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Abstract—The lack of electronic design automation (EDA)
tools for asynchronous circuits makes it challenging to design
asynchronous systems that have high complexity. This restriction
also makes it almost impossible to prototype and compare
new asynchronous designs with their clocked counterparts. The
availability of high quality EDA tools would significantly bolster
research in asynchronous design, and potentially lead to their
adoption in certain application domains.

This paper presents AMC: an open-source asynchronous
pipelined memory compiler. AMC generates SRAM modules
with a bundled-data datapath and quasi-delay-insensitive control.
AMC is a flexible, user-modifiable and technology-independent
memory compiler that generates fabricable SRAM blocks in a
broad range of sizes, configurations and process nodes. AMC
also produces memory designs that are competitive with both
asynchronous and synchronous memories in the literature. AMC
aims to reduce design turn-around time and amplify the research
in the asynchronous design community.

I. INTRODUCTION

Memory latency is a critical performance bottleneck in
high-performance digital systems. Data movement between
memory and logic (sometimes referred to as the von Neumann
bottleneck) largely dominates overall system performance and
power consumption in both general-purpose computing and
special-purpose architectures for big data computing. Although
wide busses can improve memory bandwidth at a cost in area,
memory latency remains a performance barrier.

Asynchronous SRAM has the potential to improve SRAM
latency and reduce its sensitivity to fabrication variations com-
pared to clocked SRAMs. The standard six transistor SRAM
bit-cell produces a differential output, making it compatible
with a dual-rail data encoding that encodes both the presence
and absence of data. Asynchronous SRAMs can alleviate
the timing constraints presented in clocked SRAM, provides
higher throughput through pipelining and overlapping memory
accesses to different banks, because they naturally handle the
variations in memory read access time. Pipelining overhead in
the asynchronous case can be designed to minimize impact on
read latency, permitting asynchronous SRAMs that have both
excellent latency as well as high throughput.

In modern scaled technologies, memory design is consis-
tently one of the most challenging parts of circuit design
due to increasing device variability, higher leakage-power
consumption, and physical design rule complexity. As a result,
the complexity of memory design has dramatically increased.
Since most ASICs require some on-chip memory, including
memory design as part of individual ASIC development would
significantly increase cost. The general practice in industry is

to use a third-party memory compiler to minimize develop-
ment costs, enabling design teams to focus on the core ASIC.

Access to a good memory compiler is a major limitation in
academia. Process design kits (PDK) do not include memory
blocks, and commercial compilers are not always accessible.
This problem is exacerbated for asynchronous chips in both
academia and industry, since asynchronous logic is not directly
supported by commercial tools or memory compilers.

In recent years, there have been efforts to provide an
open-source platform to automate memory layout generation.
However, the generated memories by most of such platforms
are not silicon-verified and are also not competitive with cus-
tom designed high-performance memories. Synopsys’ generic
memory compiler [1] only supports Synopsys’ 32/28nm and
90nm abstract technologies, which do not correspond to a
foundry technology.1 OpenRAM [2], developed through a
collaboration between OSU and UCSC, is a synchronous
open-source memory compiler. While OpenRAM provides a
flexible and portable platform to implement clocked memories,
it doesn’t support thin-cell layout (needed for the design
rules at 65nm and below) or modern design rules. Also, the
performance of memories generated by OpenRAM is low
as the sequence of operations needed for memory operation
(capturing the address and data bits, address decoding, bitline
precharging and data driving/sensing) are bounded by clock
edges which does not allow memory to perform at its highest
frequency. With only four banks, the biggest 32-bit memory
that can be generated by OpenRAM compiler is 32KB.

This paper presents AMC: an open-source asynchronous
pipelined memory compiler. AMC applies techniques from
pipelined asynchronous circuit design to improve the average-
case performance of memory access and supports non-uniform
memory access time. AMC generates multi-bank SRAM mod-
ules, using a combination of quasi delay-insensitive (QDI)
control and bundled-data datapath. The largest 32-bit memory
that can be generated by AMC is 1 MB. AMC supports an
atomic read-modify-write operation in addition to the read
and write memory operations that has a longer cycle time
compared to read/write operations, exploiting the ability of
asynchronous circuits to handle data-dependent delay. AMC
leverages the micro-architectural techniques introduced by the
cache of an asynchronous MIPS processor [3], and inherits
the data structures and base functions from the OpenRAM
compiler [2]. Like OpenRAM, the back end GDSII frame-

1This enables them to provide the technology information without involving
complex foundry non-disclosure agreements.



