
BitSNAP: Dynamic Significance Compression For a Low-EnergySensor
Network Asynchronous Processor

Virantha N. Ekanayake, Clinton Kelly, IV, and Rajit Manohar
Computer Systems Laboratory

Electrical and Computer Engineering
Cornell University

Ithaca, NY 14853, U.S.A
E-mail: {viran, clint, rajit}@csl.cornell.edu

Abstract

We present a novel asynchronous processor architec-
ture called BitSNAP that utilizes bit-serial datapaths with
dynamic significance compression to yield extremely low-
energy consumption. Based on the Sensor Network Asyn-
chronous Processor (SNAP) ISA, BitSNAP can reduce dat-
apath energy consumption by 50% over a comparable
parallel-word processor, while still providing performance
suited for powering low-energy sensor network nodes. In
180nm CMOS, the processor is expected to run at between
6 and 54 MIPS while consuming 152pJ/ins at 1.8V and just
17pJ/ins at 0.6V.

1 Introduction

In the energy-limited domain of untethered battery-
powered sensor-network nodes, an energy efficient process-
ing unit is essential to provide a lifetime on the order of
months or years. Most commodity-off-the-shelf (COTS)
microcontroller based sensor-network platforms are very
energy hungry, and have documented lifespans on the or-
der of just hours or days.

We have recently proposed a novel asynchronous pro-
cessor ISA designed expressly for sensor-networks called
the SNAP ISA, for Sensor Network Asynchronous Proces-
sor. SNAP was designed for two purposes: (1) To serve as
the processor in a custom chip multi-processor for a hard-
ware sensor-network simulator called Network-on-a-Chip
(NoC) [1], and (2) to serve as the main processor in a
low-power wireless sensor-network node called SNAP/LE
(SNAP Low Energy) [2]. The processor variants based on
the SNAP architecture/ISA can be seen in Fig. 1.

The SNAP/LE processor contains a 16-bit event-driven
RISC core and can operate over a wide voltage range, ex-

Network on a Chip
NoC

Low−energy sensor node

SNAP/LE

Ultra−low−energy
sensor node

BitSNAP

RISC core

SNAP/LE
Radio

Sensors

SNAP Architecture/ISA

BitSNAP
Radio

Sensors

16−bit event−driven

Figure 1. SNAP processor family

ecuting instructions at a rate between 23MIPS (at 0.6V) to
200MIPS (at 1.8V) while consuming as little as 24pJ per
instruction execution, which is orders of magnitude less en-
ergy than any commodity microcontroller. SNAP/LE lever-
ages a simple ISA, event-driven execution model, custom
hardware support for sensor-network nodes, and low-energy
asynchronous circuit techniques to achieve extremely low
dynamic power consumption at relatively high throughput.
At the extremely low activity levels seen in target applica-
tions (10 events a second or less), SNAP/LE has a power
consumption on the order of 16 to 58nW at 0.6V.

One key observation from current sensor-network test-
beds is the relatively low performance requirements – sen-
sor nodes mainly extract data from sensors, perform some
rudimentary processing and aggregation, and forward the
results to other more powerful base stations across slow
(kilobits per second) radio links [3]. Most currently avail-
able sensor-network hardware have processors that operate
between 4 and 12MIPS [3, 4]. Even at the limits of voltage-
scaling, and using a supply voltage close to the transistor
thresholds, SNAP/LE still runs at over 20MIPS, which is
far faster than we require.

In this paper, we propose a new processor called Bit-
SNAP that trades-off some of the extra performance for

1

even greater power savings. BitSNAP is a logical exten-
sion of SNAP/LE, designed to leverage theapplication
behavior typical of sensor-networks. We exploit the nat-
ural compressibility of operand values propagating through
the processor’s datapath in order to dynamically reduce the
amount of switching. In addition, while SNAP/LE was
designed with a 16-bit parallel datapath, BitSNAP uses a
bit-serial datapath, for which asynchronous design provides
an ideal match for computing on data dependent operand
lengths efficiently. Using a bit-serial datapath also reduces
the amount of circuit hardware required, translating to a re-
duction in static leakage power that is a growing concern in
deep submicron processes.

This paper is organized as follows: We first define dy-
namic significance compression in the context of processor
datapaths, and explore the benefits of utilizing it for a bit-
serial processor. A discussion of BitSNAP’s general archi-
tecture is then presented, along with a detailed evaluation
of the novel hardware used to support significance com-
pression. We finally evaluate BitSNAP with a representa-
tive sensor-network software workload and evaluate the en-
ergy savings and performance impact of the bit-serial com-
pressed datapath. We conclude with comparisons against
existing and proposed asynchronous designs, and a discus-
sion of related work.

2 Significance Compression in Processors

2.1 Parallel-word architectures

Previous architectural studies [5, 6] have shown that the
majority of datapath operand values require fewer bits of
significance than a full 16-, 32- or 64-bit wide datapath
provides. By dynamically compressing the significance of
data values (suppressing leading 0s and 1s), and transmit-
ting only the required bits, 30 to 80% of integer datapath
switching energy can be saved.

Prior work by Brooks and Martonosi in the synchronous
community has looked at operand-based clock gating of
functional units [7]; each cycle, the operands are checked
for leading zeros and the appropriate upper segment of the
functional unit is turned off. Naturally, this has a latency
and energy impact for the zero-detect circuit. Canal et al.
in [5] presented an approach where every data operand is
tagged with extra bits specifying which bytes in the data
word are compressible. The byte-parallel and byte-serial
datapaths studied in their paper are significantly impacted
by the latching overhead for vertical control propagation
and bypass mechanisms for multi-cycle byte-serial process-
ing.

