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Abstract

Neuromorphic computing leverages the co-design of algorithms and hardware to perform massively parallel
and event-driven computation, demonstrating promising efficiency across a wide range of problem domains [1]].
Developing new algorithms that can exploit the inherent parallelism of a neuromorphic hardware substrate is
challenging, and the field is still exploring the range of potential hardware computational primitives. This ex-
ploration requires (i) the ability to rapidly modify the neuromorphic hardware, and obtain accurate estimates
of energy, delay, and area; (ii) the ability to design new algorithms that can exploit new hardware features;
and (iii) a parameterized compiler that can map algorithms to the hardware substrate. Today, even just bench-
marking algorithm performance remains a significant challenge, and the lack of standardization continues to
hinder progress in the field [2]]. To tackle these issues, we are developing a full-stack neuromorphic system
implementation.

The centerpiece of this system is the NeuroScale architecture [3]], a parameterized hardware substrate devel-
oped using the ACT (Asynchronous Circuit/Compiler Tools) hardware description language [4,5]]. NeuroScale
provides a baseline implementation that corresponds to the current state-of-the-art in large scale digital neuro-
morphic systems. NeuroScale is roughly comparable to the Intel Loihi architecture [6[], but addresses a fun-
damental scalability limitation present in existing systems. Unlike IBM TrueNorth [7]] and Intel Loihi/Loihi2
which rely on global synchronization protocols that inherently limit system scalability, NeuroScale employs a
distributed synchronization protocol that scales efficiently with system size. Figure[I|demonstrates the software-
hardware one-to-one equivalence with a clustered spiking neural network.

NeuroScale can be modified by changing its source in ACT, enabling comprehensive experimentation with
different hardware concepts. The ACT simulator supports digital, analog, as well as novel device modeling
through integration with Sandia’s Xyce parallel circuit simulator [10]. Detailed hardware simulation, although
slow, can provide accurate cost/benefit analysis of novel hardware constructs. For fast experimental validation,
FPGA prototypes are generated with ACT2FPGA [9]], a tool that translates ACT designs into synthesizable
Verilog that is portable across FPGA vendors while preserving functional equivalence.

On the algorithms front, spiking neural networks (SNNs) are developed using Sandia’s Fugu [8|| framework,
a high-level programming framework designed for developing neuromorphic algorithms. We are developing a
library of Fugu bricks corresponding to a range of neuromorphic algorithms, including hand-crafted algorithms
from the neuroscience literature. In addition, we are developing automated converters from more mainstream
PyTorch-based machine learning generated SNNs into Fugu bricks so that we can import models from popular
SNN training frameworks. The results in Figure|l|use Fugu’s built-in simulator as the software reference model
to ensure that the Neuroscale hardware simulation as well as the FPGA prototype produce results that precisely
match Fugu’s view of the SNN.

On the compiler front, we are developing customized software tools that can map Fugu networks to the
NeuroScale architecture. Many of the core algorithms required for this purpose are also used by the electronic
design automation community for chip implementation. We are leveraging our significant prior investment in
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Figure 1: Identical spiking dynamics from the software model (black dots), hardware simulation (orange cir-
cles), and FPGA prototype (blue circles) running a clustered spiking neural network with 200 neurons (cluster
0: neurons 0-99; cluster 1: neurons 100-199). Cluster 0 has a bias of +1, and cluster 1 has a bias of +3, with a
uniform threshold of +100. The network features an intra-cluster connection probability of 0.3, an inter-cluster
connection probability of 0.1, and uniform synaptic weights of 1. The network is mapped onto 4 NeuroScale
cores. Matching spike patterns over 200 simulation time steps demonstrate the architecture’s deterministic ex-
ecution. The software model runs on the Fugu SNN simulator [8]], and the FPGA prototype is generated via
ACT2FPGA [9].

developing open-source software for chip design [4] by customizing our existing tools to tailor them for the
neuromorphic context.
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