
- 24 -

Chapter 3.

Parallel Prefix

“What’s one and one and one and one and one and one and

one and one and one and one?” “I don’t know,” said Alice,

“I lost count.” “She can’t do Addition,” the Red Queen

interrupted.

—Lewis Carroll, Through the Looking Glass

We present asynchronous circuits to solve the prefix problem with O(N log N)
circuit size, O(log N) worst-case latency, and O(1) cycle time. If the prefix

operation has a right zero, the asynchronous solution has an average-case latency

of O(log log N). The construction can be used to obtain an O(1) cycle time

asynchronous adder with O(N log N) circuit size and O(log log N) average-

case latency. We prove that our circuits have optimal asymptotic average-case

latency.

Let ⊗ be an associative operation. The prefix problem is to compute, given

x1, x2, . . . , xN , the results y1, y2, . . . , yN , where yk = x1⊗x2⊗· · ·⊗xk , for 1 ≤ k ≤ N .

We construct asynchronous solutions to the prefix problem that are similar to

their synchronous counterparts. We improve the average-case performance of the

asynchronous solution by using two competing methods for solving the prefix prob-

lem and picking the one that arrives earliest to produce the output. This technique

reduces the average-case latency from O(log N) to O(log log N) when the prefix op-

erator has a right zero, a significant improvement. We show that our solutions have

optimal asymptotic average-case latency.

A number of problems can be formulated as a prefix problem. Ladner and Fisher

show how the prefix problem can be used to parallelize the computation of an arbi-

- 25 -

trary Mealy machine. Leighton discusses a number of different problems that can

be solved using prefix computations. As a concrete application, we use the con-

struction to obtain an asynchronous adder which has O(1) cycle time, O(N log N)

circuit size, O(log N) worst-case latency, and O(log log N) average-case latency.

3.1. Traditional Solution
To formulate the prefix problem in terms of an asynchronous CHP program, we

assume that the inputs x1, x2, . . . , xN arrive on input channels X1,X2, . . . ,XN respec-

tively, and that the outputs y1, y2, . . . , yN are to be produced on output channels

Y1,Y2, . . . ,YN respectively. The problem can be restated in terms of reading the

values xi from the input channels, computing the yi values, and sending these values

on the appropriate output channels. In terms of CHP, the immediate solution that

leaps to mind is the following program:

*[X1?x1, X2?x2, . . . , XN ?xN ;

Y1!x1, Y2!(x1⊗x2), . . . , YN !(x1⊗x2⊗ · · ·⊗xN)

]

This program is very inefficient for a number of reasons, the most obvious being that

there are O(N 2) ⊗-operations, which correspond to O(N 2) circuit elements; but it

will serve as a specification for the problem.

For the purposes of this chapter, we will assume that the operation ⊗ has an

identity e. This is merely an aid to clarity—it does not detract from the construction

in any way.

Since we know input value xi at position i , we can solve the prefix problem if we

can determine x1⊗ · · · ⊗ xi−1 at position i . Assume we had a method that computed

the prefixes we needed for a problem of size n. We will extend it to compute the

prefixes we need of size 2n as follows. We begin by using x2i−1 ⊗ x2i as the input

to the n-input prefix computation graph. The result of this operation would be to

compute values x1 ⊗ · · · ⊗ x2i at output position i + 1. We can now solve the prefix

problem of size 2n by producing x1 ⊗ · · · ⊗ x2i , and x1 ⊗ · · · ⊗ x2i+1. The program to

do this is described by

UP(L,R,U ,V ,Ld ,Rd) ≡
*[L?x ,R?y ; U !(x⊗y); V ?p; Ld !p,Rd !(p⊗x)]

where the channels U and V correspond to the input and output stages of the prefix

- 26 -

computation graph of half the size. From the structure of the solution, it is clear that

the computation graph is a tree. Repeating this observation, all that remains is to

provide a solution to the prefix problem of size 2—the root of the tree, and to read

the inputs and produce the final outputs.