In contrast, past work on dynamic significance compres-
sion in the context of asynchronous processors has focused
on width-adaptive data (WAD) word architectures where

Bit−serial LAD Data

1 0 0 1 1 1 0 0

Datapath Unit

1
0
0
1
1
1
0
0P

ar
al

le
l W

A
D

 D
at

a

Digit Positions

WADIm
pl

ic
it

1s
, n

o
sw

itc
hi

ng

Datapath Unit

Figure 2. Width adaptive datapath(WAD) (left) of16-bits,
with one WAD digit every 4-bits. Length adaptive datap-
ath(LAD) (right) of 16-bits, with every bit a LAD digit.

the number representation itself is self-delimiting. WAD
numbers as proposed by Manohar [6] use a special num-
ber representation consisting of the digits{0,1,0

¯
,1
¯
}. WAD

digits 0
¯

and 1
¯

representdelimiters that terminate a given
binary word – any bits more significant than the delimiter
bit are assumed to have the same value as the delimiter.
For instance, 1

¯
011 for an 8-bit wide datapath represents

1111 1011 in normal binary representation. This allows us
to compressa number with leading ones and zeroes into a
more compact representation, and easily lends itself to ver-
tically pipelined control propagation in the datapath.

For reasons of efficiency in practical architectures, it be-
comes necessary to limit the use of WAD digits on a per
block basis, shown in Fig. 2, as opposed to having all 16
bits of a datapath represented by WAD digits. Such a hy-
brid scheme, where some bits are normal binary digits and
others are special WAD digits, was used in the QDI 32-bit
register files presented in [8]. Each block consisted of 3
normal binary bits and 1 WAD digit at the most significant
position, and thus allowed compression of data values on
the granularity of 4-bit blocks. On the flip side, using a hy-
brid scheme can complicate processing of the data, because
now the designer needs to accommodate both normal binary
digits, as well as the WAD digits.

2.2 Bit-serial architectures

In contrast to parallel-word architectures, BitSNAP uses
dynamic significance compression on a bit-serial data
stream. In other words, BitSNAP is alength-adaptive dat-
apath(LAD) processor as opposed to a width-adaptive dat-
apath processor, and performs significance compression on
the granularity of a single bit, as shown in Fig. 2. Instead
of sending 16 bits through the datapath for each word, only
the bits up to and including the delimiter bit need to be sent.
An obvious advantage over conventional bit-serial datap-
aths, aside from the reduced switching, is that the through-

2

Significance (bits)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
er

ce
nt

ag
e

of
 D

at
ap

at
h

O
pe

ra
nd

s

0

10

20

30

40

50

60

70

80

90

100

Figure 3. Operand significance averaged across represen-
tative sensor network workload (with cumulative totals)

put for operations on data words is no longer strictly linear
in the architectural width (16 times the individual bit cycle
time for a 16-bit architectural width), because compressed
operands can complete in time proportional to the number
of significant bits. A further advantage for the designer is
that because every digit is in LAD representation, the units
on the datapath do not have to deal with both normal binary
bits and adaptive digits.

Synchronous bit-serial architectures have been widely
explored, from bit-serial signal processing [9] to design
compilers such as GE’s Parsifal [10]. However, even sim-
ple bit-serial architectures require multiple clocks – onefor
the actual bit-computation unit and another to signal word
boundaries. In the case of dynamic significance compres-
sion, where a word boundary could potentially occur atany
place, the clocking and bypass scheme would quickly be-
come unmanageable even at word sizes of 16-bits. This
could be handled by processing a data end-of-word bit per
cycle at additional cost in energy.

Table 1. BitSNAP Sensor Network Software Workload

Handler Function

Packet TX Radio packet transmission via
802.11 based MAC layer

Packet RX Radio packet reception
AODV RR Ad-hoc routing protocol route

lookup and reply
AODV PF Ad-hoc routing protocol packet for-

ward
TR1000 Radio Stack CRC and data packet encoding
Data logger Sensor logging and running average

computation

As an example of the potential energy savings inherent

in processor workloads, especially in the context of Bit-
SNAP’s sensor network processor, we performed an archi-
tectural study of processor datapath operand significance
(number of bits that remain after compressing leading 0s or
1s) in a typical sensor network workload. The workload, an
extension to that presented in [2], is summarized in Table 1
(more details on each individual benchmark can be found
in Section 6), and Fig. 3 shows the distribution of operand
significance averaged across these workloads. Notice that
90% of all the data values flowing through the processor’s
datapath have significance less than 10 bits, and about 30%
can be compressed to just 1 bit.

2.3 Length-Adaptive-Data Representation

We considered two possible options for encoding the
LAD digits in our delay-insensitive pipelines:

1. For each bit, use two 1-of-2 codes, with one specify-
ing the data, and the other marking whether this bit
is a delimiter or not. Thus 00 would communicate a
non-terminating 0, while 10 would communicate a 0

¯(repeating 0s beyond the current position).

2. For each bit, communicate one 1-of-4 signal, with rails
0, 1, 2, and 3 respectively communicating the WAD
values 0, 1, 0

¯
, 1

¯
Although the first is a good option for hybrid WAD data-

paths such as those used in the WAD register-files, because
it keeps the data information distinct from the delimiter in-
formation, we prefer the second option for LAD bit-serial
datapaths. Because only one wire switches when transmit-
ting a bit, there is no energy overhead in sending LAD data.

3 BitSNAP Architecture

In this section we provide a summary of the SNAP ISA,
as well as the specific architectural decisions made in im-
plementing the bit-serial LAD nature of BitSNAP.

