
An Efficient Data Structure for Sparse Bit-Vectors
with Applications in Neuromorphic Computing

Prafull Purohit
Electrical Engineering

Yale University
New Haven, CT, United States

prafull.purohit@yale.edu

Johannes Leugering
Broadband and Broadcastdept

Fraunhofer Institute for Integrated Circuits (IIS)
Erlangen, Germany

johannes.leugering@iis.fraunhofer.de

Rajit Manohar
Electrical Engineering

Yale University
New Haven, CT, United States

rajit.manohar@yale.edu

Abstract—Iterating over all the elements of a set is a very
common problem in highly parallel systems. In hardware, this
is typically realized by either storing the set-membership of
each element in a fixed-length bit-vector or by storing just
the indices of the members in a dynamically sized queue.
However, the former solution is only efficient in terms of
memory and runtime if each element is a member of the set
with approximately 50% probability, whereas the latter is only
efficient if the set is extremely sparse. We propose an alternative
asynchronous, concurrent, distributed data structure based on
a binary tree topology that is more efficient for sets with
sparsity in between these two extremes. The proposed structure
allows us to construct a set by adding individual elements one at
a time in arbitrary order, and to iterate over all these elements
exactly once, clearing the set in the process. We analyzed this
data structure, simulated its behavior in CHP, synthesized it
into an asynchronous digital circuit, optimized the circuits,
and performed SPICE simulation to evaluate our design. The
results confirm that our proposed structure offers a low-latency,
low-power solution for moderately sparse data, and may thus
prove useful for asynchronous and neuromorphic systems.

Index Terms—data structure, neuromorphic systems, asyn-
chronous circuits

I. Introduction
Iterating over all the elements of a set is a very common

problem in highly parallel systems. For example, consider a
large number of asynchronous processing elements that need
to serially access a shared resource, e.g. a bus. This requires
recording (in arbitrary order) which subset of processing
elements needs access, and then, once the shared resource
becomes available, iterating over just that subset. The most
common approaches to implement this rely on one of two
different data structures: either they iterate over some form
of fixed-length bit-vector, or they use some form of a
dynamically sized queue [1]. Bit-vectors tend to perform
well for dense subsets and queues tend to perform well for
extremely sparse subsets, but neither approach is optimal –
particularly not for the case we are most interested in, i.e.
when the subset is “moderately sparse”. In this paper, we
propose a better solution for iterating over such “moderately
sparse” subsets based on a binary tree structure, and we
present an efficient implementation as a fully asynchronous
digital circuit.

The problem we address can be formalized as follows:
we want to iterate over all the elements of a sparse subset
S ⊆ {0, . . . ,N−1}, where the sparsity parameter ρ determines
the expected fraction of elements belonging to the subset,
i.e. |S | ≈ M and ρ = M/N. We are looking for an efficient
data structure that allows us to construct this set by adding
individual elements one at a time in arbitrary order, where
adding an element that is already in the set has no effect.
We then need to be able to iterate over all elements in the
set exactly once and subsequently clear the set.1 In theory,
such a data structure for a set of up to N independent
elements and sparsity ρ must store at least B = Hb(ρ)Nbit
of information, where Hb(ρ) = −ρ log ρ − (1 − ρ) log (1 − ρ)
is the binary entropy function [2]. The minimum amount
of energy required to transmit this information grows pro-
portionally. For dense vectors (i.e. ρ = 0.5), this simplifies
to just B = Nbit; hence, a hardware implementation would
need Nbit to account for the worst-case. Iterating over all
elements requires at least O (M) operations (i.e. one per
element in the set).

A direct hardware implementation is to use a bit-vector
of length N stored in memory, i.e. one 1 bit flag for each
element, that can be independently raised to signal whether
the corresponding element is part of the set S . This requires
a memory of fixed size O(N), and the amount of time and
energy required to iterate over it likewise grows with O(N).
This solution meets most of our requirements, but it is only
efficient if roughly half of the N elements belong to the
subset S ; for sparser subsets with M ≪ N the time and
energy required for iteration are far from optimal.

An alternative data structure for this problem is a queue
storing just the index of each member of the subset. On
average, such a queue would need to store M indices of
log2 N bits each, resulting in an average case memory use
of order O(M log N). Iterating over all of these entries
would require at least on the order of O(M) operations. For

1In our particular case, we are only interested in iterating over each set
once, and therefore the clearing operation can be performed as part of the
iteration. We also don’t require the ability to query the set-membership of
individual elements or to remove individual elements from the set.

very sparse subsets with ρ ≪ 1/log N, this could be much
more efficient than the linear bit-vector implementation. In
particular, if ρ = 1/N, i.e. we only expect to see a set of size
|S | = M = 1, the queue only actually uses the theoretically
optimal memory size of log N bits. However, if we need
to size the queue for the worst-case scenario, i.e. where
the entire set needs to fit in the queue and thus M = N,
then the memory footprint increases to O(N log N), which
is substantially worse than the linear bit-vector. But even
for moderately sparse bit-sets with 1/N ≪ ρ ≪ 1, a queue
is not optimal for our problem: by storing the full index of
each element, the queue implicitly holds a lot of redundant
information, such as the insertion order and repetitions of the
elements. This not only makes the queue less efficient, but it
also makes the order of iteration non-deterministic from the
perspective of a consumer of the queue. More importantly,
to properly implement the semantics of a set, we would need
to add a mechanism to prevent duplicates during insertion,
which in turn would require additional memory and/or a
(costly!) membership-query prior to each insertion.