R
ow

-D
ec

od
er

Su
b-

Ba
nk

 
D

ec
od

er
C

on
tro

l C
irc

ui
try

Su
b-

Ba
nk

 #
2

Su
b-

Ba
nk

 #
N

Su
b-

Ba
nk

 #
1

Ba
nk

 
D

ec
od

er
C

on
tro

l 
C

irc
ui

try

Bank #2

Bank #N

Bank #1

DoutDin
A

dd
r&

 C
tr

l

Split and Merge Arrays

wreqwack rack rreq
re

q
ac

k

Precharger
Write-Completion

Read-Completion

Sense Amplifier
Write Driver

Bitline Multiplexer

W
or

dl
in

e
D

riv
er

C
on

tro
l D

riv
er

6T Array

6T
Wordline

B
itl

in
e

B
itl

in
e_

B
ar

Fig. 1. An AMC multi-bank architecture with input and output channels.
Each bank consists of sub-banks, decoders and control circuitry. Each sub-
bank is compose of 2D bitcell array, read and write control circuits, completion
detection, drivers and decoders.

work uses GDSMill [4] for scripting layouts in the Python
programming language. AMC has been written so that its
core is technology-independent, with parameters and layout
fragments capturing technology-specific components. AMC
generates circuits, GDSII layout data, SPICE netlists, and
Verilog models for SRAM in variable sizes, configurations
and process nodes. At the moment of writing, AMC can
generate memories for both scalable CMOS (SCMOS sub-
micron λ rules) and 65nm, both technologies that can be used
to fabricate chips. A test chip is under development to validate
the compiler. Post-layout SPICE simulations show that the
memories generated by AMC are competitive with published
designs.

AMC is distributed with a reference design for SCMOS
technology, as this is the last technology node that has open-
source design rules. The distribution is freely available at:

https://github.com/asyncvlsi/AMC

The rest of this paper is organized as follows. Section II
explains the self-timed interface of asynchronous SRAM im-
plemented by our compiler, and the basic structure of the
memories generated. In Section III, AMC implementation and
compiler features are explained. Simulation results, sample
layouts and detailed comparisons in a 0.5µm technology (with
OpenRAM [2]) and a 65nm technology (with Fulcrum Mi-
crosystems memories[5]) are shown in Section IV. Section V
outlines the ongoing and future work for this compiler and

concludes the paper.

II. MEMORY DESIGN WITH QDI + BUNDLED-DATA LOGIC

AMC uses conventional asynchronous design techniques
to generate QDI + bundled-data logic memories. The QDI
methodology assumes that gates have arbitrary delay and only
makes relatively weak timing assumption on the presence of
isochronic forks [6], [7]. This results in control circuits that
are tolerant to PVT variations.

The external interface of the multi-bank SRAM generated
by AMC is shown in Figure 1. In this figure, Addr is the
input address bus, Ctrl is the input control bus, Din is input
data bus and Dout defines the output data bus. The bundled-
data encoding in the AMC interface uses multiple sets of
independent request/acknowledge pairs: one set for Din (called
wreq, wack in Figure 1); one set for Dout (called rreq,
rack); and a third set for both the address and control (called
req, ack).

AMC uses the Martin synthesis method [6] to design all the
QDI control logic. This synthesis method allows us to describe
circuits algorithmically using the CHP (Communicating Hard-
ware Processes) language, briefly described in the Appendix.
The following CHP program describes the set of operations
executed by AMC SRAMs:

MEM ≡
*[ Addr?a, Ctrl?c;
[c = READ −→ Dout !mem[a]
[]c = WRITE −→ Din?mem[a]
[]c = RMW −→ Dout !mem[a];Din?mem[a]
]]

The address received on channel Addr defines the row and
column access location in the 2D bitcell array. The Ctrl defines
the type of operation which can be read, write or read-modify-
write (RMW). Addr, Ctrl and Din are the input channels and
Dout is the output channel to SRAM bank.

AMC uses four-phase handshaking (return-to-zero) with the
data and address encoded as bundled data. In AMC, a single
memory bank is implemented as one process that synchronizes
the handshake on the appropriate input and output channels
needed for the specified operation. A single asynchronous
memory bank can be described as a process that receives
the address and control inputs, performs the read or write
operation, and possibly transmits data to its environment. A
number of such memory banks together makes up a pipelined
asynchronous multi-bank memory system.