3.1 Core Architecture

A high-level block diagram of the BitSNAP processor is
shown in Fig. 4. BitSNAP implements an in-order, single-
issue core with no speculation. The SNAP ISA is based
on the MIPS design, and specifies anarchitectural word
width of 16-bits with 16 registers. Instructions can be ei-
ther one or two words (for instructions requiring a 16-bit
immediate value). Instruction and data memory consists of
two 4KB banks, with a user-writable instruction memory to
allow boot-strapping of the processor from externally sup-
plied program code at power-up.

3

S
w

itc
hb

ox

S
ec

on
da

ry

S
hi

ft

Im
em

T
im

er

R
an

d

F
et

ch Imm
Y
X

W

Target

Link PC

D
a

ta
p

a
th

C
o

n
tr

o
l

Immediate

C
om

pa
ct

or

IMEM

Message
Coprocessor

Timer
Coprocessor

File

Register

LAD Parallel Converter

B
ra

nc
h

A
rit

m
et

ic

Lo
gi

ca
l

D
m

em

S
ha

re
I

Decode

DMEM

EventQ

Compactor

Parallel LAD Converter

Figure 4. BitSNAP Block Diagram

The key difference between the SNAP architecture and
conventional processors is that it is completely event-driven
– SNAP remains idle (no dynamic switching) until either
an external event (sensor reading, incoming radio message)
or internal timer expiration event occurs. At this point, a
token corresponding to the event will propagate through a
hardwareevent queueand awaken the processor through the
PC Control unit. In this unit, the event token is used to
index into ahardwareevent table, returning the address of
a specific software event handler that then gets passed on to
thefetch, at which point the processor starts executing code.
Once the processing completes, the software event handler
issues aDONE instruction which halts the processor until
another event appears at the head of the event queue.

Radio events are generated by themessage coproces-
sor which communicates with an external radio chip. The
message coprocessor also generates events corresponding to
sensor interrupts from external sensors. All communication
with the message coprocessor to the radio and sensors is
handled through general-purpose register-mapped I/O, and
thus require no new instructions. For more details on the
SNAP/ISA and coprocessor implementation, the reader is
referred to [2].

BitSNAP uses a two level bus structure to leverage the
flexibility asynchronous design provides. We have a pri-
mary bus for the units on the datapath that we expect to be
used more often: the arithmetic unit, logical unit, branch
unit, and data memory unit. A secondary bus is then at-
tached to the primary bus as an additional unit; this bus con-
tains the shift unit, instruction memory access unit, timer
coprocessor access unit, and pseudo-random number gen-
erator. In designing BitSNAP, we use QDI techniques
that are a hybrid of the design styles used in the Min-

iMIPS [11] and Caltech microprocessor [12]. Whereas the
Caltech microprocessor used aligned-datapaths designed
with control/data decomposition, and the MiniMIPS used
fine-grained pipeline stages with pipelined completion, Bit-
SNAP varies the use of both styles based on the actual hard-
ware block being implemented.

3.2 Bit-Serial Support

The architecture discussed so far shares much in com-
mon with SNAP/LE, our low-power sensor network node
processor. Now, we present the novel features and modi-
fications added to the architecture to enable dynamic sig-
nificance compression and the conversion from bit-parallel
data paths to bit-serial.

The shaded blocks in Fig. 4 represent the parts of the
datapath that process bit-serial data. Notice that the entire
register-file, all the functional units, and every datapathbus
split and merge are implemented as bit-serial units oper-
ating on LAD digits. The thin wires represent bit-serial
buses which transfer LAD data. Because we are concen-
trating on the main processor core design, we will be using
the same bit-parallel timer and message coprocessors from
SNAP/LE. However, it is certainly conceivable to see these
implemented using LAD data paths in future research.

The memories still operate on 16-bit parallel words for
reasons of density and efficiency. The fetch unit, because it
operates every cycle and interfaces directly with the instruc-
tion memory, is also implemented using bit-parallel cir-
cuits for efficiency reasons. Otherwise, the program counter
(PC) would go through a bit-serial to parallel conversion
every cycle, wasting energy for the common case where
the PC just increments every cycle, and does not interact

4

directly with the datapath. Similarly, theShareI process
which shares the incoming word with either the decode (in
the case of an instruction word) or datapath (for immediate
operands) uses bit-parallel circuits.

4 Computation on Length-Adaptive-Data

In this section we present some detailed descriptions of
representative functional and bus units in BitSNAP. We will
describe asynchronous circuits with CHP (Communicating
Hardware Processes), whose syntax is described in the Ap-
pendix. For conciseness in expressing operations on LAD
digits, we introduce some added notation: (1) Thedelimiter
operator̂x returns true if the LAD digitx equals a delim-
iter value (0

¯
or 1

¯
), and (2) thedemoteoperatořx returns the

demoted value ofx , converting from the set{0
¯
,1
¯
} to {0,1}.

4.1 Bus Interface

A crucial set of circuits are the bus interfaces connecting
the register file ports to the functional units. These inter-
face units are quite different from their bit-parallel counter-
parts, because of the need to hold the bus for multiple bus
read/write cycles for a single control token. We specify a
bus reader that waits for a probe on the control channelC
before reading data from the shared busB and writing to the
“private” channelD as follows:

*[[C −→ B?d ; D !d ;

[d̂ −→ C ?
[]else−→ skip
]

]]

Once the delimiter bit arrives, the bus interface com-
pletes the communication onC and allows the next control
token to appear. The handshake for this process was se-
lected to minimize the amount of circuitry required (thereby
minimizing the amount of load on the shared bus).

*[[De
]; [C d

]; en↑; [¬B̂ −→ Dd↑[]B̂ −→ Dd↑;C e↓];

Be↓; [¬De
]; en↓; (Dd↓, ([¬B]; ([¬C d

];C e↑), Be↑))]

Note that this handshake does not provide any early feed-
back onC because it does not lower the enableC e until D
has output the entire LAD word. We use slack on the input
of the process generating the bus control tokenC to decou-
ple this reader from the decode. The bus writer process uses
a similar formulation.