The V channel at the root of the tree requires the empty prefix—the identity e.

The output U of the root is not used by any other process. Thus, we simplify the

root process to:

ROOT (L,R,Ld ,Rd) ≡
*[L?x ,R?y ; Ld !e,Rd !x]

where e is the identity of ⊗. The leaves of the prefix computation tree read the inputs,

their prefix (from the tree), and produce the appropriate output. A leaf process is

written as:

LEAF (X ,U ,V ,Y) ≡
*[X ?x ; U !x ; V ?y ; Y !(y⊗x)]

Part of the computation graph for the prefix problem when N = 4 is shown in

Figure 3.1.

Observe that the sequencing between U !(x⊗y) and V ?p is enforced by the en-

vironment of the UP process. We can therefore split the process into two parts that

execute in parallel. However, the obvious split would cause variable x to be shared

between the two processes. We introduce a local channel C which is used to copy

the value of x . The new UP process is:

UP(L,R,U ,V ,Ld ,Rd) ≡
*[L?x ,R?y ; U !(x⊗y), C !x] ‖ *[C ?c,V ?p; Ld !p,Rd !(p⊗c)]

These two processes are identical! Therefore, we write:

UP2(A,B ,C ,D) ≡
*[A?x ,B?y ; C !(x⊗y),D !x]

UP(L,R,U ,V ,Ld ,Rd) ≡UP2(L,R,U ,C) ‖ UP2(V ,C ,Rd ,Ld)

Similarly, we can rewrite the LEAF process as:

LEAF (X ,U ,V ,Y) ≡
*[X ?x ; U !x ,C !x] ‖ *[C ?c,V ?y ; Y !(y⊗c)]

- 27 -

U

X3X2X1X0

U U

U
L R

U

LL R R

U

Figure 3.1. Solution to the prefix problem.

Since each node in the tree contains a constant number of ⊗ computations and

there are O(N) bounded fan-in nodes in the tree, there are O(N) ⊗-computation

circuits in the solution. Since the tree is of depth O(log N), the latency and cycle

time of this solution is O(log N).

3.2. Pipelining

The solution presented above has a cycle time of Θ(log N) since the prefix com-

putation tree can only perform one prefix computation at a time. We can pipeline

the computation to permit the tree to operate simultaneously on multiple inputs and

reduce the cycle time to O(1).

Consider a single UP node in the prefix computation tree. There are no pipeline

stages between the two halves of process UP , since they communicate through a slack-

zero channel C . However, the second process that is part of UP cannot complete

its computation until it receives a value on channel V . This value is computed by a

circuit which has a number of pipeline stages proportional to the depth of UP in the

tree. Therefore, even though there are O(log N) pipeline stages on the computation

for V , we cannot have O(log N) computations being performed by the tree since

channel C has zero slack. Therefore, we introduce buffering on C proportional to the

depth of the node in the tree. Logically, it is simpler to visualize the computation by

“unfolding” the tree into two parts—the up-going phase, and down-going phase—as

shown in Figure 3.2. The vertical arrows are the internal channels C , and two boxes

connected by vertical arrows correspond to a single node in the tree.

It is clear that one must add 2d − 1 stages of buffering on the internal channel

C for a node that is d steps away from the root for the circuit to be pipelined in

- 28 -

Down-going

phase

Up-going

phase

X0

Y1Y0 Y2 Y3

X3X2X1

Figure 3.2. Unpipelined prefix computation.

a manner that permits 2 lg N + 1 prefix operations to be performed simultaneously.

Figure 3.3 shows the tree after the appropriate buffers have been introduced.

The cycle time of the pipelined prefix computation with buffers does not de-

pend on the number of inputs, but on the time it takes to perform the ⊗ opera-

tion. The latency of the computation block is proportional to the number of stages,

and is therefore 2 lg N + 1 stages both with and without the buffers. However, we

have increased the circuit size from O(N) to O(N log N) since we have introduced

O(N log N) buffers.