Other popular data structures used to implement sets are
hash tables and linked lists, but neither offers benefits for
our specific situation: inserting into and iterating over hash-
tables is at least as costly as it is for bit-vectors, and due
to the random insertion order a linked-list implementation is
equivalent to a queue2. In principle, compression algorithms
could provide another opportunity to store the set in a
memory-efficient representation, but they typically require
a sequential stream of data in a predefined order (e.g. for
run-length encoding) and/or require comparatively costly
computations.

Since none of these approaches is satisfactory for our
situation, i.e. for subsets with sparsity 1/N ≪ ρ ≪ 0.5, we
propose a new asynchronous, concurrent, distributed data
structure based on binary tree topology. Our implementation
can efficiently represent sparse sets of arbitrary size (ideally
powers of two) and supports two operations:

• a set operation, which adds a single element to the set
(in arbitrary order)

• and a iterate-and-clear operation, which iterates
over all elements in the set (in a fixed order) and clears
each element after reading

Variations of this implementation can produce either a
highly compressed bit-stream representation of the set, or
sequentially yield the full indices of all elements of the set.
We provide two variations of the set operation, either of
which may be more beneficial for specific applications: one
provides serial access, allowing a member to be added to
the set by sending index in a bit-serial stream, the other
provides parallel access, allowing a member to be added to

2If elements were inserted (or not inserted) in a predefined order, a
linked list could make use of more efficient relative addressing, but this is
not possible here due to random insertion order.

the set by directly sending the address through a bit-parallel
input.

We analyzed this data structure, simulated its behavior in
CHP, synthesized it into an optimized asynchronous digital
circuit, and performed pre-layout SPICE simulation. The
results confirm that our proposed structure is efficient, and
may thus prove useful for asynchronous and, in particular,
neuromorphic systems.

This paper is organized as follows. In Section II, we
discuss a concrete example of the problem that motivated
this research, as well as related work on this problem.
Section III provides an overview of the proposed solution.
Implementation details follow in Section IV. Section V
presents simulation results and a comparison of different
implementation options. Section VI concludes with a brief
summary of the main contributions of this work.

II. Motivation and PriorWork

Asynchronous design excels at scenarios that involve
sparse, distributed processing. Their event-driven nature en-
ables fine-grained data-dependent dynamic power manage-
ment, naturally leading to low power operation. An extreme
example of this is the field of neuromorphic computing,
where millions to billions of fine-grained computation units
(“neurons”) operate with extremely sparse, data-dependent
activity [3]. While this is a natural application for asyn-
chronous logic, having an explicit circuit for each compu-
tational element leads to another issue — the area occupied
by such a large number of computational elements quickly
becomes prohibitive.

To provide the required computation on a limited area,
the standard approach is to time-multiplex computational
units and use extremely dense storage to hold the state
for each unit in a memory structure. Examples of this
design point include larger neuromorphic devices such as
IBM’s TrueNorth [4] and Intel’s Loihi [5] and Loihi2 [6],
as well as other deep learning accelerators where multiply-
accumulate blocks are time-multiplexed [7]–[9]. While
implementing time-multiplexed operation is straightforward
for “dense”, pipelined and synchronous computations, i.e.
where (almost) all compute units are simultaneously busy
and operate in lockstep, the situation is more complicated
when computations run asynchronously and communication
is sparse, i.e. if only a small subset of compute units is active
at any given time.

Consider a concrete example from neuromorphic com-
puting, where we have an N-fold time-multiplexed logic
implementing a set of N spiking neurons with binary output.
The simulation proceeds step-wise, and in any step, only a
subset of the neurons produces an output spike. At the end
of each step, we need to know which neurons in the set
{0, 1, . . . ,N − 1} just fired a spike in order to perform some
operation for each of them (e.g. transmitting an outgoing
message or performing an update of synaptic weights).

Our proposed solution is to use a distributed hardware
data structure that implements a bit-vector with set and
iterate-and-clear semantics as described in Section I.
Whenever a particular neuron fires, it is added to the
set via the set operation, and after each simulation step,
the iterate-and-clear operation is used to retrieve the
indices of all neurons that fired in the particular step.
Simultaneously, the bit-vector is cleared in preparation for
the next simulation step.