4.2 Alignment Process

The very nature of LAD operands implies that the values
on the X and Y buses in Fig. 4 may have varying lengths.

counter

counter Write Buffer

Read Ports

X Y

16−bits4−bits

1
6

 r
e

g
is

te
rs

W

DataLength

rx,ry,rw
Read Buffers

D
ec

od
te

rs

Figure 5. BitSNAP register-file

However, functions that use multiple input buses (such as
the arithmetic unit) can be implemented more easily if the
inputs are of the same length [6]. To address this issue we
use an alignment process that pads the shorter of the two
inputs to the same length as the longer one. For instance,
adding 0

¯
1 and 1

¯
011 causes the first operand to be expanded

to 0
¯
001, taking advantage of the redundancy inherent in

LAD numbers. A CHP process to do the alignment is shown
below:

*[a := A, b := B ;

[â ∧ ¬b̂ −→ X !ǎ,Y !b; B?

[]¬â ∧ b̂ −→ X !a, Y !̌b; A?

[] â ∧ b̂ −→ X !(A?), Y !(B?)

[]¬â ∧ ¬b̂ −→ X !(A?), Y !(B?)
]]

A andB are the unaligned input channels, whileX andY
are the respective aligned outputs. Once a delimiter arrives
on, for example, channelA, we postpone the communica-
tion on A until the delimiter arrivesB. Until it does, the
channelX outputs a non-delimited version of the value on
A for every value that arrives onB.

4.3 Register File

A LAD register-file must be able to store dynamically
compressed result operands exactly, without discarding the
significance information. Furthermore, although datapath
values may have any length from 1 to 16, the register file
must be able to hold the full 16-bits of significant bits.
We accomplish this by having both the normally required
16x16-bit register array, and an extra 4-bits of storage per
register to record the length of the data (which also repre-
sents the location of the delimiter bit), as shown in Fig. 5.

5

Writes are handled as follows: as the bit-serial data ar-
rives at the register file onW, it gets stored in a write buffer.
A 4-bit counter keeps count of how many bits have arrived.
Once the delimiter marking the end of a word arrives, the
write buffer is written to the register file, along with the
value of the counter which specifies the number of signifi-
cant bits.

Duringreadsthe 16-bit register is output to a read buffer,
and the 4-bit value is read into a set of latches. A counter is
then incremented while bits are shifted out of the read buffer
into the register read bus, until the counter value equals the
read length register.

BitSNAP’s register file supports two bit-serial read ports
and one bit-serial write port. Pipelined register locking
is enabled, allowing non-conflicting reads and writes to
progress concurrently, and allowing a following instruction
to proceed while the previous is still writing back a (non-
conflicting) register. However, the register file does not sup-
port direct bypass of the contents of the write buffer to the
read ports; we found that the added concurrency was lim-
ited across our benchmarks, and not worth the extra com-
plexity and energy costs of implementing a bypass mech-
anism. The actual register cell and word-line decoders are
the same as those found in standard QDI-register files, with
the exception of some extra external control to synchronize
the counters.

4.4 Logical Unit

The logical unit, which computes bitwise AND, OR,
NOR, and XOR, is our first example of computing on LAD
digits. We assume the inputs are aligned using the previ-
ously mentioned alignment process. A bitwise logical op-
eration on non-delimiter digits results in the same value
as in normal binary operations. The extensions to support
the case when both inputs are delimiter digits are shown in
Fig 6. The CHP for our logical unit, which we implement
using a standard PCEVFB buffer stage [8] with conditional
input acknowledge on channelF looks like the following:

*[f := F , A?a, B?b;
[f = and −→ C !AND(a, b)
[]f = or −→ C !OR(a, b)
[]f = nor −→ C !NOR(a, b)
[]f = xor −→ C !XOR(a, b)
];
[â −→ F? [] else−→ skip]

]

4.5 Arithmetic Unit

The arithmetic unit handles normal addition/subtraction,
as well as addition/subtraction with carry to allow synthesis

B

Adder
B

A X

Control
Carry

Ci Co

Out S
B

A XLogical

F

F
(a) (b)

0 1 0 1 0 1

an
d

or no
r

xo
r

1 1 1 1 0 0

0 0 0 0 1 0

A

Figure 6. (a) Logical unit (b) Arithmetic unit

B
Shifter

Counter

C S

SA

A

Figure 7. Shift unit with counter

of software 32-bit addition. In order to simplify the circuits,
the arithmetic unit expects aligned inputs.

The function logic remains the same as that for a binary
full-adder for non-delimiter bits. Table 2 shows the addition
for the delimiter bits. The slightly more complicated cases
occur in rows 2 and 5, where the delimiter bit “overflows”
into the next higher bit.

Table 2. Truth table for addition

a b cin sum cout
0
¯

0
¯

0 0
¯

0
0
¯

0
¯

1 0
¯
1 0

0
¯

1
¯

0 1
¯

0
0
¯

1
¯

1 0
¯

1
1
¯

1
¯

0 1
¯
0 1

1
¯

1
¯

1 1
¯

1

We use three processes to implement the adder as shown
in Fig. 6b. TheAdderdoes the actual logic, while theCarry
Controlblock generates the carry-in for the adder, based on
the last carry and operation to be performed (add/sub onF).
TheOut process handles the special cases in the delimiter
table by outputting the two consecutive values onS.

4.6 Shifter

In parallel-word architectures, shifting can usually be ac-
complished by a multi-stage logarithmic shifter, which re-
lies on hard-wired shift stages. In contrast, with bit-serial
data, shifting requires a more active approach, either dy-
namicallyconsuminginput values in the case of a right shift,
or inserting 0s in the case of a left shift.