3.3. Reducing the Average-Case Latency

If the prefix computation is not used very often, the observed performance de-

pends on the latency of the prefix computation—a quantity that is not reduced by

adding buffers to the computation tree. In this section, we present a technique that

reduces the average-case latency of the prefix computation in certain cases. We begin

by considering a simple solution to the prefix problem.

The simplest way to perform the prefix computation is in a sequential fashion.

Since we have n different input channels, we use n processes, one for each input

channel, connected in a linear fashion as shown in Figure 3.4.

The stage for xk receives yk−1 on channel L from the previous stage and xk on

- 29 -

X3

Down-going

phase

Up-going
phase

Y2Y0 Y1 Y3

X1X0 X2

Figure 3.3. Pipelined prefix computation with buffers.

channel Xk and produces yk on channel Yk as well as channel R which connects it to

the next stage. The CHP for an intermediate stage of such a solution is given by:

SERIAL(X ,Y ,L,R) ≡
*[X ?x ,L?p; Y !(p⊗x),R!(p⊗x)]

However, we know that the input on channel X arrives much sooner than the input

on channel L. Given this information, is it possible to produce the outputs on Y and

R before receiving the input on L?

Suppose we know that a is a right zero of the prefix operation, i.e., x ⊗ a = a

for all values of x . Now, if the input on channel X is equal to a, we can produce the

output on Y and R before reading the value on L. We rewrite SERIAL as:

SERIAL(X ,Y ,L,R) ≡
*[X ?x ; [x = a −→ Y !a,R!a,L?p

[] x 6= a −→ L?p; Y !(p⊗x),R!(p⊗x)

]

]

The time taken for this solution to produce the output is data-dependent . In the

best case (when all inputs are a), the time from receiving the inputs to producing the

output is constant—much better than the prefix computation tree, and in the worst

- 30 -

Y3X0 Y0 X1 Y1 X2 Y2 X3

RL

Figure 3.4. Serial prefix computation.

case, the time taken is O(N)—much worse than the prefix computation tree which

only takes O(log N) time.

The solution we adopt is to combine both the prefix computation tree and the

serial computation into a single computation. The two computations compete (in

time) against one another, and we can pick the solution that arrives first. This

technique has a worst-case latency of O(log N), but a best-case latency of O(1).

We begin with the unpipelined prefix computation corresponding to Figure 3.2.

The CHP for the LEAF process used by the prefix computation tree is:

LEAF (X ,U ,V ,Y) ≡
*[X ?x ; U !x ,C !x] ‖ *[C ?c,V ?y ; Y !(y⊗c)]

Observe that the value received along channel V for a leaf which receives xk as input

is the same as the value received along channel L by the corresponding process in the

serial computation shown in Figure 3.4.

We introduce channels L and R from the serial computation into the prefix

computation tree. The output Y from the leaf process is simply copied on outgoing

channel R. Since the values received on L and on the corresponding V are the same,

we combine these two channels externally using a merge process that picks the first

input that arrives, as follows:

MERGE (L,V ,M) ≡
*[[L −→ L?y ; M !y ,V ?yy

|V −→ V ?y ; M !y ,L?yy

]]

The new LEAF process is:

LEAF (X ,U ,V ,L,R,Y) ≡
*[X ?x ; U !x ,C !x] ‖ MERGE (L,V ,M) ‖ SERIAL(C ,Y ,M ,R)

The compilation of SERIAL depends on the structure of ⊗. The compilation of the

MERGE procedure that picks the first input is given below:

- 31 -

*[[¬Ma]; [v(L) ∨ v(V)]; M ⇑; ([v(L)]; La↑), ([v(V)]; Va↑);
[Ma]; M ⇓; ([n(L)]; La↓), ([n(V)],Va↓)

]

This circuit has an efficient implementation because we know that the value being

received on both L and V will be the same.