A. Core Bank and Sub-banking

A bank consists of a collection of sub-banks that share
row decoders. Figure 2 shows the major components of the
memory access circuitry within a sub-bank. The six transistor
(6T) SRAM cells are organized into a two-dimensional array,
with wordlines and bitlines in the usual way. Each sub-bank
has a local sub-bank select signal, that is combined with the
bank wordline to generate the local wordline for the sub-bank.
Apart from the hierarchical wordline structure, the rest of the
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Fig. 2. Bitline datapath circuitry

sub-bank circuitry is similar to standard SRAM design. The
two bitlines can be used to determine when valid data has
been received, similar to previous designs [3].

B. Banking and Pipelining

The memory sub-bank consists of an array of bitcells. These
bit cells are carefully optimized to minimize area, and reliable,
high-performance memory operation is only attainable as long
as the size of the bitcell array is limited. To increase the total
capacity of the memory, multiple such banks are needed. In
a standard clocked memory, banking is used to improve the
performance of a memory. As long as the latency of the access
are sufficiently short, banking can improve performance. How-
ever, beyond a certain size, banking impacts both the latency
as well as the cycle time of a single cycle clocked memory.

AMC creates a memory with a pipelined asynchronous
architecture, similar to multiple previous custom memory
designs [3], [8], [9], [5], [10]. The banks are organized into
a tree structure, and small memory banks are located at the
leaves of the tree. The structure of the tree can be specified by
the user, and can use a branching factor of two or four at each
level. Figure 3 shows a two-level tree with branching factor
of four at both levels. The inner bus controls access to up to
four memory banks, and the outer bus controls access to up
to four copies of the inner buses. The split and merge circuits
used to implement the tree are pipelined, permitting access
to a different bank while a previously accessed bank is still
performing an operation [3], [5]. AMC creates the appropriate
floorplan and physical design based on the banking options.

To be able to pipeline the memory, split bus for the input
data, address and request controls and merge bus for the output
data and acknowledge controls are added for each memory
bank. The selection between banks is accomplished through a
bank decoder. The split is a 1 to 4 bus which reads a bank
select control input from the bank decoder and input data from
write channel Din. It then routes the data to one of the output
channels selected by the control input. The merge is the dual
of this: it is a 4 to 1 bus which reads a bank select control
from the bank decoder and reads a data value from one of the

input channels selected by the control input, and sends that
data to a single output channel Dout.

This can be summarized by the following CHP program:

MEM ≡
*[ Addr?(bank , a),Ctrl?c;
BCtrl[bank]!c,BAddr[bank]!a
[c = READ −→ BDout[bank]?dout ;Dout !dout
[]c = WRITE −→ Din?din;BDin[bank]!din
[]c = RMW −→ BDout[bank]?dout ;Dout !dout ;
Din?din;BDin[bank]!din
]]

Figure 3 shows a basic block diagram of 16-bank SRAM
with split and merge buses. In the inner bus, split includes
one split environment part, contains the split control circuitry,
and four split cell-array parts which are replicated for each
output channel. Merge includes one merge environment part
and four merge cell-array parts. The use of pipelined split
and merge buses allows the multi-bank SRAM to operate at a
higher throughput compared to a single monolithic bank.

In synchronous SRAMs such as memories generated by
OpenRAM, only one bank can be active at a time and there is
no pipelining between the operations of the banks. However,

Input Data, Addr & Ctrl

Outer Split Bus

Outer Merge Bus

Inner Split Bus

Inner Merge Bus

SRAM 
banks

Output Data

Fig. 3. A two-level split-merge bus. The control input for the split and merge
blocks is not shown.



TABLE I
SUPPORTED CONFIGURATION OPTIONS BY AMC

Word Size >= 1 bit
No. of Rows >= 16
No. of Words per Row 1, 2 and 4
No. of Sub-Banks 1, 2, 4 and 8
No. of Banks 1, 2, 4, 8 and 16
Banks’ Orientation Horizontal and Vertical
Technology Node e.g. SCN3M SUBM

AMC generates pipelined multi-banked memories and permits
multiple banks to be active at the same time based on the
memory access pattern. This enables construction of SRAMs
with arbitrary sizes at constant peak frequency. Access time
results reported in Section IV verify this observation.