6

The shifter consists of a function block and a counter
which stores the shift amount (Fig. 7). The counter can re-
ceive two commands on channelC: (1) LOAD to read in the
shift amount onSA, and (2)DEC to decrement the counter.
On every command, the value of the counter is compared
to zero and the result sent to the shift unit onS. The data
comes in from the bus on channelA and the shifted value is
output onB.

We will discuss implementing the right shift, the more
complex case because of the need to ensure that the delim-
iter bit does not get shifted out. The following CHP for an
arithmetic shift right (C is assumed to reset with aLOAD
token):

SRA ≡

*[(s := S); A?a;
[s = SHIFT −→

[â −→ B !a, S? ,C !LOAD

[]¬â −→ S?, C !DEC

]

[]s = STOP −→
[â −→ B !a, S?, C !LOAD

[]¬â −→ B !a
]

]]

Notice that as soon as the delimiter on the input is en-
countered, the output can be completed by copying it to the
output, and terminating the shift (regardless of how many
bits were actually shifted).

The operation for a left shift is similar, except instead
of consuming the input bits, we insert zeros corresponding
to the shift amount. Naturally, this may generate a number
that is more than 16-bits long; we account for this case at
the write port of the register file which uses its counter to
discard bits above the 16-bit threshold.

5 Managing Length-Adaptive-Data

This section will describe the special hardware used in
BitSNAP to handle the interface between LAD bits and bit-
parallel components. We will also present some special cir-
cuits needed to optimize the handling of LAD data. Bit-
SNAP is only as effective in saving energy in so far as it
can actually keep all the operands maximally compressed
as shown in Fig. 3. For instance, operands coming from
memory need to be compressed before entering the datap-
ath. Another cause of concern is that certain operations on
LAD numbers tend to decompress the representation away
from the optimal — 0

¯
111 + 1

¯
000 results in 1

¯
111 using our

hardware. Ideally, the datapath should compress this to
1
¯
, but attempting full compression on every operand intro-

duces unacceptable energy and throughput costs. We will
describe some practical compaction techniques that allevi-
ate the decompression seen in operands.

5.1 LAD/Bit-Parallel Conversions

The boundaries between LAD to bit-parallel in Fig. 4 re-
quire conversion circuit blocks. We discuss the two main
converters in this section, the conversion from LAD to par-
allel words, and thecompactorblock.

5.1.1 LAD to Bit-Parallel

When sending an address to the data memory, or a data
value to the message coprocessor, the communicating bus
needs to convert from a LAD stream (that is of variable
length) to a 16-bit wide value. We use a counter, and a set
of 16 1-bit registers controlled by a demultiplexor driven by
the value of the counter. The LAD stream then writes each
register in turn; when the delimiter arrives, the LAD bit is
not acknowledged until the counter completes counting.

5.1.2 Compactor for Bit-Parallel to LAD

BitSNAP requires this conversion mainly on the data words
coming from the memories (immediates and load values).
Observe that we have no significance information stored
in the memories; the bit-parallel words all effectively have
the maximum significance of 16. We need to performcom-
pactionon these words to compress the leading 0s and 1s.
Fig. 8 shows the effects of different methods of achiev-
ing maximal compression. Themaximum compressionline
(equivalent to that from Fig. 3) shows the maximum each
operand can be compressed (i.e. the true significance of the
operands), and represents the best any compaction method
can achieve. Thefull memory load compactionshows what
happens to the operand significance if we performfull com-
paction on the data values coming from memory (immedi-
ate values, and load values). We can get to within 5% of
the optimal up to 8 bits, and within 1% above that (other
side-effects such as decompression due to operations such
as adds and subtracts prevent us from achieving the maxi-
mum).

Unfortunately, a full compaction circuit can be expensive
both in terms of throughput and energy [6]. After perform-
ing some simulations, we decided the following scheme
would achieve comparable results for less circuit complex-
ity: For every word requiring compaction, we only attempt
to compact the upper 12 bits: (1) The upper 8-bits are
checked for all 1s or 0s, (2) In parallel, the next lower 4-
bits are checked for all 1s or 0s, (3) If both tests are true,
and both blocks have the same value, we compact the up-
per 12 bits into one LAD bit. If just the upper 8-bits are
compressible, then we compact just that block.

This method has the added advantage that the 4 least sig-
nificant bits can be sent bit-serially while the compaction is
taking place. In addition, in between this compaction stage
and the process on the BitSNAP datapath that will use this

7

Significance (bits)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
er

ce
nt

ag
e

of
 D

at
ap

at
h

O
pe

ra
nd

s

0

10

20

30

40

50

60

70

80

90

100

Maximum compression
Full Memory Load Compaction
Partial Memory Load Compaction
Partial + Write Bus Compaction

Figure 8. Operand significance using different com-
paction options

P

L
buf

X
copy

compress

P0
buf D

R

Figure 9. One-place compaction block

value, we insert several one-step compaction blocks (de-
scribed more fully in the next section) that can compact
by one bit: thus, 0

¯
001 will get compressed to 0

¯
01. We

found that three of these blocks provided the best tradeoff
between latency and compaction effectiveness. The results
of this method can be seen in Fig. 8 by thepartial memory
load compactiongraph, which closely follows the full com-
paction results except for a large difference of more than
10% at 1 bit. Although this is a significant departure from
ideal, the next optimization we describe will fix this sub-
optimal behavior.

5.2 One-Step Compaction

We use this process in both the immediate and load
value compaction process described in the previous section,
as well as on the write bus leading to the register file to
tackle the decompression arising from computation on LAD
operands.

