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Abstract—Asynchronous circuits have potential advantages
of higher speed and lower power consumption compared to
their synchronous counterparts, but their poor CAD support
is a major issue limiting adoption. In this paper, we present
an integrated timing and power analysis engine capable of
handling large asynchronous circuits. For timing, we introduce
the notion of performance and correctness slack for asyn-
chronous circuits; for power, we compute both the static and
dynamic components. We provide a hierarchical approach to
constructing the event-dependency graph, and use the Galois
framework for parallelization to achieve fast runtime. The net
result is Cyclone, a fast and accurate engine for both static
timing and power analysis of asynchronous circuits.

I. INTRODUCTION

Asynchronous circuits do not use global clocks, and have
potential advantages over synchronous circuits including
higher speed, lower power consumption, and robustness to
process variations. Most recently, researchers have shown
the benefits of asynchronous circuits in the context of field-
programmable gate arrays [1] and neuromorphic comput-
ing [2], [3]. Unfortunately, researchers interested in eval-
uating or adopting asynchronous circuits are immediately
confronted with the issue of the lack of design support by
mainstream commercial flows.

A key component of any CAD flow for chip design
is timing analysis, and the timing analysis problem for
asynchronous logic is quite different from its synchronous
counterpart. As is shown in Figure 1, timing analysis of
synchronous circuits can be effectively done by analyzing
acyclic regions of combinational logic separated by clocked
state-holding elements. Max-delay constraints (setup time)
determine the performance of the circuit, and min-delay
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Figure 1: Synchronous vs asynchronous circuit

constraints (hold time) determine if the circuit will operate
correctly. In asynchronous circuits, however, the time of
each signal transition depends on that of many other signal
transitions, and the timing paths that need to be examined are
cyclic. Thus, traditional timing analysis methods and tools
for synchronous circuits cannot be easily adapted for this
purpose.

The problem of timing analysis for asynchronous circuits
has been explored in many previous papers. One approach
is to adapt commercial synchronous static timing analysis
tools for use with asynchronous designs as in [4]. This
approach involves manually (or scripted) removal of timing
arcs so that the resulting timing graph is acyclic. The
actual performance is then calculated by combining timing
paths [5]. To be accurate, this approach requires that the
designer knows the cyclic critical path in the asynchronous
circuit—which will be very challenging and time consuming
when the circuit is complex or generated by a synthesis
procedure.

Another approach is to directly build and analyze timing
graph models for asynchronous circuits. Petri nets [6],
marked graphs [7], and repetitive event-rule (RER) sys-
tems [8] (and its extended version: extended repetitive event-
rule (XRER) system [9]) are several representative models
for asynchronous timing analysis. Properties of these models
and timing of asynchronous circuits have been well studied
in both mathematics (e.g. [10], [11], [12]) and engineering
literature [8], [13], [9], [14], [15], [16], [17]. Maximum cycle
ratio algorithms, surveyed by Dasdan [18], can be used to
(i) characterize the performance of circuits assuming AND-
causality and fixed delays, and (ii) derive performance bound
for data-dependent timing analysis [19].

Most of the previous performance analysis of AND-causal
asynchronous circuits was approximate, so it is precluded
from analyzing timing constraints required for correctness.
Recently, Hua [15] established theoretical results that can
determine the exact time at which every event in an asyn-
chronous circuit occurs. These results hold even when the
asynchronous timing graph doesn’t collapse into a single
strongly connected component1 (a requirement for previous
results). This enables the creation of an engine that can deter-

1A simple data FIFO implemented with bundled-data logic is an ex-
ample of an asynchronous circuit with more than one strongly connected
component.



mine both the performance and timing constraints required
for correct operation of the asynchronous circuits. However,
none of these previous efforts consider slew rates. Therefore
they cannot compute accurate gate delays and power using
sophisticated delay models such as non-linear delay model
(NLDM).

In this paper, we address several major differences and
difficulties involved in asynchronous timing and power anal-
ysis. These include (i) cell characterization, (ii) timing graph
construction, (iii) steady-state slew rate computation using
NLDM in the presence of cycles of gates, (iv) the maximum
cycle ratio algorithm. We also introduce the asynchronous
analog of the notions of arrival time, required time, perfor-
mance slack and correctness slack. The net result is Cyclone,
an implementation of a comprehensive asynchronous timing
and power analysis engine. The engine takes as input an
asynchronous circuit netlist, multiple cell libraries using
NLDM in the Synopsys liberty (.lib) format, and timing
constraints from desired asynchronous circuit family for
correctness. It performs a multi-corner analysis and reports
maximum cycle ratio, power consumption, and two types of
timing slacks: (i) the performance slack of each gate, which
determines how much a gate can be slowed down without
impacting the performance of the asynchronous circuit; and
(ii) the correctness slack of each timing constraint, showing
any violations of timing requirements or the margin that re-
mains. We parallelize Cyclone using the Galois framework,
and achieve up to 18.76× speedup for full static timing
analysis compared to the sequential runs. Finally, we plan
an open-source release of Cyclone to the community.