The asynchronous memory generated by AMC has timing
behavior that depends on the memory access pattern. This is
in contrast with synchronous SRAM where clock frequency
is determined by the propagation delay of critical path in a
bank (normally read-access delay). In synchronous SRAMs,
the same path during write operation, that normally takes less
time to complete, is idle most of the time in a clock cycle and
cannot go faster than the expected worst-case clock frequency.
However, in asynchronous memory, a latency increase for read
operation would not affect the latency of write operation. We
exploit this property to include a read-modify-write cycle in
which the address decoders are used just once. Section IV
shows that this operation is only slightly slower than a read.
This results in an improvement for typical operations in a
multi-bank asynchronous memory. This non-uniform memory
latency does not add any complexity to asynchronous memory
controller because its circuits are designed to handle uncer-
tainty in response times.

III. AMC METHODOLOGY

AMC is implemented in an object-oriented approach in the
Python programming language. AMC uses the data structures
of OpenRAM and inherits some of its utility functions. To
read/write and manipulate GDSII files in Python, AMC uses
GDSMill package [4]. AMC generates GDSII layout data,
standard SPICE netlists, Verilog models, and DRC/LVS veri-
fication reports of different SRAM sizes and configurations.
AMC can be ported to any technology node by including
technology-specific rules and pre-made library cells. At the
moment of writing, AMC has been successfully ported to
a 65nm process and SCN3M SUBM 0.5µm technology. All
physical implementations and information in SCN3M SUBM
0.5µm technology, which is fabricable through the MOSIS
VLSI service [11] is part of the compiler as a reference
implementation.

Figure 4 shows the AMC flow. The compiler generates
SPICE and Verilog netlists, GDSII layouts, functional and
physical verification reports and abstract place and route LEF
file. AMC also includes a memory characterizer to generate the
timing and power reports for synthesis. The timing and power

results are generated with the following steps: (i) generating
the stimulus, (ii) calling a SPICE simulator and running the
circuit simulations in batch mode, (iii) parsing the outputs, and
(iv) producing standard lookup-table format Liberty (.lib) file.
Extracted spice netlist generated from the GDSII layout can
also be used to make annotated timing and power models.

Table I shows the options that are available for configuration
by the user. To make the compiler easy to use, all the options
can be specified through a single configuration file or through
command line options.

This compiler allows a user to add new technology libraries.
To port AMC to a new technology node, custom designed
library cells such as the 6T SRAM cell, sense amplifier and
write driver must be added to the compiler. For reasons of
density these cells have to be manually designed for each
technology. It is also possible to use foundry-specific SRAM
cells and non 6T cell (e.g. 8T or 10T cells). Parametrized cells
such as transistors, inverters and pull-up pull-down switching
networks are generated by the compiler. The compiler also
dynamically generates different sizes of inverters that are
pitched-match with the manually designed cells. In addition,
design rule check (DRC) rules and the GDS layer map for
the technology node are required to ensure that the generated
SRAM layout is DRC clean.

AMC’s memory architecture as shown in an abstract view
in Figure 1 is based on multi memory banks, control circuity,
decoder and split/merge arrays (details in Section II-B). An
SRAM bank consists of multiple sub-banks each composed
of bitcell array, row-address decoder, column-address decoder,
bitline multiplexer, wordline driver, sense amplifier, write
driver, precharger, read and write completion circuitry and
control logic part. AMC tiles the bitcells together to make
the 2D SRAM bitcell array. Bitline and wordline connections
are made through abutment. Sense amplifier, write driver,
precharger and completion detection circuitry are vertically
pitch-matched with the bitcell, and bitlines in all these modules
are connected by abutment. Also, the row-address decoder
and wordline driver are horizontally pitched-match with the
bitcell, and the wordline in all these modules connect by
abutment. AMC accepts user-provided parameters (number of
rows, data word size, and number of banks and sub-banks),

User Specifications 
(num. banks, word size,...)

Technology Library
(pre-made cells, design rules,…)

industry standard 
for fabrication

GDSII Layoutabstract info for 
place & route

LEF view

functional verification
with HSIM & VCS

SPICE/Verilog Models

physical verification with 
Caliber

DRC/LVS reports

timing/power reports
for synthesis

Liberty file (.lib)

AMC

Fig. 4. AMC flow



Fig. 5. SRAM banks are place in different orientations resulting in different
aspect ratios for same size SRAM module.

physically places and logically connects all the modules to
generate a multi-bank SRAM. AMC leverages OpenRAM’s
testing infrastructure, and has unit tests for each sub-module
to guide users when porting the compiler to new technologies.
These unit tests allow users to add features and simplify
debugging when switching to a new technology.