A diagram of the processes required is shown in Fig. 9.
The input arrives on channelL and a compressed output
appears on channelR; thecopyandbuf processes are simple
PCEVFB copies and buffers, while thecompressprocess is
given by the following (D is assumed to initialize with a null
token):

*[D?d ;P?p;

[d̂ −→ R!d

[]¬d̂ ∧ p̂ ∧ p = d −→ skip
[]¬d̂ ∧ p̂ ∧ p 6=d −→ R!d

[]d = null −→ skip
[]else−→ R!d

]]

The effectiveness of adding a single one-step compaction
stage on the write bus (combined with the partial memory
compression described previously) can be seen in Fig. 8 by
thePartial + Write Bus Compactiongraph. The compres-
sion is now closer to the maximum possible, and even better
than just using full compaction on the memory buses.

6 Evaluation

We have performed an energy and performance compar-
ison of the more commonly used LAD datapath units in
BitSNAP versus bit-parallel SNAP/LE. For SNAP/LE, for
which we have production quality datapath layout, we used
Nanosim (a fast circuit simulator from Synopsys similar to
Hspice in accuracy) to gain energy/performance numbers
from extracted netlists with post-layout parasitics. For Bit-
SNAP, we again used Nanosim, but this time on a pre-layout
netlist with some parasitic estimates. This netlist was not
optimized; most gates use a fixed nfet width of 4λ and pfet
width of 8λ. We assume a TSMC 180nm process using SC-
MOS rules.

The energy and performance results are shown in Ta-
ble 3 for BitSNAP and SNAP/LE running at 1.8V. In terms
of energy consumption, as expected, LAD bit processing is
somewhat more expensive than the per bit energy cost from
bit-parallel SNAP/LE, due to the control circuitry overhead
every cycle. For the bus interfaces, we break down the cost
for reading/writing the bus (average of the two), the one-
step compaction on the write bus, and the alignment pro-
cess used in operations requiring two operands. Thus, for
an addition, the total bus energy consumption per bit will be
the sum of 0.43x3pJ (two read/one write operations), 0.71pJ
(write-bus compaction), and 0.51pJ (alignment). The equiv-
alent energy in SNAP/LE would be 8.1x3pJ per 16-bit op-
eration. The register file energy in BitSNAP consists of
a fixed cost for accessing the entire 16-bits plus 4-bit de-
limiter location (average of reads and writes), as well as
a per bit cost for accessing the one-bit input/output bus.
Notice that the fixed cost for the register-file is much less
than an equivalent access for SNAP/LE. This is because
the throughput of the register-file in SNAP/LE must meet
the overall throughput of the processor (on the order of
200MHz). For BitSNAP, however, what matters is the cycle
time of getting bits in and out from the serial bus, whose

8

Table 3. Energy/Performance for BitSNAP vs. SNAP/LE

Structure SNAP/LE BitSNAP
Energy per Total gate Energy per bit Freq. (MHz) Total gate
word (pJ) width µm (pJ) width µm

Reader/Writer 0.43 334 46
Bus Interface 8.1 473 1-step Comp. 0.71 235 158

Align 0.51 257 77.3
Arithmetic 11.7 1559 1.3 248 359

Logical 5.4 788 0.37 322 168
Core (20-bits) 10.5 142Register File 31.2 16.9K

1-Bit Ports 1.1 263
10.6K

Shifter 11.6 6K 1.4 238 515

Workload
RadioTX RadioRX AodvRR AodvPF TR1000 Data Log

D
at

ap
at

h
E

ne
rg

y
R

el
at

iv
e

to
 S

N
A

P
/L

E
 (

%
)

0

10

20

30

40

50

60

70

T
hr

ou
gh

pu
t (

M
H

z)

0

10

20

30

40

50

60

70

Energy
Throughput

Figure 10. BitSNAP: Relative dynamic energy savings
and throughput (at core voltage of 1.8V) for each workload

multiple cycles can effectively hide the slower cycle time of
the parallel read and write to the register core.

On average, we found that a LAD bit takes approxi-
mately 10% of the energy for an equivalent 16-bit parallel
word. Thus, any operation that can be compressed to 10 bits
or less will save energy in BitSNAP, while any operation
that uses more bits will end up expending more energy. We
used the energy estimates in our architectural BitSNAP sim-
ulator to analyze the actual savings over SNAP/LE; across
the sensor network workload presented earlier, the datapath
energy consumption of BitSNAP ranges from 48% to 52%
of the SNAP/LE’s as shown in Fig. 10.

From a performance perspective, the throughput of most
BitSNAP units exceed that of SNAP/LE, mainly because of
the lack of wide completion trees. In a conventional bit-
serial processor design, the overall execution time would
slow down to about 1/16th the bit-parallel execution time,
but because we use significance compression, we only suf-
fer a slowdown proportional to the actual amount of bits

we process. We show in Fig. 10 the expected throughput
of BitSNAP on each of the benchmarks, as well as the es-
timated datapath power savings over SNAP/LE.RadioTX
has the 802.11 based MAC layer taking a message from the
application and transmitting it byte-by-byte across the ra-
dio interface, whileRadioRXreceives a message packet and
hands it up to the application layer. InAODVRR, the MAC
receives a route request which gets passed to the AODV-
based ad-hoc routing layer that then performs a lookup in
the node’s routing table. The lookup is then passed back
to the MAC for transmission. InAODVPF, the MAC re-
ceives a data packet meant for another node, that then gets
forwarded via the next-hop found in the node’s routing ta-
ble. TR1000implements the radio stack for the TR1000 ra-
dio chip, and performs SEC-DED error coding and packet
CRC. DataLogperiodically samples a sensor reading and
computes a running average. Across our benchmarks, Bit-
SNAP executes at an average throughput between 46MHz
to 62.5MHz, which corresponds to a slowdown of just 4.3
to 3.2 over SNAP/LE.