Similar problems naturally arise in a number of different
neuromorphic architectures. For example, in the TrueNorth
architecture, incoming spikes are buffered in an input spike
buffer that uses one bit per input axon to record the spike
arrival. When processing the input spikes for a particular
time step, the TrueNorth design sequentially scans this
memory buffer to check if there is a spike for each input
axon for a particular time step. This is an implementation
of the bit-set using a linear bit-vector as described above,
with a time complexity of O(N), where N is the number
of input axons. Note that this complexity is independent of
the sparsity of spike events because the state of every input
axon is scanned at every step to determine if there is an input
spike or not. This deviates from the otherwise asynchronous
and event-driven principle of operation of a neuromorphic
system, where the number of simultaneous spikes should be
expected to be very low3.

As we shall see, our proposed bit-vector design can solve
this problem with better energy efficiency. It also recovers
some of the event-driven nature of the underlying computa-
tion because the energy required for iterate-and-clear
grows linearly with M rather than N.

III. A Concurrent Bit-vector Data Structure

A direct implementation of the software bit-vector algo-
rithm can be written in CHP as follows4:

BITVEC(N,C, I,O) ≡
*[C?cmd;
[cmd = set −→ I?addr; bit[addr] := true
[]cmd = itrclr −→

i := 0;
*[i < N −→ [bit[i] −→ O!i; bit[i] := false

[] else −→ skip
];
i := i + 1

]; O!⊥
]

]

3In fact, there is a trade-off between timing accuracy and sparsity: the
higher the timing resolution, the shorter each time-step becomes, which in
turn increases sparsity. Since the use of timing information is one of the
key merits of neuromorphic architectures, this trade-off favors shorter time
steps with sparser activation.

4A brief summary of the CHP notation is provided in the appendix

Here, C is the command channel that specifies the op-
eration to be performed (itrclr is the iterate-and-clear
operation described earlier); I specifies the bit to be set, for
the set command; O is used to generate the address of the
bits that are set, followed by a final special output (⊥) that
indicates that there are no further outputs from the bit-vector.

A. Tree-based Implementation

As a first step towards a more efficient implementation,
we apply a recursive decomposition. A bit-vector of size 2k

can be designed by combining two bit-vectors of half the
size (assuming k > 0) as follows:

TREENODE(k,C, I,O,Cl, Il,Ol,Cr, Ir,Or) ≡
*[C?cmd;
[cmd = set −→ I?addr;

[addr < 2k−1 −→ Cl!cmd, Il!addr
[]else −→ Cr!cmd, Ir!(addr − 2k−1)
]

[]cmd = itrclr −→ Cl!cmd, Cr!cmd;
Ol?v; *[v , ⊥ −→ O!v; Ol?v];
Or?v; *[v , ⊥ −→ O!(v + 2k−1); Or?v];
O!⊥

]

]

BITVEC(2k,C, I,O) ≡
TREENODE(k,C, I,O,Cl, Il,Ol,Cr, Ir,Or)

∥ BITVEC(2k−1,Cl, Il,Ol)
∥ BITVEC(2k−1,Cr, Ir,Or)

This decomposition has a tree topology, where two bit-
vectors of size 2k−1 are combined with a tree node to
implement a bit-vector of size 2k. (Note that the base case
where k = 0 can be obtained by simplifying the software
bit-vector algorithm described earlier.) The TREENODE
process handles the two commands in the following way.
To process the set command, it inspects the address; if
it is less than 2k−1, then the set command is propagated
to the “left” sub-tree; otherwise, it is propagated to the
“right” sub-tree, after reducing the address by 2k−1. To
process the iterate-and-clear command, the request is
forwarded to both sub-trees. The resulting address streams
from the two sub-trees are merged to produce the final
address output sequence. Note that the comparisons and
addition/subtraction operations can be simplified to simple
bit operations (inspecting the most significant bit of addr
and clearing or setting the most significant bit of a k-bit
value respectively).

This tree-structured decomposition can be applied recur-
sively, and we are left with a bit-vector design that has the
following properties:

1) Delay:

• Set operations are accepted in constant time,
independent of N;

• The iterate-and-clear operation has a re-
sponse latency of O(log N), and after that, each
output is produced in constant time.

2) Energy:
• Set operations must traverse the tree to its leaves,

and hence require O(log N) energy since one tree
node at each level of the tree is active;

• The iterate-and-clear operation requires
O(N) energy because every node in the tree is
active. In addition, if there are M values stored in
the bit-vector, another O(M log N) energy term is
required to propagate the M addresses up the tree.

B. Optimizations

As seen in Section III-A, simply using a tree organization
does not eliminate the O(N) term from the energy required
by the iterate-and-clear operation. We now introduce
a sequence of optimizations and refinements that lead to our
final optimized architecture.