The rest of the paper is organized as following: Section II
summarizes the theoretical results that we leverage for tim-
ing analysis; Section III introduces our approach to timing
constraints for correctness in asynchronous logic; Section IV
describes the Cyclone analysis flow, focusing on its major
differences and difficulties compared to synchronous timing
and power analysis; Section V describes the parallelization
strategies we use to parallelize all the core algorithms in
Cyclone; Section VI includes our experimental results; and
finally Section VII concludes and gives future work.

II. PRELIMINARIES

We adopt the repetitive event rule (RER) system model
introduced first by Burns [8]. Some of the basic definitions
and properties of gates and RER systems are discussed in [8],
[13], [15]. Here, we provide a more intuitive summary of
the main concepts and key results from the literature.

In asynchronous timing analysis, the timing properties of
gates are expressed as constraints on events. A gate with
output x contributes to an infinite set of events of the form
〈x↑, 0〉, 〈x↓, 0〉, 〈x↑, 1〉, . . . that corresponds to the different
occurrences of rising and falling transitions of x. Each such
event is assigned a time, corresponding to when the event
occurs.

Given a complete asynchronous circuit as a collection of
gates, the relationship between events can be captured by
edges labelled with a delay between events, where the edges
correspond to timing arcs (AND constraints). Note that this
approach would result in an infinite timing graph, since we
have an infinite event set. However, as the circuit is a finite
structure, its timing behavior is repetitive (as shown in [8],
[13], [15]), so the conceptually infinite timing graph can
be collapsed into a finite graph that closely resembles the
topology of the gates in the circuit.

This finite graph-based representation is called the repeti-
tive event rule system, or RER system. Nodes in RER system
correspond to signal transitions like x ↑ and x ↓ (i.e. we
delete the integer index). There are two types of edges in
RER system: those connecting events from the same iteration
(we say that ε = 0 for these edges), and those that connect
events from one iteration to the next (we say that ε = 1 for
these edges). Edges are also annotated with delay values (α)
as their weights. An example of RER system without delay
values is provided in Section IV-A.

We summarize a collection of previous theoretical results
that compute exact timing of all events.

Definition 1: Given a cycle c in the RER system con-
sisting of edges e1, . . . , en, cycle ratio is defined to be
δ(c)/ε(c) where δ(c) =

∑
i αi is the delay along the cycle,

and ε(c) =
∑
i εi is the ε-sum of the cycle. A critical

cycle c is a simple cycle with the maximum cycle ratio
p? = maxc is a cycle δ(c)/ε(c).

Let t̂(〈e, i〉) be the actual time at which the (i+1)th occur-
rence of signal transition e given the constraints specified by
the RER system (i ∈ N). For example t̂(〈x↑, 3〉) would be
the time at which the fourth rising transition of x occurred.
A weaker version of the main theorem from [15] states that:

Theorem 1: In a strongly connected RER system with
AND-causality and fixed delay values, there are integer
constants M and k? such that for all transitions e and all
integers n ≥ k?,

t̂(〈e, n+M〉)− t̂(〈e, n〉) = Mp?.

Under the fixed delay model and conservative AND-
causality assumption, after a finite time interval, each signal
transition in the circuit will occur periodically with a period
equal to Mp? for some integer M . Our asynchronous timing
analysis will calculate the values M and p? of the RER
system modeled from the input circuit. The theorem also
guarantees that, after a finite initial interval, the function
t̂ can be completely characterized by finite quantities—
namely, the quantities t̂(〈e, n + i〉) for events e and i
satisfying 0 ≤ i < M . Finally, although we have included
strong connectivity in the statement of Theorem 1, the result
holds even without the strong connectivity assumption; all
that is required is that there is a path from the critical cycle
to every transition in the RER system. For more details as
to the precise requirements, the reader is referred to [15].