The following subsections describe features of AMC which
were important for the performance and density of its gener-
ated SRAMs:

A. Partitioning and Floorplaning
In AMC each bank encapsulates multiple sub-banks of

SRAM arrays. Each sub-banks is an array of SRAM cells
along with peripheral circuitry, while all sub-banks share one
row-decoder. A row-decoder decodes the input address and
generates the global wordlines that are gated with a sub-
bank select signal to create the local wordlines. This design
feature allows us to break the SRAM array into smaller width
segments and enables a lower access time by reducing the RC
delay of the wordline. It also enables bigger SRAM banks
without increasing the access time. Memories with smaller
sub-partitions also help to save energy as only one partition is
active at any time.

B. Bank Orientation
In AMC, banks can be placed in different orientation to get

different aspect ratios for the SRAM. Compared to hard multi-
bank layout with fixed aspect ratio generated by traditional
compilers, AMC generates soft multi-bank layouts which
results in an optimum floorplan. This feature allows designer to
add the best matching SRAM layout to the rest of their design.
Figure 5 shows four banks placed in different orientations but
that have the same top-level interface.

C. Memory Operations
AMC adds a third type of operation compared to con-

ventional SRAMs, namely a read-modify-write cycle. This

operation performs simultaneous read and write at a small
cost compared to an individual read operation, and with less
time and energy compare to two separate operations. The
read-modify-write operation allows memory to read a location
and write it with a new value simultaneously while activating
the decoder just once. Such an operation would increase the
clock cycle period in a synchronous memory, but in the
asynchronous case it only increases the cycle time when the
operation is used.

D. SPICE/Verilog co-simulation

The files generated by AMC include both a SPICE and
Verilog netlist. These blocks can be used to model the memory
in the rest of the user’s design. To get faster verification for
large memory blocks, AMC adds a functionality unit test
that co-simulates the Verilog and SPICE netlists. This co-
simulation keeps part of the design at the digital level leading
to faster simulation runs compare to a transistor-level netlist
simulation in SPICE. This Verilog-SPICE integration uses a
Verilog test-bench to drive an SPICE simulation of the SRAM
at the transistor-level. It provides a top-level verification with
many random input vector patterns while SRAM block is
simulated in SPICE. This co-simulation is extremely useful
when an SRAM block is integrated with other digital logic
described in Verilog.

IV. EVALUATION

Figure 2 shows the bitline datapath circuitry used in the
design of SRAM. In AMC access time of each operation is
measured as the time interval of consecutive operations. The
sequence of transitions for one cycle of read operation is as
follows:

1) Read operation starts when both read-control and read-
request signals go high by environment. (r ↑, rreq ↑)

2) As soon as the operation starts, precharging stops by the
controller (pchg ↑)

3) Decoder-enable goes high by the controller and triggers
the wordline (decoder − en ↑,wl ↑)

4) Sense-amp enable signal, generated by a dummy bit-
line column to mimic the delay of bitline, goes high
(s − en ↑)

5) Read-completion signal, generated by ANDing the
data out and data out bar of differential sense-
amplifier, goes high when full swing data is ready on
the output data bus (data − ready ↑)

6) Read acknowledge signal is generated by controller and
sent to environment (rack ↑)

7) Environment enables the acknowledge signal and lowers
the read-control and read-request (ack ↑, r ↓, rreq ↓)

8) Controller starts the precharge for the next operation cy-
cle when read-control signal is lowered (pchg ↓, rack ↓)

9) Controller returns the acknowledge signal to zero and
completes the handshake (ack ↓)

For write operation (w) same sequence of transitions re-
peats with write-request (wreq), write-acknowledge (wack) and
write-complete signals. In read-modify-write case (rmw), after
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Fig. 6. Read cycle in (a) asynchronous and (b) synchronous SRAM.

read acknowledge enables in step 6 (rack ↑) write operation
starts (wreq ↑) and handshake completes when write is finished
(wack ↓).

In AMC each of the three operations (r, w, rmw) has
different access time compared to the synchronous OpenRAM
where each operation takes exactly one clock cycle. Figure 6
compares the read cycle time of asynchronous and clocked
SRAMs. In synchronous SRAM such as those generated by
OpenRAM compiler, wordline and sense-amp enable (s-en)
signals are gated in negative edge of the clock, hence, reading
the cell’s stored-value occurs in the second half of the cycle
while first half is used for precharging. Normally, reading the
stored value through discharging the heavily loaded bitline
takes more time than charging the bitline with a precharge
circuitry. When AMC is configured to create a single bank
without sub-banking, the larger cycle time of synchronous
OpenRAM memory compared to AMC-generated memory can
be attributed to using a 50% duty-cycle clock, combined with
satisfying the setup-time and hold-time constraints on flip-
flops in the synchronous memory.