1) Tracking if a sub-tree is empty: In the bit-vector de-
composition from Section III-A, we refer to the CHP process
at a particular location in a tree as a tree node. Since a tree
node is responsible for both set and iterate-and-clear
operations for the entire sub-tree rooted at the node, we can
track if a sub-tree has any bits set. We introduce a local bit
has that is true if the sub-tree has any bit set. If the has bit
at a tree node is false, then we need not query the sub-tree
to determine if there are any bits set. This optimization is
shown below:

TREENODE2(k,C, I,O,Cl, Il,Ol,Cr, Ir,Or) ≡
has↓;
*[C?cmd;
[cmd = set −→ I?addr; has↑;
[addr < 2k−1 −→ Cl!cmd, Il!addr
[]else −→ Cr!cmd, Ir!(addr − 2k−1)
]

[]cmd = itrclr −→
[has −→ Cl!cmd, Cr!cmd;

Ol?v; *[v , ⊥ −→ O!v; Ol?v];
Or?v; *[v , ⊥ −→ O!(v + 2k−1; Or?v];

[]else −→ skip
];
O!⊥; has↓

]

]

To see the effect of this optimization, consider the case
when a single bit is set in the bit-vector. This particular
optimization will reduce the energy required to read the bit-
vector to O(log N) from O(N) for the previous solutions.

2) Tracking both sub-trees: The next observation is that
although we can use the has bit to prune sub-tree operations,
the parent node in the tree must make a request to a sub-tree
to determine if that sub-tree is empty or not. However, the
parent node can in fact track if a specific sub-tree is empty
or not during the set phase. To this end, we replace the has
bit with two bits: has0 and has1 to track if the left sub-tree
or right sub-tree is empty.

TREENODE3(k,C, I,O,Cl, Il,Ol,Cr, Ir,Or) ≡
has0↓, has1↓;
*[C?cmd;
[cmd = set −→ I?addr;
[addr < 2k−1 −→ Cl!cmd, Il!addr; has0↑
[]else −→ Cr!cmd, Ir!(addr − 2k−1); has1↑
]

[]cmd = itrclr −→
[has0 −→ Cl!cmd []else −→ skip],
[has1 −→ Cr!cmd []else −→ skip];
[has0 −→ Ol?v;
*[v , ⊥ −→ O!v; Ol?v]

[]else −→ skip
];
[has1 −→ Or?v;
*[v , ⊥ −→ O!(v + 2k−1); Or?v]

[]else −→ skip
];
O!⊥; has0↓, has1↓

]

]

In this version, a sub-tree only receives a request if it
has a set bit-position. With this optimization, it is easy to
see that the energy for the iterate-and-clear operation
reduces to O(M log N); the O(N) term is eliminated. At first
it may appear that we have doubled the storage requirements
by doubling the number of has bits at a tree node. However,
note that we can simply delete the has bits from the leaves
of the tree—i.e. we do not increase the total bits stored.
Another way to think about this is that we have relocated
the original has bits from the two child nodes of a tree node
to their parent.

C. Bit-serial Readout

The latency of reading the address during the
iterate-and-clear operation is O(log N), since the
request for the address must propagate to the leaf of the
tree, and the address value propagates up in response.
However, note that when we request data from the left
(right) sub-tree, we know the most-significant bit of the
address—it must be zero (one).

To take advantage of this information, we change the
output channel into a bit-serial output where the bits on
the output arrive MSB-first. With this representation, we

need a few additional symbols beyond simply 0 and 1—
in particular, we need a symbol to separate successive ad-
dresses, and a final symbol to indicate that all the addresses
have been read out of the bit-vector data structure (⊥ in the
description so far). We refer to the symbol which separates
successive addresses as END ENTRY and the final symbol
which indicates the end of all the addresses of the bit-vector
is referred as END ALL. The result is shown in Fig. 1.

It is easy to see that in this version of the bit-vector data
structure, the output bits arrive in constant response time—
independent of N. Note that the first complete address still
requires O(log N) steps to receive the least significant bit.
For the set operation, a simple inspection of the MSB
of the bit-address is sufficient to determine whether the
bit-address corresponds to the left sub-tree or right sub-
tree and is used to forward the request down the tree
along with the remaining bits of the bit-address. During
the iterate-and-clear operation, each node sends the
request to the sub-trees and then, depending on whether
that sub-tree is empty or not, iterates on the left sub-tree
and right sub-tree to collect output data and propagate up.
The has0 (has1) tracks if the left (right) sub-tree is empty or
not. Therefore, we can start by sending a 0 or 1 representing
the MSB of the bit-address and then send the remaining data
up the tree as it is received from the sub-tree for each bit-
address. Since the left and right sub-tree represent different
address ranges, the symbol received from the left sub-tree
indicating the end of all addresses does not necessarily
mean the end of all the addresses in the tree. The symbol
END ALL is replaced with END ENTRY if the right sub-
tree is not empty.

Now, considering the advantages of the bit-serial readout,
we can use a similar approach for the set operation and re-
ceive the address value as a serial stream of bits. In this case,
we need to add an extra symbol to indicate the end of the
address (END ALL). However, we do not need the second
symbol to separate successive addresses (END ENTRY) as
we send only one address for each command request. Note
that the parallel write implementation would need to receive
all bits of the address before sending it to the left or right
sub-tree whereas the bit-serial implementation can send a
serial bit stream to the sub-tree as it arrives. In the version
with bit-serial addresses for the set operation as well as the
iterate-and-clear operation, the size of the datapath for
the bit-vector design is independent of N.