III. TIMING CONSTRAINTS

Given prior work, the key performance indicator for the
asynchronous circuit is the value of p?, the maximum cycle
ratio in the RER system. In addition, the periodicity result
(Theorem 1) states that there is an integer M such that the
circuit’s timing is only periodic every M iterations. Hence,
we track M different times for each transition to completely
characterize the timing function t̂.

In what follows, we assume that there is a path from an
event on the critical cycle to every other event in the system,
the condition needed for Theorem 1 to hold [15]. Note that
this is equivalent to assuming there is a path from every
event in the critical cycle to every other event in the system.

A. Arrival time, required time, and performance slack

We now introduce the notion of arrival time, required
time, and performance slack for all the events in the
asynchronous system. Increasing the delays of edges on a
critical cycle further slows down the asynchronous circuit.
Hence, all events on the critical cycle have zero performance
slack [15].

Since we know that there is a path from every event on the
critical cycle to all other events in the RER system, we can
compute the arrival time of all the other events in the system
relative to the events on the critical cycle. We arbitrary select
one event on the critical cycle to have time t = 0 such that
all the events have non-negative arrival times. All other event
arrival times are determined by timing propagation similar
to max-delay propagation in synchronous timing analysis.
Note that we are guaranteed not to propagate through cycles,
since we have already computed the arrival times for all the
events on the critical cycle.

The required time can be computed in a manner analogous
to the required time in synchronous logic, by working
backward from the critical cycle. The initial condition used
is that each event on the critical cycle has a required time
that is equal to its arrival time.

Finally, we have M different performance slack values
for each signal transition, obtained by subtracting the arrival
time from the required time. As the circuit is static, the
final slack value for a transition is given by the minimum
across all M values. We report this value as the performance
slack of a signal transition. This is the amount by which
that signal transition could be delayed without impacting
the performance of the asynchronous circuit.

B. Correctness slack

While asynchronous circuits have been widely described
as not having any “timing closure” problems, this is not
entirely accurate. While asynchronous circuits can be de-
signed to be robust to timing, they also have some timing
constraints necessary for correct operation. It has been
shown that asynchronous circuits that must operate correctly
without any timing constraints are extremely limited in what

they can compute [20], [21]. One of the mildest forms
of timing assumptions is the isochronic fork [20], which
requires that a wire branch is faster than an adversarial
sequence of gates [22]. More generally, we express our
timing constraints using a timing fork, borrowing a notion
from timed distributed systems [23].

A timing fork 〈r, i〉 : 〈x, j〉 < 〈y, k〉 consists of ver-
tex 〈r, i〉 (the “root”), and two paths in the RER system:
p〈r,i〉,〈x,j〉 from 〈r, i〉 to 〈x, j〉 and p〈r,i〉,〈y,k〉 from 〈r, i〉 to
〈y, k〉, where j, k ∈ {i, i + 1}. The timing fork requires
that the correctness slack sl = min{delay(p〈r,i〉,〈y,k〉)} −
max{delay(p〈r,i〉,〈x,j〉)} ≥ 0. Note that a path might include
the output transition of a gate, or might end at the input of
a gate.

Timing forks are generated during logic synthesis, as
different asynchronous logic families have different timing
forks. Hence, we assume they are inputs to our timing
engine. In our evaluation section, we have isochronic fork
timing constraints as well as the “bundling” timing constraint
required for bundled-data asynchronous circuits to illustrate
two different asynchronous circuit families that our engine
can analyze.

We remark that the notion of a timing fork is similar to the
concept - relative timing constraints [24] and generalizes the
hold time requirement in synchronous logic. The hold time
requirement corresponds to a timing fork that begins at the
root of the common clock subtree for two flip-flops, with one
path going through the launching flip-flop and combinational
logic to the input of a capturing flip-flop, and the second path
going directly to the clock input of the capturing flip-flop.

IV. CYCLONE ANALYSIS FLOW

With all of the preliminaries presented in sections II
and III, we now describe our asynchronous timing and power
analysis flow. Our asynchronous circuit design is specified
using a hierarchical format that contains the logical speci-
fication of the gates for each component, transistor sizing
information, and connectivity. From the design description,
we automatically generate the SPICE netlist and circuit
netlist for the design. Unique gates or small groups of gates
that are repeatedly used in the design are factored out into
cells, and the netlist is rewritten so that all gates correspond
to cell instances with individual unique cells being specified
by their SPICE netlists. This information is used for cell
characterization, followed by timing graph generation and
then timing and power analysis. The overall flow is outlined
in Figure 2.