Finally, using a similar transformation, we can replace process UP in the prefix

computation tree by one that also has a serial computation phase. The original UP

process was:

UP(L,R,U ,V ,Ld ,Rd) ≡
*[L?x ,R?y ; U !(x⊗y), C !x] ‖ *[C ?c,V ?p; Ld !p,Rd !(p⊗c)]

The value to be sent along the “right” channel for the serial computation, namely

SR, is given by p ⊗ x ⊗ y . We therefore introduce an additional internal channel

C ′, along which the value x ⊗ y is sent. Finally, the “left” channel for the serial

computation, namely SL, is merged with V using the same MERGE process shown

above. We obtain:

UP(SL,SR,L,R,U ,V ,Ld ,Rd) ≡
*[L?x ,R?y ; U !(x⊗y), C ′!(x⊗y), C !x]

‖ MERGE (SL,V ,M)

‖ *[C ?c,M ?p; M 1!p,Ld !p,Rd !(p⊗c)]

‖ *[C ′?d ; [d = a −→ SR!a,M 1?p []d 6= a −→ M 1?p; SR!(p⊗d)]]

Since this solution follows from the unpipelined version of the prefix computation,

its cycle time is O(log N). To improve its cycle time this time, we need to add

buffering to both channels C and C ′. This transformation will once again increase

the circuit size from O(N) to O(N log N). For reasons to be discussed in the following

section, we use binary tree buffers to implement the buffering on channels C and C ′

instead of linear buffers.

3.4. Analysis of the Average Case

The latency of the prefix computation is data-dependent. We therefore need

some information about the input distribution to determine the average-case latency.

Consider process SERIAL shown below that is part of the prefix computation.

- 32 -

SERIAL(X ,Y ,L,R) ≡
*[X ?x ; [x = a −→ Y !a,R!a,L?c

[] x 6= a −→ L?c; Y !(c⊗x),R!(c⊗x)

]

]

When x 6= a, the output on Y and R depends on the input c. We call this the

propagate case, since the output of the process depends on the input c. Let the

probability of a particular input being a be p, and let this distribution be independent

across all the n inputs. If the inputs remain independently distributed, the analysis

below is applicable even if the probability of the input being a at input position i

might vary (as long as it remains non-zero), since we can pick p to be the smallest

value as a conservative approximation.

Theorem 3.1.

If the inputs of the prefix computation are independently distributed with non-zero

probability of an input being a right zero, the average-case latency of the modified

asynchronous prefix computation is O(log log N), where N is the input size.

Proof: Let L(N) be the latency through a prefix computation with N inputs. We

assume that the prefix computation uses a k -ary tree for the purpose of this analysis.

We can write:

L(N) = min
(

ms,L
(

N
k

)
+ h

)
where m is the length of the longest sequence of “propagate” inputs, s is the delay

through a single stage of the serial “propagate” chain at the leaves of the tree, and h

is the delay through one stage of the tree. The first part of the formula comes from

the serial computation, and the latter from the tree computation. To expand L(N
k

),

observe that at the next stage in the tree, m will be replaced by m/k since we are

considering the same input. Applying this expansion recursively, we obtain:

L(N) = min
m≥ki

(ms
k i

+ ih
)

In particular, choosing m = k i we obtain:

L(N) ≤ s +
h

log k
log m

- 33 -

The average latency is bounded above by:

E[L(N)] ≤ s +
h

log k
E[log m]

To compute the expected value of log m, observe that

E[log m] ≤ log E[m]

since the expected value of the logarithm of a random variable is the logarithm of

the geometric mean of the variable. Since the arithmetic mean is always at least the

geometric mean and log is increasing (m is always non-negative), the above inequality

follows. We can bound E[L(N)] from above if we determine E[m].