D. Energy Comparison at Bit-level Granularity

To compare the different versions of the bit-vector de-
sign, we re-examine the energy required in terms of bit-
operations.

The set operation activates a path of length O(log N) in
the tree. If we look at the energy complexity at the bit-level
granularity, then there are log N bits being processed by the
root of the tree, (log N −1) bits being processed by the next

level of the tree, etc. Hence, the total energy-complexity in
terms of bit-operations would be O(log2 N).

A similar analysis can be used for the bit-parallel
iterate-and-clear operation. While there are
O(M log N) operations, the energy complexity taking into
account individual bit operations would be O(M log2 N).

An analysis of the iterate-and-clear operation for
bit-serial readout also shows that the energy complexity is
O(M log2 N). Hence, the bit-serial and bit-parallel readout
circuits have the same energy complexity.

IV. Circuit Implementation and Evaluation

As shown in Fig. 2(a), the Communicating Hardware
Processes (CHP) description from Fig. 1 can be viewed as
three separate overlays or logical layers for command, input
address, and output serial stream such that each node in the
tree contains a member from the three layers, i.e. command,
address, and output. The command layer is responsible
for generating control signals for the other two layers and
synchronizing the data movement. The address and output
layers are responsible for moving address data in and out of
the tree structure. All units in a node communicate with their
parent node and child node through asynchronous channels.
Apart from the vertical interconnection paths, all three units
in a node communicate with each other and synchronize data
movement through asynchronous channels. The division of
the request and data circuits into separate logical layers
provides flexibility to choose a different implementation for
each layer and can be optimized for a given performance
metrics such as area, power, or timing. The modification of
the set operation from bit-parallel to bit-serial is an example
of such optimization.

A. Set Operation

When an event for a particular computation arrives, as
shown in Fig. 2(b), the data structure receives a command
(cmd) on channel C (indicating the set operation) and bit-
address. After receiving the set request, the command unit
requests the MSB of the bit-address from the address unit
through channel A. Depending on the value of returned
MSB, the control unit performs two operations. It sets either
flag has0 or has1, to indicate whether the bit-address belongs
to the left sub-tree or the right sub-tree. It then forwards the
set command to one of the child nodes on channel Cl or
Cr.

After receiving the request from the control unit on
channel A, the address unit receives the index on input
address channel I and returns the MSB to the control unit.
Depending on the MSB of the address, the address unit sends
the remaining address bits to either the left sub-tree or the
right sub-tree on channel Il or Ir.

The command and address propagate recursively from the
root of the tree structure to the leaf node such that the
address value reduces by 1-bit in every node. The distributed

has0↓, has1↓;
*[C?cmd;
[cmd = set −→ I?addr;
[addr{MSB} = 0 −→ has0↑, Cl!cmd, Il!addr{MSB-1..0}
[] else −→ has1↑, Cr!cmd, Ir!addr{MSB-1..0}
]

[] cmd = itrclr −→
[has0 −→ Cl!cmd [] else −→ skip],
[has1 −→ Cr!cmd [] else −→ skip];

[has0 −→
*[O!0;
*[Ol?v;

O!(has1 ∧ v = END ALL ? END ENTRY : v) ← v , (END ALL ∨ END ENTRY)
]

← v , END ALL
]

[] else −→ skip
];

[has1 −→
*[O!1;
*[Or?v; O!v ← v , (END ALL ∨ END ENTRY)]
← v , END ALL
]

[] else −→ skip
];

has0↓, has1↓
]

]

Fig. 1: CHP description of the bit-vector data structure

implementation of the information flow allows pipelined
operation for setting a bit-position in the bit-vector, i.e. the
root node can accept a new event address while the previous
event address propagates through the child nodes.

B. Iterate-and-clear Operation

The iterate-and-clear operation consists of multiple
tasks. When the control unit receives the command to read
indexes of all bit-positions which are set, it forwards the
iterate-and-clear command to the child sub-tree which
has any set bit-position (indicated by has0 or has1). After
forwarding the command, the control unit iterates on both
sub-trees to read bit-addresses. It starts communication on
channel Rl and Rr sequentially based on the status of
the has0 and has1 flags. The result unit, after receiving
the readout request from the control unit, initiates itrclr
operation by sending out a 0 or 1 depending on the local has
flag that represents the MSB in the address. For example, if

has0 corresponds to the left branch of the tree then the MSB
of any bit-address from the left sub-tree can be represented
by has0. Similarly, has1 represents the MSB for the right
sub-tree. Due to the local storage of the MSB of address,
the result unit can start sending out address bits as soon
as it receives the command to readout bit addresses, offer-
ing a constant response time for the iterate-and-clear
operation. After sending the MSB, the result unit requests
the remaining bits from the child node and sends it up
the tree. A special symbol is used to indicate the end of
an address entry (END ENTRY) and the end of all bit-
positions (END ALL) in the output serial stream. While
reading out the left sub-tree, the result unit replaces any
END ALL token with END ENTRY if the right sub-tree
has any bit-position set. After reading out addresses of all
bit-position that are set in its sub-trees, the result unit clears
has0 and has1 flags throughout the hierarchy to clear the
address of bit-positions that were set.