We have also provided the total transistor gate width
breakdown for each circuit block in Table 3. As expected,
BitSNAP has a considerably lower number of devices.
SNAP/LE contains a total of 62K transistors (39,694µm to-
tal gate width) in the datapath, and we estimate that, based
on the trends seen for the units in Table 3, BitSNAP will
have a total of 23.5K transistors (13,648µm width). The
total savings in gate width leads directly to static leakage
energy reduction of 62%. For a sensor node processor that
spends much of its time idle, with no dynamic switching,
reducing the static energy can be a key factor in extending
the lifetime of the node.

In terms of total energy consumption, we estimate that
BitSNAP will incur about 70% of the dynamic energy con-
sumption of SNAP/LE after accounting for the memories,
fetch and decode. This translates to 152pJ per instruction
at 1.8V and 17pJ per instruction at 0.6V. Table 4 compares
the energy consumption of BitSNAP with other current and

9

Table 4. Energy/Performance comparison with asynchronous processors

Processor Process Datapath Voltage Throughput Energy Energy/bit
Width (V) (MIPS) (pJ/ins) (pJ/ins/bit)

ASPRO-216 [13] 0.25µm 16 1 25 1,000 63
AMULET3 [14] 0.35µm 32 3.3 120 1,291 40

1.8 200 500 63Lutonium [15] 0.18µm 8
0.5 4 43 5
3.3 180 22,000 688MiniMIPS [11] 0.6µm 32
1.5 60 3,700 116

Philips 80C51 [16] 0.5µm 8 3.3 4 2,250 281
1.8 200 218 14SNAP/LE 0.18µm 16
0.6 23 24 1.5
1.8 54 152 10BitSNAP 0.18µm 16
0.6 6 17 1.1

proposed asynchronous processors. As can be seen, Bit-
SNAP’s energy conscious design and dynamic significance
compression yields much lower power consumption than
other designs. We can also translate these energy num-
bers into the active power we would expect to observe in
an actual sensor network. We noted that the workloads used
to benchmark BitSNAP typically have between 70-250 dy-
namic instructions. In a typical sensor network scenario
with extremely low activity levels of less than 10 events per
second [2], this corresponds to an active power consump-
tion in the realm of just 12nW-43nW at 0.6V.

7 Related Work

Dynamic significance compression has been widely pro-
posed for reducing both static leakage and dynamic switch-
ing in cache or memory structures [17, 18] by turning off
bytes of all zeros and ones. For processor cores, fixed
width significance compression as proposed by Brooks and
Martonosi clock-gated the upper 48-bits of a 64-bit integer
unit if those input bits were zero [7]. They demonstrated
54.1% to 57.9% energy savings for that particular unit, but
did not explore the cycle time or energy impact of doing a
48-bit zero detect every cycle, nor was the compression gen-
eralized to other parts of the architecture. Because the sig-
nificance information is not propagated across cycles, and
not stored in the register-file, we believe this scheme has
limited usefulness.

Canal, González, and Smith [5] proposed tagging data
values with bits specifying which bytes in a 32-bit datapath
could be compressed. The instruction and data caches were
also assumed to be modified to hold compressed data, with
compression happening on a cache line fill. They demon-
strated 30-40% activity factor reduction on both 32-bit dat-
apaths and byte-serial datapaths, at a cost of increasing the
CPI by 24-79%. However, because of the higher-level ar-

chitectural nature of the study, there were no energy esti-
mates for the resulting architecture. We believe there is a
significant energy/area overhead of supporting caches with
compression, generating the control, and handling the by-
pass paths in multi-cycle byte-serial synchronous imple-
mentations.

Nielsen and Sparsø demonstrated an asynchronous FIR
filter bank [19] that used a two way compression scheme:
data values are divided into twoslices, a lower-order set of
bits for small numbers, and a conditionally activated higher-
order set of bits. The lower slice was tagged with a bit de-
noting whether the upper slice was used or not. This tag bit
then conditionally activated the processing units and mem-
ories. They attributed about 30% of their power reduction
over a similar synchronous implementation directly to the
use of their slice based significance compression

Width-adaptive datapaths (WAD) for processors were
first proposed by Manohar for dynamic compression on
asynchronous parallel-word datapaths [6]. The WAD de-
sign was used by Fang and Manohar in QDI register file de-
sign, for compressing operands at a 4-bit block granularity
using one WAD bit per block [8]. The vertically pipelined
and block-skewed design showed an energy overhead of
25% over non-WAD register-files using pipelined comple-
tion [11] per block, but had an overall energy savings due to
a 60% reduction in the activity factor.

8 Summary

In this paper, we have demonstrated a novel datapath de-
sign that applies dynamic significance compression to bit-
serial data in the context of a low-power sensor network
processor. By operating on variable length data, our length-
adaptive datapath (LAD) BitSNAP processor can reduce the
datapath energy consumption by roughly half while running
at 20-25% the peak throughput of a comparable parallel-

10

word processor. We estimate that BitSNAP will operate at
0.6V at 6MIPS while consuming just 17pJ/ins.

9 Acknowledgments

This work was supported in part by the Multidisciplinary
University Research Initiative (MURI) under the Office of
Naval Research Contract N00014-00-1-0564, and in part by
NSF grants ITR 0428427 and NETS 0435190.

A Summary of CHP Notation

The CHP notation we use is based on Hoare’s CSP [20]. A
full description CHP and its semantics can be found in [21]. What
follows is a short and informal description.