A. RER Construction and RER Skeletons

Unlike synchronous logic where the timing arcs are
specified in the .lib file, in asynchronous logic the same
gate used in different contexts may have different timing
arcs. The index priority simulation (IPS) algorithm for quasi
delay-insensitive (QDI) circuits developed in [9] computes
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Figure 2: Overview of Cyclone analysis flow

the RER system from the gates and the state of the circuit
when reset is asserted [9].

There are two major challenges with IPS algorithm: (i)
limited scalability: the algorithm requires simulating the
entire asynchronous circuit digitally until a repeating state is
found—which can be slower than timing analysis in practice
when the circuit is large; (ii) limited capability: the algorithm
is designed to only handle systems with AND-causality
and some limited forms of OR-causality, and cannot handle
common scenarios that arise such as dual-rail encoded data.
Our RER system generation method adopts the idea of digital
simulation of asynchronous circuits, but has a number of
modifications and improvements to address both limitations
of IPS algorithm, and will work for general asynchronous
circuit families.

To address limited scalability, notice that the goal of IPS
is used to encode event dependencies as RER systems. These
dependencies are determined by the local circuit within an
individual process. We know the process boundaries within
our circuits, because the input to the timing analysis flow
is a hierarchical design. Hence, we partition the design into
individual components at the level of modules with input and
output channels, and generate for each module its local RER
system. Also, we record the events that are shared between
processes in the environment. This entire procedure only
has to be executed once per unique process in the system;
if modules are re-used, this step need not be repeated.

We refer to this as generating an RER skeleton—a building
block of the overall RER system for the complete circuit. A
circuit also needs to be closed by the environment in order
for IPS algorithm to generate the correct RER skeleton. In
our implementation, we connect data sources, which always
send input data, and data sinks, which always consume
output data, when necessary.2

To address limited capability, consider a simple scenario
where data is encoded as a dual rail value on true and false
rails. If we use IPS, then the RER skeleton generated will

2This is correct for slack elastic systems [25] like pipelined asynchronous
circuits. More general systems will require more sophisticated techniques
to generate valid environments.
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Figure 3: 1-bit WCHB FIFO Circuit
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Figure 4: Complete RER skeleton for WCHB. Events gen-
erated by the environment are shown in bold.

only cover transitions resulting from either the true or false
rail, but not both, because it always simulates and includes
the data branch with highest index priority (predetermined)
in its state graph. We build a complete RER skeleton by
adopting the similar idea presented in [26], and tracking
for both true and false data branches of the circuit to
include all possible digital states for the RER skeleton. Our
implementation does not assume the perfect symmetry as
in [26], and can exclude non-reachable state transitions due
to any timing constraints. Thus, our method can be applied
to more general asynchronous circuit families. Based on
this accurate state graph, we can construct a complete RER
skeleton for local circuits. Assuming AND-causality, this
RER skeleton provides a worst-case estimate of the timing
analysis for asynchronous circuits as desired. This is similar
to the situation in synchronous logic, where an upper bound
on the maximum delay is computed during static timing
analysis. Figure 3 gives the circuit of 1-bit weak-conditioned
half-buffer (WCHB) and 4 shows its complete RER skeleton.

The final complete RER system for the circuit is con-
structed by combining RER skeletons for all components.
The skeleton of two communicating processes will have
shared events; those events can be merged to construct the
combined RER system. This procedure avoids global digital
simulation of the circuit, and is significantly faster than using
traditional IPS.

The complete RER system obtained in this manner is the
timing graph that we use for further analysis.
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Figure 5: Slew range propagation between stages. The final
value will depend on cell sizes and parasitic capacitance.

B. Cell Characterization

SPICE netlists for individual cells are simulated in
HSPICE for cell characterization. Once again, previously
characterized cells can omit this step by using the pre-
computed cell information. We store characterization results
in Synopsys Liberty (.lib) format. For timing analysis, we
use the standard “non-linear delay model” (NLDM) for gate
delay, and both delay and output transition time are stored
in 2D tables, indexed by input slew rate and output load. For
power analysis, we store leakage power and internal energy.
Cell leakage power is a single value for each input vector;
internal energy per timing arc is stored in 2D tables, indexed
by input slew rate and output capacitance as well.

It should come as no surprise that the problem of charac-
terizing combinational gates in asynchronous circuit design
is the same as that in its synchronous counterpart. However,
asynchronous circuits can include general state-holding gates
with internal feedback, and our characterization framework
can handle these gates as well.

