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ABSTRACT
We present the design of a new class of dataflow-like net-
works suitable for detecting complex conditions in sys-
tems where parameters change rapidly. Such networks are
helpful for detecting conditions that signal threats or op-
portunities in areas such as logistics, finance, and public
health. Examples of such applications are detection of
money laundering, epidemics, and unauthorized intrusion
into systems. We call these networks∆-dataflow networks
because nodes in the network propagate only changes in
data values. We show how ultra low power asynchronous
architectures that have been developed for sensor networks
can provide an extremely efficient platform for executing
such networks.
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1 Introduction

Our world is increasingly instrumented with sensors,
Radio-frequency IDs (RFIDs); smart homes monitoring
temperature, humidity, movement and appliances; vibra-
tion sensors monitoring earthquakes; stock and commodity
markets; and news services generate streams of events. The
number of event generators continues to increase, and the
potential pace of event generation per sensor is increasing.

Event processors correlate multiple event streams to
generate events that signal complex conditions [4, 15]. The
output from event processors may feed other event pro-
cessors. Actuators respond to conditions by changing pa-
rameters that influence the environment. For example,
an actuator may increase the thermostat setting in an air-
conditioned office when the price of electricity increases
above a threshold. Or an actuator may buy a certain amount
of stock when its price dips below its long-term moving-
point average. Sensors generate event streams, event pro-
cessors consume event streams and generate value-added
event streams, and actuators consume event streams and ex-
ecute appropriate actions. Sense-and-respond applications
are compositions of sensors, event processors and actua-
tors [4]. An increasing number of consumer and enterprise
applications are sense-and-respond applications. We pro-
pose an abstraction called ∆-dataflow networks for speci-

fying and designing event processors. This abstraction is
suitable for designing event processors, and in particular
event processors that can be implemented efficiently using
asynchronous VLSI techniques.

Some sensors may send messages periodically
whether the parameters being monitored change or not. For
the purpose of this paper, we restrict attention to messages
that signal change in value. Thus we make the assumption
that event streams are stuttering-free—i.e., no two consec-
utive values in the event stream are identical. Under this
model, a stock market ticker source would only produce
an output (it’s current stock value without the time compo-
nent) if the stock value changed. This implicit notion of
only propagating changes builds in the notion of filtering
redundant information into the computation model. As a
consequence, it becomes important that this event informa-
tion is communicated in a timely manner, since consumers
of information do not know if a new value is produced un-
til the information reaches them. This differs from standard
soft-state based announce-listen protocols [5, 6], where pe-
riodic updates allow a consumer to know that the informa-
tion is current.

Computation is performed on these event streams to
generate new streams. These streams travel over commu-
nication links to other computation blocks until they reach
their final destination. The collection of sources, destina-
tions, computation nodes, and communication links can be
thought of as a graph. These graphs most closely resemble
dataflow networks [10].

While these networks can be implemented using con-
ventional methods, the most efficient implementation of
such networks is realized when the underlying implemen-
tation is also event-driven all the way to the hardware im-
plementation. Asynchronous (or clockless) VLSI systems
completely data-driven, and are therefore extremely well-
suited for event-driven operation. Instead of using a peri-
odic synchronization signal (the clock) to sequence steps
in the computation, asynchronous systems use local hand-
shaking for synchronization and sequencing [17].

Efficient asynchronous systems can operate with ex-
tremely low power budgets, and are very well suited for
sensor network applications. We have developed an ul-
tra low power processor that is optimized for sensor net-
work operation that requires on the order of tens of pico-
Joules of energy per instruction [8, 11]. The combination



of∆-dataflow networks and ultra low power asynchronous
architectures provides an extremely attractive methodol-
ogy for the design of algorithms for event detection and
data fusion in sensor network scenarios. We show how
∆-dataflow networks can be implemented on an asyn-
chronous architecture.

In this paper we present a model that can be used to
specify networks of event processors, and illustrate their
operationwith some examples (Section 2). A few key prop-
erties of these networks are described (Section 3), that al-
low us to reason about their aggregate behavior in common
circumstances. We describe how such architectures can be
implemented extremely efficiently using an asynchronous
VLSI execution engine (Section 4), resulting in a system
that is extremely power efficient.

Relation to Dataflow Networks. Dataflow networks are
described by a graph in which vertices correspond to com-
putation nodes, and edges correspond to communication
channels that may or may not have buffering capability.
Values are thought of as tokens that travel through the net-
work along the channels. Nodes in the computation operate
on tokens arriving on their inputs to produce new tokens on
their outputs. Sophisticated behaviors can be described by
combining nodes of different types, and there is a wealth
of research on models, languages and compilers, and ma-
chine architectures for dataflow computation [1, 7]. In fact,
the execution core of a modern out-of-order microproces-
sor (e.g., [19]) resembles the core of a dataflow architec-
ture.