When p = 1/2, we know that E[m] ≤ log2 N . A simple extension of the proof

shows that

E[m] ≤ dlog1/(1−p) N e+
1

pN
= O(log N)

when 0 < p < 1 (a complete proof is given in Appendix 2). Therefore, the average

latency through the prefix computation is bounded above by:

E[L(N)] ≤ s +
h

log k
log
(
dlog1/(1−p) N e+

1
pN

)
= O(log log N)

concluding the proof. 2

When the prefix computation operates with O(1) cycle time, the value of s given

above is a function of N . Since we add 2d − 1 stages of buffering at depth d in the

tree for the serial computation part as well, the value of s is bounded above by a

function that depends on the latency of a buffer of size O(log N). Since we have used

a binary tree buffer to implement the slack on the internal channels, the latency of a

buffer of size O(log N) is O(log log N). Therefore, the additional buffering required

to reduce the cycle time of the circuit does not increase the order of the average-case

latency.

- 34 -

3.5. Reducing the Area Overhead
The O(log log N) average-case latency adder has O(N log N) additional circuit

size because of the additional buffering required. In this section we show how the

area overhead of the prefix computation circuit can be reduced by using the fact that

the input distribution is independent.

On examination of the analysis for average-case latency, we make the following

observation. The way we achieve an average-case latency of O(log log N) is as follows.

We traverse up the tree computation O(log log N) steps. At this point, the average

propagate-chain length is O(1), and we use the serial part of the computation. In

another O(log log N) steps, we propagate the results down the tree. This permits us

to complete the prefix computation with a latency of O(log log N) steps. Therefore,

we should be able to achieve the same average-case latency with lower area overhead

by using the serial part of the computation only at one stage of the prefix computation

tree.

Assume that we add the serial phase of the computation at only one level of the

prefix computation that is d steps away from the leaves of the tree. The latency is

given by:

L(N) = min
(
d · h + ms/kd , h logk N

)
On average, the latency would be:

E[L(N)] ≤min
(
d · h + s/kd · E[m], h logk N

)
= min

(
d · h + s/kd · log1/(1−p) N , h logk N

)
We attempt to determine the minimum value of this function by differentiating the

first part of the minimum expression with respect to d . We obtain:

dmin = logk

(
s/h · ln k log1/(1−p) N

)
=O(log log N)

When we add a serial phase to this stage of the prefix computation tree, the average-

case latency is given by:

E[Lmin(N)] ≤ h
ln k

+ logk

(
s/h · ln k log1/(1−p) N

)
=O(log log N)

- 35 -

Since we added a serial phase O(log log N) steps away from the leaves, the additional

area required to permit the computation to run at full throughput is O(N) since we

have O(N / log N) nodes, with O(log(N / log N)) buffering required for each of them.

If we are willing to sacrifice throughput, we can reduce the area overhead even

further and still have O(log log N) average-case latency. Observe that we no longer

need the tree computation beyond dmin . If we simply eliminate the tree after that

depth, we still have the same average-case latency! However, we have increased the

worst-case latency to O(N / log N), which may or may not be acceptable in practice.

However, we have a significant savings in area—we save an additional O(N) in circuit

size, compensating for the O(N) area overhead for adding the serial phase of the

computation at depth dmin . The actual area necessary will depend on the exact

circuit implementation used in either case.

3.6. Application to Binary Addition
The prefix computation can be used to construct a binary kpg-adder. To per-

form binary addition at bit position i , the carry-in for that bit-position must be

known. The carry-in computation can be formulated as a prefix computation as

follows.

Suppose bit i of the two inputs are both zero. Then no matter what the carry-in

is, the carry-out of the stage is zero—a kill (k). Similarly, if the two inputs are both

one, the carry-out is always one—a generate (g). Otherwise, the stage propagates

(p) the carry-in. To determine the carry-out of two adjacent stages, one can use

the following ⊗ operation. The vertical column represents the kpg code for the least

significant bit.

⊗ k p g
k k k g
p k p g
g k g g

Table 4.1. Prefix operator for kpg addition

Observe that the kpg code has the property that both k and g are right zeros of

the prefix operator. Therefore, we can use the techniques discussed above to reduce

the latency of binary addition. From the previous section, we observe that the average

latency through such an adder is O(log log N).