C. Steady-State Slew Rate Computation

We need to annotate timing graph edges with delay values
and calculate internal energy. Using NLDM, delay and
internal energy values can be extracted from 2D look-up
tables indexed by input slew rate and output capacitance.
In synchronous timing and power analysis, circuits are par-
titioned into acyclic regions separated by clocked elements
and the input slew rates are determined by parameters related
to the clock input or user input (e.g. driving cells). For
asynchronous circuits, however, there is no such “break
point” that can be used to obtain the input slew rate of
each stage. Instead, the input slew rate of a cell is given
by the rise/falling transition time of its input, which in turn
depends on the slew rate of the cell before it. Such a cyclic
dependence needs a different technique to extract the slew
rates used for delay and power calculation.

Fortunately, the rising/falling transition time of a cell
output is a weak function of its input slew rate. Even
starting with a wide range of input slew rate at a cell, the
falling/rising transition time converges to a narrow range
after a few stages of propagation, as the example shown in
Figure 5.

More precisely, suppose f(x) ∈ R>0 is the output
transition time for a cell output given the input transition
time x ∈ R>0 and the output load. We note that given
an interval [a, b] with b − a ≥ δ, f(b) ≥ f(a) and

|(f(b)− f(a))/(b− a)| ≤ c < 1. Thus, for any arbitrary
signal transition (node) on the timing graph, we can start
with a slew rate range assumption and propagate this through
the circuit in an iterative fashion. Capacitance information
is obtained from parasitics as well as the characterization
information from the .lib file, so that the appropriate
slew rate is propagated through gates. We keep propagating
the slew rate ranges on the timing graph for each signal
transition, until the ranges converge. Experimental results
show that slew rate ranges nearly always converge to very
small intervals within several propagations, which provides
an efficient way to calculate the accurate steady-state input
slew rate for every signal transition.

D. Delay Calculation

Once slew rates are obtained for all signals, delay values
for all the edges in the timing graph can be computed by
using the slew rate and output load, combined with the cell
characterization information in the .lib file. At this point
in the flow, we will have a graph G = (V,E) corresponding
to the RER system constructed. In addition, each edge e ∈ E
has a weight w(e) given by the delay values computed as
above, and a tick value ε(e) that is either zero or one. Armed
with this graph, we compute the cycle period p? as described
next.

E. Maximum Cycle Ratio Algorithm

The maximum (and minimum) cycle ratio problem has
been explored in many previous papers. Burns’ original
RER formulation [8] uses linear programming as a direct
method to compute p?, and recent work also uses linear pro-
gramming as the baseline algorithm [16]. The performance
of linear programming depends strongly on the solution
technique and the quality of the solver. As we will show
in Section VI, linear programming becomes much slower
for large circuits.

Our implementation uses the Young-Tarjan-Orlin (YTO)
algorithm [27], an asymptotically efficient implementation
of Karp-Orlin’s algorithm [28]. A previous survey has
verified that these two algorithms are the fastest and most
robust maximum cycle ratio algorithms both in theory and
practice [18]. Although their worst-case time complexity is
O(|V ||E|log|V |), the runtime for practical timing graphs is
significantly faster than the worst-case complexity.

F. Slack Computation

The work [13] shows that for a strongly connected system,
a conservative M value will be the ε-sum of the critical
cycle we found using YTO algorithm. It can be shown with
slightly more work that this result on M also holds when the
system has only one strongly connected component, which
is the assumption enough for the discussion in this paper. 3

3The system with more than one strongly connected component can have
larger M value [15]



Once we have determined the maximum cycle ratio (p?) and
M , we can use standard timing propagation as described in
Section III to compute the performance slack of each event,
and the correctness slack for each timing fork. These values
have to be computed for M versions of each transition, and
the most conservative value is reported as the slack.

G. Power Calculation

The power of a circuit includes leakage power and dy-
namic power, and in particular, dynamic power consists of
internal (short circuit) power and switching power (charging
or discharging the capacitors). Given the cell characteriza-
tion results in the .lib files, we compute for each cell i
Pleakagem(i), the maximum leakage power over different
input vectors; and for each signal transition j in the RER sys-
tem Einternalm(j), the maximum internal energy per cycle
for timing arcs joining at j. Then we report the pessimistic
total power of the circuit if it runs at frequency 1

p? : Ptotal =
Pleak(circuit) + Pdyna(circuit) = ΣiPleakagem(i) +
α(j)
p? (ΣjEinternalm(j) + Σj

1
2Cload(j)V

2
DD) where Cload(j)

is the driving load of the gate output pin corresponding to
j and α(j) is the activity factor of j. For QDI circuits,
α(j) is 1 since each signal transition occurs at frequency p?.
For combinational logic in bundled-data circuits, simulation-
based activity factors can be incorporated into the dynamic
power computed by Cyclone.