Dataflow networks were first introduced as a model
of parallel computation in the early 1970’s [10]. The orig-
inal evaluation model is referred to as a “Kahn-McQueen”
network. Since then, many variants of these networks have
been investigated. Dataflow networks can be data-driven or
demand-driven. In a data-driven network, data values travel
from producers to consumers, and the arrival of data trig-
gers computation that produces a new output. In demand-
driven networks, requests for results travel from consumers
back to producers, and these requests trigger the genera-
tion of outputs once the appropriate input requests are sat-
isfied. Dataflow networks can also be either static or dy-
namic. In a static network,communication links are first-
in first-out (FIFO) lossless channels. The output result is
produced when a token arrives on each input, or in some
special control-flow nodes, when tokens arrive on some
(deterministic) subset of the inputs. In dynamic dataflow
networks, the FIFO channel constraint is relaxed. Instead,
each token contains a tag that identifies the specific oper-
ation it is associated with. A tagged output is produced
when tokens are available on the appropriate set of inputs
and have matching tags. For instance, under this classifica-
tion, Kahn-McQueen networks are static, demand-driven
dataflow networks. The networks investigated by Dennis
are static, data-drivennetworks, while those investigated by
Arvind are dynamic, data-driven networks [1, 7]. Highly
pipelined asynchronous circuits can be thought of as direct

implementations of static data-driven dataflow networks.
In general, asynchronous circuits can also directly imple-
ment static demand-driven dataflow networks.

The difference between ∆-dataflow and other forms
of dataflow computation is twofold. First, in a ∆-dataflow
graph, an output token is produced only when the value
computed differs from the previous output. Therefore, a
new input token will only arrive at a particular node when
the value on that input differs from the previous token that
was received on that particular input. To examine some
consequences of this constraint, consider a simple node that
has two inputsA and B and produces the sum of those two
inputs on its output C. This behaves as expected in a static
dataflow model: whenever a token arrives on both inputs
A and B, the tokens are consumed and the sum of the re-
ceived inputs is produced as an output token on C. If the
two tokens are 1 and 2 respectively, the output token will
be 3. Now, what if the next set of inputs is 1 and 4? In
a static dataflow model, the result 5 would be produced as
expected. However, in a ∆-dataflow network, the 1 token
would never arrive on input A due to the absence of stut-
tering! To resolve this, we come to the second difference
between ∆-dataflow and traditional dataflow networks. A
∆-dataflow node is highly non-deterministic, and it can
process a token on any input without waiting for additional
tokens on any other input. The non-determinism arises be-
cause computation nodes do not know apriori if they will
receive a token on a specific input, as tokens are discarded
in a data-dependent manner. This difference will become
obvious in Section 2, where we provide a specification of
∆-dataflow nodes.

Relation to Rete Networks. A Rete network is an ef-
ficient way to execute the match operation required in
production-based logical reasoning systems [9]. A pro-
duction system consists of a set of rules, each containing
a premise and a set of actions. The system operates by
using its knowledge base to determine those premises that
are satisfied, and then invoking the actions of some chosen
rule using a decision procedure to pick at most one rule.
The Rete algorithm constructs an acyclic network using the
premises of the rules, where nodes in the network corre-
spond to premises (or parts of premises), and the leaves cor-
respond to actions. The knowledge base is passed through
the network, and if any part of it reaches a leaf then that
leaf node action is enabled. This approach eliminates du-
plicate match operations since common predicates in mul-
tiple rules are only computed once. Also, new knowledge
does not require recomputation of the entire match opera-
tion. Instead, only a small part of the network is activated,
leading to an efficient incremental update of the set of en-
abled actions.

Rete networks resemble ∆-dataflow networks be-
cause of the idea of incremental updating. Partial results are
stored in the nodes in Rete networks so that only changes
are propagated. The difference is that∆-dataflow networks
are more general because we allow arbitrary functions in



the network as well as local state information. A Rete
network node is limited to operations such as unification
and extracting predicates from the knowledge base (corre-
sponding to “source nodes” below).

∆-dataflow networks can be thought of as provid-
ing a structured form of memoization. Memoization can
be found in a wide variety of algorithms and computation
structures. Rete networks are but one instance of this con-
cept. Dynamic programming is a general technique that
uses memoization to avoid recomputing partial results, and
can lead to significantly improved time complexity in ex-
change for increasing the space requirements of an algo-
rithm. Any algorithm represented using dynamic program-
ming (for a fixed problem size) can be easily computed
using its dataflow graph, assuming that the relation be-
tween problems and sub-problems can be statically deter-
mined [13]. To compute the result when the inputs to the
problem are changed, one can simply present the new input
values to the dataflow network and the result will be recom-
puted by sharing common sub-computations. What makes
∆-dataflow networks more interesting is that updates to the
problem automatically propagate to the result as well. Only
those sub-problems that are data-dependent on the changed
value are affected, and the rest of the computation is not
repeated.