• Assignment:a := b. This statement means “assign the value
of b to a.” We also writea↑ for a := true, anda↓ for
a := false.

• Selection: [G1 → S1 [] ... [] Gn → Sn], whereGi ’s
are boolean expressions (guards) andSi ’s are program parts.
The execution of this command corresponds to waiting un-
til one of the guards istrue, and then executing one of the
statements with atrue guard. The notation[G] is short-
hand for[G → skip], and denotes waiting for the predicate
G to become true. If the guards are not mutually exclusive,
we use the vertical bar “|” instead of “[].”

• Repetition:*[G1 → S1 [] ... []Gn → Sn]. The execution
of this command corresponds to choosing one of thetrue

guards and executing the corresponding statement, repeating
this until all guards evaluate tofalse. The notation*[S] is
short-hand for*[true → S].

• Send:X !e means send the value ofe over channelX .

• Receive:Y ?v means receive a value over channelY and
store it in variablev .

• Probe: The boolean expressionX is true iff a communica-
tion over channelX can complete without suspending. In
the event channelX communicates data,x := X assigns the
data to variablex without completing the communication on
X (value probe). This action suspends until data is available
onX .

• Sequential Composition:S ;T

• Parallel Composition:S ‖ T or S ,T .

• Simultaneous Composition:S • T bothS andT are com-
munication actions and they complete simultaneously.

References

[1] Clinton Kelly IV, Virantha Ekanayake, and Rajit Manohar. SNAP: A Sensor-
Network Asynchronous Processor. InProc. International Symposium on Asyn-
chronous Circuits and Systems (ASYNC), May 2003.

[2] Virantha Ekanayake, Clinton Kelly IV, and Rajit Manohar. An ultra low-power
processor for sensor networks. InProc. International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS),
October 2004.

[3] P. Levis et al. The emergence of networking abstractionsand techniques in
TinyOS. InProceedings of the First USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI), 2004.

[4] J. Hill et al. System architecture directions for network sensors. InProc. In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2000.

[5] R. Canal, A. González, and J.E. Smith. Very Low Power Pipelines using Signif-
icance Compression. InProc. International Symposium on Microarchitecture,
December 2000.

[6] Rajit Manohar. Width-Adaptive Data Word Architectures. In Proc. Interna-
tional Conference on Advanced Research in VLSI, March 2001.

[7] D. Brooks and M. Martonosi. Dynamically Exploiting Narrow Width Operands
to Improve Processor Power and Performance. InProc. International Sympo-
sium on High-Performance Computer Architecture (HPCA), 1999.

[8] D. Fang and R. Manohar. Non-uniform access asynchronousregister files.
In Proc. International Symposium on Asynchronous Circuits and Systems
(ASYNC), Apr 2004.

[9] P. B. Denyer and David Renshaw.VLSI Signal Processing; A Bit-Serial Ap-
proach. Addison-Wesley Longman Publishing Co., Inc., 1985.

[10] Richard I. Hartley and Peter F. Corbett. A digit-serialsilicon compiler. In
Proceedings of the 25th ACM/IEEE conference on Design automation, pages
646–649. IEEE Computer Society Press, 1988.

[11] Alain J. Martin, Andrew Lines, Rajit Manohar, Mika Nystroem, Paul Penzes,
Robert Southworth, and Uri Cummings. The design of an asynchronous MIPS
R3000 microprocessor. InAdvanced Research in VLSI, pages 164–181, 1997.

[12] Alain J. Martin, Steven M. Burns, Tak-Kwan Lee, Drazen Borkovic, and
Pieter J. Hazewindus. The design of an asynchronous microprocessor. In
Charles L. Seitz, editor,Proc. International Conference on Advanced Research
in VLSI, pages 351–373, 1991.

[13] M. Renaudin, P. Vivet, and F. Robin. ASPRO-216: A standard-cell QDI 16-bit
RISC asynchronous microprocessr. In4th International Symposium on Ad-
vanced Research in Asynchronous Circuits and Systems (ASYNC ’98), pages
22–32, 1998.

[14] S. B. Furber, D. A. Edwards, and J. D. Garside. AMULET3: a100 MIPS asyn-
chronous embedded processor. InProc. International Conf. Computer Design
(ICCD), 2000.

[15] Alain J. Martin, Mika Nystrm, and Catherine G. Wong. Three generations of
asynchronous microprocessors.IEEE Design and Test of Computers, special
issue on Clockless VLSI Design, Nov/Dec 2003.

[16] Hans van Gageldonk, Kees van Berkel, Ad Peeters, DanielBaumann, Daniel
Gloor, and Gerhard Stegmann. An asynchronous low-power 80c51 microcon-
troller. In ASYNC ’98: Proceedings of the 4th International Symposium on
Advanced Research in Asynchronous Circuits and Systems, page 0096. IEEE
Computer Society, 1998.

[17] Luis Villa, Michael Zhang, and Krste Asanovic. Dynamiczero compression
for cache energy reduction. InProc. International Symposium on Microarchi-
tecture, Dec 2000.

[18] Nam Sung Kim, Todd Austin, and Trevor Mudge. Low-energydata cache using
sign compression and cache line bisection. In2nd Annual Workshop on Memory
Performance Issues, May 2002.

[19] Lars S. Nielsen and Jens Sparsø. Designing asynchronous circuits for low
power: An IFIR filter bank for a digital hearing aid.Proceedings of the IEEE,
87(2):268–281, February 1999.

[20] C.A.R. Hoare. Communicating sequential processes.Communications of the
ACM, pages 666–677, 1978.

[21] Alain J. Martin. Synthesis of asynchronous VLSI circuits. In J. Straunstrup,
editor,Formal Methods for VLSI Design, pages 237–283. North-Holland, 1990.

11