V. PARALLELIZATION STRATEGY

A. The Operator Formulation

We leverage parallelization to achieve fast timing and
power analysis. To do so effectively, we analyze the par-
allelism available in Cyclone with the operator formula-
tion [29], a data-centric abstraction of algorithms.

The operator formulation starts from identifying the data
structures involved in the algorithm, e.g., a graph. Active
elements capture where in the graph the computation needs
to be done. An operator specifies the rules to update the
graph, and it will be applied to active elements. Each
application of an operator to an active element is called
an action. An action may need to read from or write to
a set of nodes and edges around the active element, which
is termed the neighborhood of the action. Active elements
become inactive once the actions are finished.

Algorithms can be categorized as data-driven or topology-
driven based on the pattern of active elements. A data-driven
algorithm begins with a set of initially active elements,
generates new active elements on the fly, and terminates
when there are no more active elements to be processed. In
contrast, a topology-driven algorithm makes sweeps over all
nodes/edges until certain convergence criteria is reached.

Scheduling needs to be considered when there are multiple
active elements at the same time. For unordered algorithms,
processing active elements in any order gives the same
answer. However, some ordering may be more efficient than

the others. For ordered algorithms, active elements should
appear to be processed in certain ordering for correctness.

Parallelism in graph algorithms can be exploited among
actions with disjoint neighborhoods.

B. Available Parallelism

With the operator formulation of algorithms, we are ready
to analyze the parallelism available in Cyclone, composed of
deriving edge weights, maximum cycle ratio, timing propa-
gation, power computation and timing constraint checking.

1) Deriving Edge Weights: As mentioned in Sec-
tion IV-C, edge weights in a timing graph are computed
by computing the steady-state slew rates first and then
computing delays by table lookup.

Slew propagation is a topology-driven, unordered algo-
rithm. It sweeps all nodes until the slew intervals are
small enough. In one sweep, all nodes can be processed
in parallel, since for each node n, it computes n’s new slew
interval based on n’s predecessors’ old slew intervals and
n’s successors’ loads.

Delay computation is a topology-driven, unordered algo-
rithm. It only makes one sweep over all nodes. All nodes
can be processed in parallel, since the table lookup for node
n only reads from n’s predecessors for slew rate, reads from
n’s successors for loads, and writes to n for delay.

2) Maximum Cycle Ratio: Recall from Section IV-E
that we use Young-Tarjan-Orlin algorithm for computing
maximum cycle ratio. It contains two main pieces: longest-
path tree construction, and edge swapping [27].

Longest-path tree construction is a data-driven, unordered
algorithm. It starts from a synthetic source node, which is
connected to all nodes in the timing graph. By using a pull-
style operator, e.g., reading from the predecessors of node n
and writing to the n itself, a node will activate its successors
if its distance from the source increases. All active nodes can
be processed in parallel, even if their neighborhoods overlap
because (i) maximum function exhibits monotonicity; and
(ii) no updates will be missed using the aforementioned
activation scheme.

Edge swapping is a data-driven, ordered algorithm. At any
point, only the edge with the largest key value is active. This
means that there is no parallelism available here.

3) Timing Propagation: Timing propagation consists of
computing arrival time and computing required time, both
are data-driven, unordered algorithms. For arrival time,
nodes on the critical cycle with incoming ticked edges are
active initially, and other nodes become active when their
predecessors’ arrival times are updated. For required time,
nodes on the critical cycle are initially active, and other
nodes will be activated once their successors’ required times
are updated. All active nodes can be processed in parallel,
similar to longest-tree construction.



4) Power Computation: Computing leakage power for
cells is a topology-driven, unordered algorithm, as it sweeps
once over all cells, each of which reads from the cell
libraries and writes to itself. Computing dynamic power is
also a topology-driven, unordered algorithm, since nodes
representing gate outputs are all active, only read from
their neighboring nodes, and no two gate outputs can be
neighbors.