2 ∆-dataflow Model

A ∆-dataflow network is specified as a finite graph. Each
vertex is a node that performs some computation. The
edges correspond to FIFO channels with zero or finite
buffer space. channels. Based on the graph, we can classify
a vertex into exactly one of three categories:

• those with in-degree zero. These are source nodes,
and correspond to sensors that intermittently generate
new information.

• those with out-degree zero. These are sink nodes, and
they correspond to the result of the computation.

• Those with non-zero in-degree and out-degree; these
form the compute nodes.

Every∆-dataflow network compute node is specified
by its local state s and two functions: the state-transition
function g, and the output function f . The compute node
also has a copy of the last value received on every incoming
edge in a vector x=(x1,. . .,xn) (where the compute node
has n input edges). The compute node also saves away y,
the last value it produced on its output. For simplicity, we
assume that when a compute node produces a value, the
value is copied to all outputs.

When a node receives a new value on its ith input,
the following operations are performed. (i) The value x i

is updated with the newly received input value; (ii) The
node makes an internal state transition by replacing s with
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Figure 1. Threshold filtering of sensor data.

g(s, x); (iii) The value f(s, x) is computed as the new out-
put. If this value differs from y, then the new value is
propagated along the output edges to other compute/output
nodes, and y is updated with the new value of the output.
To prevent multiple output values in response to a change
in input, we impose a fixed point requirement on function
g, namely that

g(s, x) = g(g(s, x), x) (1)

The fixed point requirement ensures that the assignment
s := g(s, x) used to compute the new state cannot be re-
peated to change s.

Assuming that the initial values for s, x, and y are
appropriately selected, the following properties hold once
steps (i)–(iii) are completed for a compute node:

• s = g(s, x) (from the fixed point requirement);

• y = f(s, x);

• x is a vector of the last values received on the input
ports;

• y is the last value produced on the output (modulo ini-
tialization).

Initialization. We permit any initialization of the system
as long as the properties listed above hold, and the value of
y associated with the output of a compute node matches the
corresponding xi value at the appropriate input (if any).

Example 1. Consider a sensor that produces a tempera-
ture reading, and we wish to filter this information so that
we only obtain a reading when the temperature changes by
one degree. To specify this, we use a compute node with
one input and one output. The local state s is the last output
y, and g(s, x) = f(s, x). The function f is given by:

f(s, x) =
{

s if |s − x| < 1
x if |s − x| ≥ 1

This functionality is shown in Figure 1.

Example 2. If we wish to calculate the average tempera-
ture across two sensors, a compute node that can perform
this task does not require any local state s or g function (for
instance, we can assume s = 0 and g(s, x1, x2) = 0), and
the function f(s, x1, x2) = 1

2 (x1 + x2). Figure 2 depicts
such a system. Note that while the sequence of temperature
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Figure 2. Averaging sensor data.

values produced on the final output depends on the order in
which the updates are received from the sensors, the final
value is the same.

To reduce the volume of output, we can use the fil-
ter from the first example to only provide new temperature
readings for large changes in temperature. The result is
shown in Figure 3. This illustrates the compositionality of
the model, where we can use compute nodes together to
start constructing complex change-detection conditions or
aggregation operations.

3 Model Properties

The basic property of each compute node in ∆-dataflow
networks is the implicit filtering operation on the output.
This property can be captured by the following lemma.

Lemma 1 For a compute node, the number of output up-
dates is at most the sum of the number of input updates.

Proof: Initially the number of input and output updates is
zero. The sequence of operations performed in response to
the receipt of one new input value can produce at most one
new output value, concluding the proof.

For applications such as data fusion or filtering, we
expect that the ∆-dataflow network corresponds to an
acyclic graph, and we are normally interested in the final
values of all the outputs when no more changes need to be
propagated along the edges in the network. We say that the
network is quiescent when there are no changes to be prop-
agated. Under such circumstances, we can easily establish
the following result using Lemma 1.
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Figure 3. Averaging filtered sensor data.

Theorem 1 If all source nodes produce a finite sequence
of tokens, an acyclic ∆-dataflow network will eventually
reach a quiescent state.

Proof: Assume, toward a contradiction, that the network
never reaches a quiescent state. An infinite sequence of
node computations necessarily requires an infinite number
of outputs to be propagated along the edges of the network.
However, using Lemma 1, we can show that this is impos-
sible. By assumption, the number of updates propagated
from any source node is bounded. By Lemma 1, every
node that receives inputs from sources only (these nodes
exist because otherwise the graph is not acyclic) can only
produce a finite number of output updates. Repeating this
argument concludes the proof.