In the following subsections, the SRAM generated by AMC
is compared with both synchronous and asynchronous SRAMs
to show the effectiveness and quality of memories generated
by the AMC compiler. Reported timing and power values for
AMC are based on post-layout simulations. AMC generates
the GDSII layout and a SPICE netlist including all the parasitic
resistance and capacitance extracted from the layout using
Calibre extraction tool. The extracted netlist is then simulated
with Synopsys’ SPICE simulator. All performance and power
results for OpenRAM-generated and AMC-generated memo-
ries used this methodology. Results for commercially designed
memories were obtained from published literature.

A. Comparison with Synchronous SRAMs

Multiple size and configurations of generated memories by
OpenRAM compiler (as an accessible synchronous memory
compiler) and AMC are simulated in SCN3M SUBM 0.5µm
technology and compared in Table II for access time, average
power consumption, layout area and layout efficiency. Layout
efficiency can be defined as the amount of area dedicated to
6T cells versus the total area including all the control circuitry.
The efficiency quantifies the control overhead of the design.

Table II shows three cycle time values for AMC SRAMs:
read, write, and read-modify-write. In AMC, each operation

Fig. 7. 1MB SRAM generated by AMC in SCN3ME SUBM 0.5µm
technology. This 32-bit SRAM contains 16 banks where each bank has 8
sub-bank and each sub-bank is a 512 x 128 bit array. Total area is 1437mm2.

takes minimum possible time to complete unlike OpenRAM
where slow read operation dictates the clock frequency for
both operation modes. In OpenRAM only one bank is active
at each clock cycle and there is no pipelining and overlapping
between banks. Also, since AMC uses a three-level partition-
ing (multi-bank, bank, and sub-bank) compared to two level
partitioning in OpenRAM, bigger SRAMs can be generated.
We compare AMC with two options: Option I doesn’t use sub-
banking, whereas Option II does. Option I SRAMs are smaller
in area compared to option II, but are slower because of in-
creased wordline loading (Table II). AMC Option I SRAM bit
efficiencies are very close to OpenRAM’s bit efficiency, while
performance is 1.2X-2.0X better. Option II SRAMs provide
even higher performance (1.5X-2.35X) and also lower power
consumption (0.56X-0.78X) SRAMs compared to OpenRAM
at an additional area cost (1.14X-1.34X).

With more than one bank, AMC can overlap the operations
of the banks. We have the choice of mapping the banks based
on the address. Table II reports best-case (switching accesses
between banks) and worst-case (consecutive accesses to one
bank) cycle time. It was previously shown that low-order
banking (where the least significant bits of the address are
reserved for selecting the bank) rarely results in consecutive
accesses to the same bank [8].

The maximum number of supported banks by OpenRAM
compiler is four, banks while AMC can generate up to sixteen
banks. Figure 7 shows the layout of a 2MB SRAM generated
by AMC in SCN3ME SUBM 0.5µm technology.

B. Comparison with Asynchronous SRAM

We compare AMC-generated memories to custom SRAMs
designed by Fulcrum Microsystems [5]. This comparison al-
lows us to evaluate the quality of AMC SRAMs in a fabricable
65nm process node. A comparison in this process node with
OpenRAM is not possible as OpenRAM doesn’t support thin-
cell layout (height of decoder and wordline driver cannot be
pitch-matched with SRAM cell height). Figure 8 shows both
tall-cell (in SCN3ME SUBM 0.5µm) and a DRC-clean thin-
cell layout (representative of a 6T SRAM thin-cell in 65nm)
which were manually created to be used by AMC.



TABLE II
COMPARISON FOR DIFFERENT SRAM SIZES AND CONFIGURATIONS IN SCN3M SUBM 0.5µm

Configuration OpenRAM Compiler AMC Compiler
Option I (without sub-banking) Option II (with sub-banking)

No. Word Word No. Cycle Avg. Total Bit Cycle Avg. Total bit Cycle Avg. Total bit
of Size per of Time Power Area Efficiency (r, w, rmw) Power Area Efficiency (r, w, rmw) Power Area Efficiency

Bank (bit) Row Rows (ns) (mW ) (mm2) (%) (ns) (mW ) (mm2) (%) (ns) (mW ) (mm2) (%)