- 36 -

3.7. Area Optimality

We have designed a parallel prefix computation block which has O(1) cycle time

and O(log N) worst-case latency. The circuit has O(N log N) size. In this section,

we show that we cannot do any better in the general case.

We assume that the prefix computation circuit has the following properties:

1. It can be used repeatedly;

2. It does not store information about its history, i.e., it cannot use information

from any previous input to compute its next output;

3. Output yk cannot be generated without knowledge of xk .

Under these assumptions, we conclude:

Theorem 3.2.

Let C(N) be a family of circuits that solve an N -input prefix problem, with r(N) being

the worst-case ratio of their latency and cycle time over all possible input values. Then

the size of the circuits, S (N), is θ(N max(1, r(N))).

Proof: The circuit cannot have less than θ(N) size since it has N inputs and N

outputs, and must store at least one bit per output.

Consider a consecutive sequence of inputs all of which have the worst-case ratio

of latency to cycle time. Let the latency for the input be l , and the cycle time be τ .

If the cycle time is τ , then after τ seconds, the circuit must be able to accept its next

input. Since the latency is l , the circuit must have l
τ

pending prefix computations

internally. Since each prefix computation requires θ(N) size to store information for

N different outputs, we conclude that the circuit must have θ(N l
τ
) size. 2

Corollary 3.3.

A full-throughput N -input parallel prefix computation circuit has θ(N log N) size.

Proof: The worst-case latency of any parallel prefix computation circuit is θ(log N).

Since the cycle time is constant, r(N) = θ(log N), concluding the proof. 2

From these two observations, we conclude that all the circuits we presented to

solve the prefix problem have asymptotically optimal circuit size. The unpipelined

circuits have O(N) circuit size, and the full-throughput circuits have O(N log N)

circuit size.

- 37 -

3.8. Latency Optimality
Let V be the set of values that xi might take. To analyze the delay through

a prefix computation circuit, we partition V into two parts: a subset consisting

of propagate-type values, and one consisting of non-propagate values. The set P of

propagate-type values is the maximal set characterized by the property that |V ⊗p| >
1 for all p ∈ P , i.e., x⊗p depends on the value x , where V⊗x is the set {s⊗x|s ∈ V }.
In the case of a binary adder, the input p is the only input of propagate type (see

Table 4.1).

Given an input vector x = (x1, . . . , xn), a propagate sequence is a subvector

(xi , xi+1, . . . , xj) such that xi⊗xi+1⊗· · ·⊗xj ∈ P . We define m(x) to be the length of

the longest propagate sequence in x. For example, m(k , k , p, g , p, p) = 2 since there

are two consecutive p values in the vector.

Theorem 3.4.

The average-case latency through any prefix computation circuit is θ(E[log m(x)]),

where m is defined as above.

Proof: Given an input vector, let the longest propagate sequence in it be at positions

i through j . This implies that the outputs at positions i through j must depend on the

input at position i . Therefore, the information content in the input at position i must

be communicated to j − i + 1 = m(x) different output positions. This information

cannot propagate faster than log m(x), concluding the proof. 2

By Theorem 3.4, the prefix computation circuit we have designed has asymp-

totically optimal average-case latency. Note that the result does not depend on the

input distribution.

Consider the case of binary addition. The argument used in the proof of Theo-

rem 3.4 was based on an analysis of the input to output dependencies; this analysis

holds no matter how the binary adder is constructed, and therefore the result also

applies to binary addition. In particular, this implies that an adder constructed in

this manner has the best possible asymptotic average-case latency characteristics for

any input distribution.