(a) (b)

Fig. 2: Bit-vector tree. (a) Binary tree. (b) Unit block.
⊸ denotes the passive end of the channel and � denotes the active end of the channel.

We decompose the CHP into three concurrent compo-
nents: one that handes the control information, one for
address processing for the set command, and one that
handles the address generation for the iterate-and-clear
command.

• Control unit:
The control unit communicates with the address and
result unit to synchronize the data movement based on
the command request. The decomposed CHP of the
control unit is given in Fig. 3. Active communication
channels Cl (command-left) and Cr (command-right)
are used to communicate the request command with
the child sub-tree. When the control unit receives
the set command on channel C, it requests the
MSB of the bit-address from the address unit on
pull-channel A to select the sub-tree corresponding to
the bit-address. If the received MSB corresponds to
an address in the left sub-tree, the control unit sets
has0 and forwards the command to the left sub-tree on
channel Cl. Otherwise, it sets has1 and forwards the
command to the right sub-tree on channel Cr. When
the control unit receives the iterate-and-clear
command on channel C, it forwards the request to
sub-trees if their corresponding has bit is set. The
control unit then initiates readout from the left sub-tree
by communicating with the result unit on channel Rl.
Since the result unit needs to replace any END ALL
value with END ENTRY if any bit-address is set in
the right sub-tree, the value of has1 is also sent as part
of the communication on channel Rl. After reading out
all the bit-addresses from the left sub-tree, the control
unit initiates readout from the right sub-tree through
communication on channel Rr. Finally, the control unit
clears has bits after iterating through both sub-trees.

• Address unit:

Control Unit ≡
*[C?cmd;
[cmd = set −→ A?x;
[x = 0 −→ has0↑, Cl!cmd
[] x = 1 −→ has1↑, Cr!cmd
]

[] cmd = itrclr −→
[has0 −→ Cl!cmd [] else −→ skip],
[has1 −→ Cr!cmd [] else −→ skip];

[has0 −→ Rl!has1; Rl![] else −→ skip];
[has1 −→ Rr!; Rr![] else −→ skip];
has0↓, has1↓

]

]

Fig. 3: CHP description of the control unit

The address unit is responsible for receiving bit-address
for set operation and propagating it down the tree. As
shown in Fig. 4, the address unit receives bit-address
on channel I. The MSB of the bit-address is sent to
the control unit on channel A for updating the has bits
and pushing the command request down the tree. Based
on the MSB of the bit-address, the address unit then
forwards the received address to either the left sub-
tree or the right sub-tree. Because we store the MSB
as has bits and use this information to decide whether
the received address is sent to the left sub-tree or the
right sub-tree, we do not need to send the MSB. An
important thing to note here is that the address unit will
always have to receive the complete bit-address before
sending it down the tree and the write delay will be
something that depends on N.
In order to improve the throughput, we implemented

a bit-serial version of the address unit. As shown in
the CHP (Fig. 5), the address unit sends the MSB to
the control unit on channel A and uses this information
to forward the rest of the bit stream to either the left
sub-tree (channel Al) or right sub-tree (channel Ar).
A special value (END ALL) indicates the end of bit
stream.

Address Unit Parallel ≡
*[I?addr;

A!addr{MSB},
[addr{MSB} = 0 −→ Il!addr{MSB-1..0}
[] else −→ Ir!addr{MSB-1..0}
]

]

Fig. 4: CHP description of the bit-parallel address unit

Address Unit Serial ≡
*[I?MSB; A!MSB,
*[[MSB = 0 −→ I?v; Il!v
[] else −→ I?v; Ir!v
] ← v , END ALL
]

]

Fig. 5: CHP description of the bit-serial address unit

• Result unit:
The result unit, shown in Fig. 6, is implemented as
two independent processes for iterating over the left
sub-tree and right sub-tree respectively. The process to
readout the left sub-tree waits for communication on
channel Rl. After receiving a request from the control
unit, it starts by sending a 0 indicating the MSB of
the left sub-tree. The result unit then receives the
serial bit stream on passive channel Ol and sends it
on active channel O while the received value does not
correspond to the end of an address (END ENTRY)
or the end of all the addresses (END ALL) in that
sub-tree. After receiving an END ENTRY symbol, the
result unit repeats by sending a 0 corresponding to the
MSB of a new address. The process terminates after
receiving a value indicating the end of all addresses
(END ALL). An END ALL symbol emitted by a left
sub-tree is replaced by an END ENTRY symbol if the
corresponding right sub-tree is not empty.
Similarly, the process iterates over the right sub-tree
after receiving a request on the communication channel
Rr. Because the control unit iterates on the left sub-
tree and then the right sub-tree, we know that an

END ALL symbol from the right sub-tree means end
of all addresses in the tree and should not be replaced.