8 1 32 6.4 13 0.19 18% (4.8, 3.9, 5.5) 12.2 0.23 16% (4.8, 3.9, 5.5) 12.2 0.23 16%
8 2 64 8.8 18 0.42 34% (6.5, 5.7, 7.0) 18.3 0.48 30% (5.2, 4.6, 6.0) 15.7 0.49 30%
8 4 128 10.6 34.6 1.2 48% (9.0, 7.5, 9.4) 34 1.3 44% (6.9, 6.3, 7.8) 19.5 1.48 41%

32 1 32 8.2 34 0.36 39% (6.0, 4.7, 6.4) 30 0.39 37% (6.0, 4.7, 6.4) 30 0.39 37%
1 32 2 128 13.2 51 1.84 62% (8.4, 8.0, 10.4) 49 1.93 60% (7.7, 7.1, 8.8) 39.7 2.66 42%

32 4 256 22 92 6.17 75% (10.6, 8.8, 13.2) 100 6.32 73% (8.0, 7.4, 8.9) 68.5 10.5 52%
64 1 64 12 54 0.97 59% (7.4, 5.1, 7.9) 54 1.0 57% (7.4, 5.1, 7.9) 54 1.0 57%
64 2 256 26 102 6.05 76% (11.2, 9.2, 16.1) 105 6.21 74% (8.3, 7.9, 9.4) 75 8.18 70%

2 32 2 128 16 54 4.03 57% bc∗: (8.7, 5.8, 10.1) 59 4.43 52% bc: (7.2, 5.0, 7.6) 42 4.61 50%
wc∗: (11.2, 9.2, 15.0) wc: (9.0, 6.2, 12.4)

64 2 256 24 145 13 71% bc: (12.4, 10.5, 14.6) 124 13.94 66% bc: (10.5, 9.0, 11.1) 87 17.42 53%
wc: (16.5, 14.0, 17.5) wc: (14.8, 13.5, 15.8)

4 32 2 128 18 81 7.84 59% bc: (9.0, 6.0, 12.0) 70 8.79 52% bc: (7.8, 5.3, 8.0) 45 8.88 52%
wc: (11.9, 9.6, 15.0) wc: (9.9, 6.9, 14.3)

64 2 256 26 168 25.34 73% bc: (13.9, 12.0, 15.0) 142 27.35 67% bc: (11.5, 10.2, 12.4) 101 31.84 58%
wc: (17.9, 15.9, 18.8) wc: (15.5,14.0, 17.1)

8∗∗ 32 4 128 – – – – bc: (13.9, 12.7, 16.5) 108 34.07 54% bc: (12.8, 11.3, 14.2) 86 37.43 49%
wc: (15.5, 14.7, 19.9) wc: (13.4, 12.2, 16.4)

16∗∗ 64 4 256 – – – – bc: (16.0, 13.6, 18.4) 240 126.39 85% bc: (13.8, 12.0, 14.9) 187 252.78 58%
wc: (17.3, 16.2, 24.9) wc: (15.8, 13.9, 21)

∗ bc : best-case and wc: worst-case cycle time based on address pattern
∗∗ 8-bank and 16-bank SRAMs are not supported by OpenRAM compiler

Table III compares the area, performance and power con-
sumption for the same size of both asynchronous SRAMs.
Fulcrum Microsystems uses dual-rail, 4 phase handshake and
QDI timing model. As shown in this table for a 1Kx16-
bit SRAM, AMC is 3.6X bigger in area. This can be at-
tributed to two factors: (i) AMC uses a DRC-clean SRAM
cell implemented with logic rules2, while Fulcrum’s memory
uses TSMC’s foundry cell that has significantly lower area;
(ii) AMC uses four layers of metal to make the compiler
portable for 65nm (for SCN3ME SUBM 0.5µm technology
only three layers of metals are used). This means data and
address buses cannot be routed over the bitcells, and must
be routed on the side. This can be seen in Figure 5, where
buses are routed between the banks in both horizontal and
vertical directions. Figure 7 from [5] appears to indicate that
higher level busses are routed over the bitcells using additional
metal layers, further reducing area. For a larger 16k × 64-bit
SRAM array, Fulcrum’s SRAM area is 1.466 mm2[5] while
AMC’s is 3.34 mm2—2.27X bigger, which is attributable to
the difference in bit-cell area. We plan to incorporate a foundry
cell into AMC in the future, which should reduce the area
overhead of AMC-generated memory.

2We currently do not have access to the foundry bit cell.