If the set P is closed under ⊗ then inputs from P will result in long propagate

sequences, slowing down the prefix computation. Note that p, q ∈ P implies p⊗q ∈ P

is quite a natural property for a prefix operator to have since it is associative. Suppose

x ⊗ a depends on x and x ⊗ b depends on x . Then x ⊗ (a ⊗ b) = (x ⊗ a)⊗ b. Since

- 38 -

x ⊗ a depends on x , it is natural to expect that (x ⊗ a)⊗ b would depend on x . The

example in Table 4.2 shows that this is not true in general.

⊗ 0 1 2
0 0 0 0
1 0 0 1
2 0 1 2

Table 4.2. P may not be closed under ⊗

In this case, the elements 1 and 2 are contained in the set P for this operator.

However, 1⊗ 1 = 0 6∈ P . Since the set {2} is closed under ⊗, the input can have long

sequences of 2’s in it, which will slow down the prefix computation. We formalize

this observation below.

Let Q1, . . ., Qq be maximal subsets of P that are closed under ⊗. Intuitively,

the members of these Q-sets make the prefix computation slow since long sequences

of values from a fixed set Qi will result in large values of m(·). The operator in

Table 4.2 has only one such Q-set, namely {2}. The fact that we may have more

than one maximal Q-set is illustrated by Table 4.3, whose prefix operator has two

such sets {1} and {2}.

⊗ 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

Table 4.3. ⊗ may have more than one Q-set

By the definition of Q-sets, there exists at least one such set since the trivial set

∅ ⊆ P is closed under ⊗.

Lemma 3.5.

|Q1| = 0 if and only if x1 ⊗ · · · ⊗ x|P|+1 6∈ P for all xi ∈ V .

Proof: If the RHS holds, then clearly only the empty set is closed under ⊗. Assume

that the RHS does not hold, i.e., x1 ⊗ · · · ⊗ x|P|+1 ∈ P for some xi ∈ V . Then,

x1 ⊗ · · · ⊗ xj ∈ P for all j , 1 ≤ j ≤ |P |+ 1. Since we have |P |+ 1 possible values for

j , we are guaranteed that x1 ⊗ · · · ⊗ xa ⊗ · · · ⊗ xb = x1 ⊗ · · · ⊗ xa for some a < b. Let

x = x1 ⊗ · · · ⊗ xa , and y = xa+1 ⊗ · · · ⊗ xb . This shows that x ⊗ yk = x for all values

k ≥ 0. Therefore, yk ∈ P for all values k ≥ 1, showing the existence of a set {y} ⊆ P

that is closed under ⊗, concluding the proof. 2

- 39 -

If |Q1| is empty, then Lemma 3.5 shows that no matter what vector we pick from

V |P|+1, multiplying the elements from the vector results in an element that is not

in P . If this is the case, then we can solve the prefix problem in constant time by

splitting the input into blocks of size |P |+ 1 and solving the problem for each block

independently. Indeed, Lemma 3.5 can be used to determine if this is the case since

the RHS of the equivalence stated in Lemma 3.5 can be easily checked.

3.9. Related Work
Asynchronous adders were originally studied by Burks et al. who showed that

the average-case latency through a ripple-carry binary adder (assuming that the

inputs were independently distributed and the zero-one probabilities were equal)

was bounded by log2 N , where N is the number of bits being added. Winograd

showed that a lower bound on the worst-case time complexity for binary addition

is O(log2 N), where N is the number of bits in the input. The prefix problem and

the formulation of binary addition as a prefix problem was proposed by Ladner and

Fischer. Gemmell and Harchol present a method for adding two binary numbers

“mostly correctly,” with an error probability ε. They show lower bounds on the

latency of such adders to be O(log log(N /ε)). Our circuits always produce the cor-

rect answer with O(log log N) latency. Gemmell and Harchol also claim an O(log N)

lower bound on the average-case latency of binary addition in their abstract, which

we have shown to be incorrect in this chapter by providing a construction for a

O(log log N) binary adder; closer inspection reveals that their lower bound only ap-

plies to “VRTC” (variable running time correct) circuits, showing that asynchronous

circuits for addition have better latency characteristics than those constructed by

their method.