5) Correctness Slack Computation: Correctness slacks
are computed as follows. For a timing fork 〈r, 0〉 : 〈x, j〉 <
〈y, k〉 where j, k ∈ {0, 1}, 〈r, 0〉 is initially active with
delay(p〈r,0〉,〈r,0〉) = 0. We then compute FO〈r,0〉, which
contains all the 〈n, i〉 reachable from 〈r, 0〉 using at most
one ticked edge. Computing maximum/minimum delay from
〈r, 0〉 for nodes in FO〈r,0〉 is similar to propagating arrival
times; as FO〈r,0〉 is always a directed acyclic graph (DAG),
we can process its nodes in topological order. Finally,
correctness slack is computed as defined in Section III.

Computing FO〈r,0〉 is a data-driven, unordered algorithm,
as nodes can be marked in arbitrary order. Computing max-
imum/minimum delay from 〈r, 0〉 for all nodes in FO〈r,0〉
is a data-driven, ordered algorithm. 〈r, 0〉 is initially active
in both algorithms. All timing forks can be processed in
parallel provided that they are tracked separately.

C. Implementation in Galois

We implement Cyclone using the Galois framework [30],
[31], a C++ library for parallel programming based on the
operator formulation. The Galois framework (i) provides
parallel data structures, and language constructs for high-
lighting parallelization opportunities; and (ii) supports dy-
namic work generation, load balance, resource management,
and transactional execution of operators.

All sub-algorithms in asynchronous timing analysis are
implemented as described in Section V-B. Below we illus-
trate some special handling using the Galois framework.

• Sub-algorithms use pull-style operators.
• To have better locality for memory accesses, all vari-

ables only have one copy. To ensure proper syn-
chronization, atomic instructions are used for all sub-
algorithms except for delay computation and edge
swapping.

• Steady-state slew calculation starts from [0, ρ] and ends
when the resultant interval is smaller than ρ/1000,
where ρ is the default maximum transition time. The
difference given by the final interval is < 1ps in our
experiments.

• In longest-path tree construction, instead of introducing
a synthetic source node, we initialize the distances of
all nodes to −τ = −(1 +

∑
e∈G |delay(e)|) similar to

that in [28] and let all nodes be active initially. τ can
be computed with galois::GAccumulator: each
thread adds |delay(e)| for its portion of edges to a

thread-local sum, and then the master thread reduces
the thread-local sums to the final answer.

• During edge swapping cases, any updates to distance
and ticks for a subtree are parallelized.

• For computing correctness slacks, each node keeps a
map from timing forks’ roots to its maximum/minimum
path delays in order to track multiple timing forks
simultaneously. The maps are backed by Galois per-
thread memory allocators to avoid serialization due to
system calls for allocating memory.

VI. EXPERIMENTAL RESULTS

We implement Cyclone in C++ using the g++ 8.1 com-
piler, boost 1.67 libraries, and the Galois 5.0 framework for
parallelization. Cyclone can support multi-corner analysis,
as well as extracted parasitics in the .spef file format. For
the reported runtime, we use two corners (SSA and FFA),
and ideal wire models. All experiments are conducted on a
Linux machine with CentOS 7, 56 cores Intel Xeon Gold
5120 2.2GHz CPU and 187GB memory.

We study different configurations of asynchronous
dataflow pipelines including cyclic structures and branching
pipelines. The benchmark circuits are listed in Table I. We
use a small bundled-data benchmark (bd203) to show that
Cyclone can analyze such circuits as well. Other circuits
are converted automatically from synchronous benchmarks
to their QDI analog (following [32]).

For each benchmark, we report (i) circuit properties:
circuit name, number of gate pins, number of concurrent
processes, number of timing constraints, p?, M , minimum
correctness slack, and total power consumption; (ii) max-
imum cycle ratio runtime: best parallel runtime by YTO
algorithm and best runtime by CPLEX, one of the fastest
linear programming solver developed by IBM; and (iv) full
static timing analysis (maximum cycle ratio + timing prop-
agation + timing constraints checking) runtime: sequential
and best runtime, and speedup. For best runtime, we also
report the number of threads i used in parenthesis.

In full static timing analysis, the geometric mean of the
best speedup across all benchmarks is 3.93, and that across
large benchmarks (> 200K pins) is 6.90.

By comparing columns 9 and 12 in Table I, we notice that
YTO algorithm always takes up a significant fraction of time
in full static timing analysis after parallelization; for large
benchmarks, it takes 35% to 70%. This is because timing
propagation can be parallelized as discussed in Section V,
but edge-swapping in YTO algorithm [27] is inherently
sequential. Hence, it is reasonable that Cyclone achieves
6.90× speedup on average in full static timing analysis for
large benchmarks.