C. Evaluation

We implemented the bit-vector data structure using the
Quasi Delay-Insensitive (QDI) circuit family. The decom-
posed CHP described earlier was translated into production
rules and SPICE netlist for CMOS implementation using
Martin’s synthesis method [10] and the open-source ACT
EDA flow for digital asynchronous circuits [11].

The data structure discussed above has been implemented
in a standard 65 nm bulk CMOS technology and simulated
with a 1V supply at a nominal device temperature of
25 ◦C to verify the correct functionality of the circuit
implementation. In order to account for parasitics and get
a more accurate estimate of the circuit performance, we
added a small capacitance to the output of every gate in
the circuit. The SPICE simulations were performed using
Synopsys FineSim, a high-performance circuit simulator.

We simulated the proposed structure with serial and
parallel address inputs to evaluate performance for 256 and
1024 bit-positions. A bit-position was randomly selected and
latency for writing and reading the address of the selected
bit-position was measured. To evaluate the performance of
the two implementations, we also measured average power
consumption while measuring the latency.

Based on the simulation results listed in Table I, we
observe that, for set operation:
• bit-serial set operation has a constant response time of

approx. 1 ns per bit, whereas the delay in the bit-parallel
implementation increase from 3.2 ns (0.4 ns/bit) to 5.1
ns (0.51 ns/bit).

• bit-serial set operation consumes more energy than a
bit-parallel operation due to the increased number of
handshake operations.

For the iterate-and-clear operation:
• the delay and energy consumption remains similar be-

tween the two implementations with bit-serial and bit-
parallel set operation. We believe the slight differences
in the measured numbers are due to differences in the
leakage power of both circuits.

The linear bit-vector structure discussed in Section III
can be implemented directly by using static random-access
memory (SRAM) array for storage and some decoding logic
for accessing the memory locations. Such implementations
often have average active power consumption in milliwatts
(mW) from the memory itself [12], [13]. For comparison,
our proposed event-driven and distributed data structure
requires less than 1 mW of average power when active, of-
fering a power-efficient solution for managing sparse events
in applications such as neuromorphic computing.

Another factor that determines the performance of a neu-
romorphic system is the speed-up in computation compared
to biological time scales. The readout time required to iterate

*[Rl?has1;
*[O!0;

*[Ol?v;
O!(has1 ∧ v = END ALL ? END ENTRY : v) ← v , (END ALL ∨ END ENTRY)
] ← v , END ALL

]; Rl?
]

||

*[Rr?;
*[O!1;

*[Or?v; O!v ← v , (END ALL ∨ END ENTRY)
] ← v , END ALL

]; Rr?
]

Fig. 6: CHP description of the result unit

TABLE I: Simulation results and area estimate of the bit-vector data structure. (measurements for one randomly-selected
bit-position)

Address
set iterate-and-clear

Area estimate
Delay Power Delay Power (# gates)

8-bit, Parallel 3.2 ns 0.57 mW 11.8 ns 0.75 mW 193,529

8-bit, Serial 8.9 ns 0.67 mW 11.9 ns 0.72 mW 237,058

10-bit, Parallel 5.1 ns 0.55 mW 14.7 ns 0.94 mW 776,470

10-bit, Serial 10.9 ns 0.81 mW 14.8 ns 0.86 mW 950,000

through a given data structure decides how fast the computa-
tion can advance to the next time step. For a 256-bit vector,
assuming the worst case where all bit-positions are set, the
proposed implementation would require 3.04 µs to iterate
through all the addresses. Comparing this to the TrueNorth
where a single time-step is approximately 1 ms, we show
that our proposed design can process all the events within
the time constraints while using less power consumption.
We also remark that the generation of addresses can be
overlapped with processing, since a new address is available
every 11.8ns (11.9ns for serial read-out).

In order to get a better intuition of the circuit com-
plexity, we also compare the estimated design area. The
area is usually measured in µm2 but this value depends on
the fabrication technology, amount of layout optimizations,
and the cell library. We compare the design area as gate
equivalents (GE) where one GE is equal to the area of
a 2-input NAND gate designed using gridded cell layout
style [14]. Based on the GE, given in Table I, we observe
that implementations with bit-serial address are significantly
larger than corresponding implementations with bit-parallel
address. We believe this difference in GE is due to the fact
that bit-parallel implementation contains mainly a comple-
tion tree which consists of simple logic gates whereas the

bit-serial implementation includes additional control logic
for receiving serial bit-stream in a loop.

V. Summary

Iterating over all the elements of a set is a very common
problem in highly parallel systems and an optimal data
structure for this problem depends on the degree of sparsity
in the set. Most common approaches either iterate over
some fixed-length bit-vector, which is efficient when the
set is densely populated, or they implement some type of
dynamic queue, which is efficient for extremely sparsely
populated sets. However, neither of these works well in cases
where the set is moderately populated. We proposed a better
concurrent data structure for iterating over a moderately
sparse subset. We started with a simple sequential imple-
mentation of the bit-vector and, using different optimization
and refinement, obtained an energy- and latency-efficient
implementation based on the binary tree structure. In order
to take further advantage of the hierarchical request and
data movement, we implemented a bit-serial readout where
output bits are produced in constant response time. We
pipelined the writing logic for the set operation and eval-
uated two implementations using bit-serial and bit-parallel
input channels. Finally, we synthesized and evaluated our

implementation using SPICE, which validates our arguments
about circuit complexity. The bit-serial implementation of-
fers higher throughput due to pipelined readout, but it
consumes more energy due to additional handshakes. The
bit-parallel implementation has lower power consumption
but suffers from slower throughput due to additional delays
arising from the completion circuit. The readout circuit
offers the same speed-up in both implementations but draws
more power for the bit-parallel case, which we believe is
due to the leakage from the extra circuitry.

