEE, 2001.

[26] R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in Computer Aided Verification: 22nd International
Conference, (Germany), pp. 24–40, Springer, Berlin, 2010.

[27] A. Mishchenko, S. Chatterjee, and R. Brayton, “Dag-aware aig rewriting
a fresh look at combinational logic synthesis,” in Proceedings of the 43rd
annual Design Automation Conference, pp. 532–535, 2006.

[28] C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free verilog synthesis suite,”
in Proceedings of the 21st Austrian Workshop on Microelectronics
(Austrochip), vol. 97, 2013.

[29] W. Hua, Y.-S. Lu, K. Pingali, and R. Manohar, “Cyclone: A static
timing and power engine for asynchronous circuits,” in 2020 26th
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pp. 11–19, IEEE, 2020.

[30] S. M. Burns and A. J. Martin, “Performance analysis and optimization
of asynchronous circuits,” in Conference on Advanced Research in VLSI,
1990.

[31] W. Hua and R. Manohar, “Exact timing analysis for asynchronous
systems,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 1, pp. 203–216, 2017.

[32] J. Teifel and R. Manohar, “Static tokens: Using dataflow to automate
concurrent pipeline synthesis,” in 10th International Symposium on
Asynchronous Circuits and Systems, pp. 17–27, IEEE, 2004.

[33] S. Ataei, W. Hua, Y. Yang, R. Manohar, Y.-S. Lu, J. He, S. Maleki, and
K. Pingali, “An open-source eda flow for asynchronous logic,” IEEE
Design & Test, vol. 38, no. 2, pp. 27–37, 2021.

[34] C. G. Wong and A. J. Martin, “High-level synthesis of asynchronous
systems by data-driven decomposition,” in Proceedings of the 40th
annual Design Automation Conference, pp. 508–513, 2003.

[35] P. A. Beerel, G. D. Dimou, and A. M. Lines, “Proteus: An asic flow for
ghz asynchronous designs,” IEEE Design & Test of Computers, vol. 28,
no. 5, pp. 36–51, 2011.

Karthi Srinivasan is a PhD candidate in Electrical
and Computer Engineering at Yale University. He
received a B.Tech+M.Tech in Electrical Engineering
from the Indian Institute of Technology Madras. His
research interests lie broadly in the field of logic
synthesis and optimization. He currently works on
developing EDA tools for asynchronous circuits.

Rajit Manohar is the John C. Malone Professor of
Electrical and Computer Engineering and Computer
Science at Yale University. He received a PhD in
computer science from the California Institute of
Technology. His group conducts research on the
design, analysis, and implementation of self-timed
systems. He is the recipient of twelve best paper
awards, nine teaching awards, and was named to
MIT technology review’s top 35 young innovators
under 35 for contributions to low power micropro-
cessor design.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3572364

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