When calculating the maximum cycle ratio, CPLEX runs
as fast as YTO algorithm for very small benchmarks, but
much slower for large benchmarks. For example, when
running on “vga lcd” (with around 5.69M pins and 18.08M



Table I: Analysis results and runtime of Cyclone. Large benchmarks are below the thick line.

Circuit Properties Maximum Cycle Ratio Full Static Timing Analysis
Name #Pins #Proc #TC p?(ns) M sl(ps) P (mW ) Y TO(i)(s) LP (s) seq(s) best(i)(s) sp
bd203 495 20 10 0.44 1 33.17 0.44 0.01(1) < 0.01 0.03 0.03(1) 1.00
s27 817 31 164 2.02 1 21.27 0.22 < 0.01(1) 0.01 0.02 0.02(1) 1.00

c2670 22171 796 4540 1.65 5 21.48 7.54 0.44(1) 0.69 1.69 0.86(7) 1.97
s1488 37766 1502 9008 5.64 2 21.27 3.93 0.23(28) 1.80 3.09 0.60(28) 5.15
c3540 42772 1682 10016 7.50 1 21.48 3.34 0.32(21) 1.53 1.96 0.59(14) 3.32
c7552 60355 2278 13444 4.11 1 21.48 8.47 0.95(14) 2.01 2.87 1.24(14) 2.31
c6288 72621 2877 17260 7.90 2 21.48 5.49 1.95(14) 2.80 7.93 2.63(14) 3.02
s5378 88292 3595 20880 4.39 3 21.27 11.71 0.97(14) 2.83 9.10 2.01(14) 4.53
s9234 137723 5594 32724 7.82 1 21.27 10.31 0.81(28) 5.23 6.71 1.63(28) 4.12

wb dma 212247 8593 49464 4.17 2 21.27 29.40 2.08(21) 12.82 14.49 3.64(21) 3.98
tv80 315219 12801 75352 9.10 2 21.27 20.36 7.17(21) 18.41 65.20 11.06(21) 5.90

ac97 ctrl 650709 27215 154472 3.79 3 20.26 99.70 8.87(21) 79.93 102.53 15.54(35) 6.60
usb funct 798895 32838 190020 8.17 1 21.27 57.06 3.87(42) 96.49 58.02 9.09(35) 6.38
s38584 807903 32975 192676 9.68 1 21.27 48.81 3.92(56) 79.39 51.07 9.58(35) 5.33
aes core 1017817 40833 242616 8.61 1 21.27 69.49 4.76(49) 74.44 95.30 12.62(42) 7.55
vga lcd 5689435 237059 1354068 7.05 1 21.27 473.20 105.48(56) 2959.01 2994.24 159.58(56) 18.76

linear constraints), CPLEX can be more than 28× slower
than YTO algorithm, since CPLEX is a general purpose
linear programming solution package, but YTO algorithm
is designed specifically for maximum cycle ratio problem.

Note that the runtime and speedup are not only related
to the scale of the circuit, but also related to the circuit
topology and the structure of the critical path. For large
values of M , the effective number of pins is multiplied by M
since there are M different times associated with each signal
transition. This increases the time for the delay propagation
phase accordingly.

VII. CONCLUSIONS AND POTENTIAL FUTURE WORK

In this paper, we present and implement Cyclone, which
is, to our best knowledge, the first comprehensive description
and implementation of timing and power analysis engine ca-
pable of handling large asynchronous circuits. By leveraging
existing theory and efficient algorithms, and using the Galois
framework for parallelization, Cyclone is fast and accurate,
as demonstrated by the experimental results.

Specifically, we address several major issues in asyn-
chronous timing and power analysis: (i) timing graph con-
struction; (ii) slew propagation and delay calculations for
annotating timing graph; (iii) fast maximum cycle ratio al-
gorithm implementation; (iv) asynchronous notions of arrival
time, required time, and performance slack, and correctness
slack of timing forks; (v) the power calculation; and (vi)
parallelization using Galois to achieve 6.90× speedup for
large benchmarks in full static timing analysis.

This paper assumes AND-causality and gives conservative
timing and power analysis for asynchronous circuit. In the
future, we plan to extend our analysis to systems with both
AND-causality and OR-causality. The current correctness
slack uses delay values based on steady-state input slew
rate, and we also plan to give more accurate correctness
slack by considering transient slew rate during the initial-
ization period of asynchronous circuits. Finally, we plan to

incorporate advanced delay models that include statistical
timing properties.
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