Appendix
The circuit functionality is described using Communi-

cating Hardware Processes (CHP) language and the key
notations of the CHP syntax are summarized below:
• Skip: No operation
• Send: X!v means send the value of v over channel X.
• Receive: X?v means receive a value on channel X and

store it in variable v.
• Probe: X determines if there is a pending communica-

tion on a channel X
• Assignment: a := b means assign the value of b to a.
• Sequential Composition: S1; S2 means execute state-

ments S1 and S2 sequentially
• Parallel Composition: S1, S2 means execute statements

S1 and S2 in parallel
• Deterministic Selection: [G1 → S1 [] ... [] Gn → Sn]

waits until one of the guards (G1,G2...Gn) is true and
then execute corresponding statement. Requires that the
guards must be mutually exclusive

• Non-Deterministic Selection: [G1 → S1 | ... | Gn →
Sn] is same as the Deterministic Selection except
guards don’t have to be mutually exclusive

• Repetition: *[S] infinitely repeats statement S
• Do-while loop: *[S ← G] executes statement S, and

then evaluates the guard G. If G is true, then the loop
repeats; otherwise, the loop terminates.

ACKNOWLEDGMENT
This work was supported in part by DARPA IDEA grant

FA8650-18-2-7850, and in part by DARPA POSH grant
HR001117S0054-FP-042.

References

[1] S. Debasis, Classic Data Structures, 2nd ed. Prentice
Hall India Pvt., Limited, 2008, isbn: 9788120337312.

[2] T. Cover and J. Thomas, Elements of Information
Theory. Wiley, 2012, isbn: 9781118585771.

[3] S.-C. Liu, T. Delbruck, G. Indiveri, A. Whatley, and
R. Douglas, Event-based neuromorphic systems. John
Wiley & Sons, 2014.

[4] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, et
al., “A million spiking-neuron integrated circuit with
a scalable communication network and interface,”
Science, vol. 345, no. 6197, pp. 668–673, 2014.

[5] M. Davies, N. Srinivasa, T.-H. Lin, et al., “Loihi:
A neuromorphic manycore processor with on-chip
learning,” Ieee Micro, vol. 38, no. 1, pp. 82–99, 2018.

[6] G. Orchard, E. P. Frady, D. B. D. Rubin, et al.,
“Efficient neuromorphic signal processing with loihi
2,” in 2021 IEEE Workshop on Signal Processing
Systems (SiPS), IEEE, 2021, pp. 254–259.

[7] A. Ankit, A. Sengupta, P. Panda, and K. Roy,
“Resparc: A reconfigurable and energy-efficient ar-
chitecture with memristive crossbars for deep spiking
neural networks,” in Proceedings of the 54th Annual
Design Automation Conference 2017, 2017, pp. 1–6.

[8] R. Wang, G. Cohen, K. M. Stiefel, T. J. Hamilton, J.
Tapson, and A. van Schaik, “An fpga implementation
of a polychronous spiking neural network with delay
adaptation,” Frontiers in neuroscience, vol. 7, p. 14,
2013.

[9] C. Frenkel, M. Lefebvre, J.-D. Legat, and D. Bol,
“A 0.086-mm2 12.7-pj/sop 64k-synapse 256-neuron
online-learning digital spiking neuromorphic proces-
sor in 28-nm cmos,” IEEE transactions on biomedical
circuits and systems, vol. 13, no. 1, pp. 145–158,
2018.

[10] A. J. Martin, “Compiling communicating processes
into delay-insensitive VLSI circuits,” 1986.

[11] S. Ataei, W. Hua, Y. Yang, et al., “An open-source eda
flow for asynchronous logic,” IEEE Design & Test,
vol. 38, no. 2, pp. 27–37, 2021.

[12] S. Ataei and R. Manohar, “Amc: An asynchronous
memory compiler,” in 2019 25th IEEE International
Symposium on Asynchronous Circuits and Systems
(ASYNC), IEEE, 2019, pp. 1–8.

[13] J. Dama and A. Lines, “Ghz asynchronous sram
in 65nm,” in 2009 15th IEEE Symposium on Asyn-
chronous Circuits and Systems, IEEE, 2009, pp. 85–
94.

[14] Y. Yang, J. He, and R. Manohar, “Dali: A gridded
cell placement flow,” in Proceedings of the 39th
International Conference on Computer-Aided Design,
2020, pp. 1–9.