Fig. 8. 6-transistor (a) tall-cell layout in scn3me subm and (b) thin-cell layout
with no bends in polysilicon in 65nm. Dotted lines show the bounding box
for each cell.

Fulcrum SRAM doesn’t support a read-modify-write oper-
ation. The average frequency for its read and write operations
is 1080 MHz while the average read and write frequency
for AMC SRAM is 2156 MHz—a 2.0X improvement in
performance. Cycle time breakdown is not showed by Fulcrum
SRAM which makes it is hard to determine the source of
longer cycle time for this SRAM. We speculate that employing
sub-banking in AMC and using bundle-data encoding with
extra timing assumptions in the AMC control logic are the
main reasons for achieving higher performance. The SRAM



TABLE III
COMPARISON IN A 65nm PROCESS TECHNOLOGY

Fulcrum Conf. 16 bank x (64 row x 16 col)
Voltage 1.0 V

Freq. (r, w) (1023, 1137) MHz

Avg. Power 7.5 mW
latency 0.6 nS
Area 0.019 mm2 with foundry-cell

AMC Conf. 4 bank x (4 sub-bank x (64 row x 16 col))
Voltage 1.0V

Freq. (r, w) (2050, 2262) MHz

Avg. Power 22.8 mW
latency 0.29 nS
Area 0.069 mm2 with drawn-cell

generated by AMC consumes 3.0X power compared to same
size Fulcrum SRAM. Again, the main source of this extra
power consumption is manually drawn SRAM bitcell which
is bigger in area compared to foundry cell and adds larger
parasitics and hence increases the power consumption. For
Fulcrum SRAM to operate at the same operation frequency as
AMC SRAM (≈2 GHz), supply voltage must be increased to
1.5 V which results in 30 mW power consumption [5]. This
increase in supply voltage to improve the performance leads
to 20% more power consumption compared to AMC SRAM
at the same operating frequency.

V. CONCLUSION AND FUTURE WORK

This paper introduced AMC: an open-source memory com-
piler that can be used by circuit designers and system ar-
chitects. To our knowledge, this is the first attempt to make
an open-source and portable asynchronous memory compiler.
We believe making this compiler openly available has the
potential to stimulate research in asynchronous design. Since
the compiler can generate memories for real (as opposed to
synthetic) process technologies, researchers can use AMC to
build memories for their ASICs.

AMC generates DRC/LVS clean, fabricable GDSII lay-
outs of variable-sized asynchronous SRAMs along with their
SPICE, Verilog and timing/power models. AMC is a flexible
compiler and can be quickly ported to different technology
nodes. The SRAM generated by AMC: (i) uses the techniques
in modern pipelined asynchronous designs to ease the timing
constraints presented in clocked memories, (ii) provides a
higher throughput and best-case behavior for latency, (iii) is
pipelined allowing larger multi-banks SRAMs operate in a
high frequency, and (iv) comes in different orientations and
aspect ratio layouts with a tree bank structure.

AMC is an ongoing project. At the time of writing this
paper, all the user-modifiable source code with reference
implementations in SCMOS technology are released. This
technology-independent compiler is ported to 0.5µm and 65nm
technologies. We are planing to port the compiler to more
scaled technologies including 28nm, 14nm (FinFET), and
incorporating foundry bit-cell layout. Also, we are adding the
option for using higher metal layers, which has the potential

to improve the area and performance of memory. In addition,
system-level implications such as error correction code (ECC),
soft-error redundancy and build-in self test (BIST) are on
the future-work list. There are also some additional circuit
optimizations that are possible, including better sizing and
handshake optimizations. Our goal is to work with the com-
munity to provide a fully open-source, high-quality memory
compiler beneficial for research, education and making real
products. AMC enables rapid prototyping for researchers in
various fields from computer architecture to SoC design,
device research, and computer-aided design.
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APPENDIX

Following is the notation we use for the CHP language.:
• Assignment: x := E. This statement means “assign the

value of expression E to x.”
• Communication: A!E is a statement meaning “send the

value of expression E over channel A,” and B?x means
“receive a value over channel B and store it in variable
x.” Both sending and receiving are blocking.

• Choice: [G1 → P1[] . . . []Gn → Pn], where each Gi is a
Boolean expression (guard), and each Pi is a program
fragment. This statement is executed by waiting for
exactly one of the guards to be true, and then executing
the associated fragment.

• Repetition: ∗[P ] infinitely repeats statement P .
• Sequential Composition: P ;Q.
• Parallel Composition: P,Q.
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