In Example 2, we used an averaging operation in the
computation graph. The compute node did not use any state
information to produce its output. If the state s is not used
to compute f(s, x) in every∆-dataflow node, then the com-
putation is said to be stateless and we use f(x) to represent
the output computation.

Theorem 2 A quiescent, stateless, acyclic∆-dataflow net-
work has a unique final state.

Proof: Every source node has a unique final output value,
since sources are deterministic. Erase all source nodes, and
examine the rest of the graph. There will be a new set of
nodes with in-degree 0 since the graph is acyclic. These
nodes all have a deterministic x, from the properties of a
compute node given in Section 2. Therefore, by Section 2,
all these nodes have a deterministic y = f(x) as they are
stateless, so the last value sent on the output is deterministic
for these nodes as well. Repeating this argument concludes
the proof.

4 Implementation Strategy

The operations described above for sources, sinks, and
nodes can be easily implemented using a sequential algo-
rithm on a conventional architecture. In this section we
discuss an implementation on a low power highly parallel
asynchronous architecture that we have developed for par-
allel simulation.

Architecture Overview. We have created the “network
on a chip” (NoC) [11], an asynchronous chip multiproces-
sor. The architecture was originally designed to support
high-performance parallel discrete-event simulation [12].
Each processor has its own private memory, and commu-
nicates with the other processors only by passing messages
via a highly-pipelined interconnect. We estimate that a
single NoC chip will contain approximately one hundred
processors, providing a highly parallel platform for the im-
plementation of∆-dataflow networks. A sixteen processor
version of the NoC (4 × 4 array of processors) is shown in
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Figure 4. The arrows correspond to connections between
the routers in each processor/router/memory tile, and any
processor can send a message to any other processor via a
multi-hop route through the routers as in conventionalmul-
tiprocessor systems [18].

Individual processing elements in the parallel array
are entirely asynchronous, as is the interconnection net-
work. Figure 5 shows the microarchitecture of the asyn-
chronous processor used in each tile. The processor has an
activity-driven architecture that is designed around a hard-
ware structure called the event queue. Initially, this event
queue is empty. An incoming message notification is de-
tected by dedicated hardware and is converted into a token
that is inserted into this event queue. When the proces-
sor receives a token from the event queue, it wakes up and
begins instruction execution from an address specified in
a hardware table. These instructions constitute the event
handler. Once the event handler is complete, a special in-
struction is executed that makes the processor once again
wait for a new token in the event queue.

Implementation. To implement acyclic ∆-dataflow net-
works on such a platform is relatively straightforward. The
functions f and g are specified for each compute node
and implemented using the C programming language. Our
compiler will generate the appropriate machine code for
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Figure 5. Component processor in parallel architecture.

the processor. Edges in the graph where updates are prop-
agated correspond to messages being sent between the cor-
responding processors in the NoC array. The event queue
structure in each processor provides the necessary mecha-
nism to activate the processor and execute the appropriate
code in response to the incoming update.

To illustrate this, we use the functions f and g from
Example 2. The number of instructions that would be ex-
ecuted for the addition and averaging operation is twelve
instructions when a new input arrives but the output re-
mains unchanged (case 1), and seventeen instructions when
a new value must be propagated to the output (case 2). We
combine these instruction count estimates with results from
SPICE simulations to estimate the power and performance
of the NoC processors [8, 11]. Operating at the nominal
voltage (1.8V) for high-performance operation, executing
the averaging node will require 2.7nJ and 3.9nJ of energy
for the two cases respectively, and the execution will re-
quire 50ns and 71ns respectively. At low voltage (0.6V) for
low power operation, these operations will require 0.26nJ
and 0.37nJ respectively, while taking 0.5µs and 0.7µs for
execution. For comparison purposes, conventional low-
power microprocessors like the Intel XScale require about
1nJ per instruction [14]. Implementing ∆-dataflow net-
works on conventional platforms not only requires more
energy per basic operation, but the scheduling (handled by
the event queue) would have to be implemented in software
as well, further increasing the implementation overhead.

5 Summary

We presented a new class of dataflow-like networks suit-
able for efficient event-processing in sense-and-respond
systems. The networks have a built-in notion of filtering,
because they only propagate changes and suppress their
computation whenever the same value is being produced.
Sensors or event-streams can flow through these networks,
and the computation nodes process these streams to pro-
duce new event streams that can be eventually used to de-
tect complex conditions. We showed several properties of
these networks by considering a concrete model of the net-
work components. We also described how these event-
processing networks can be efficiently mapped to an asyn-
chronous VLSI implementation, although other implemen-
tations are also possible.
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