
Hierarchical Token Rings for Address-Event
Encoding

Prafull Purohit
Yale University

prafull.purohit@yale.edu

Rajit Manohar
Yale University

rajit.manohar@yale.edu

Abstract—Address-event representation (AER) is an event-
driven, neuromorphic inter-chip encoding and communication
protocol originally proposed to communicate location and tim-
ing information of sparse neural events between neuromorphic
chips. The protocol is widely used in bio-inspired, event-
based vision sensors to communicate visual events. The same
approach has been explored for scientific imaging applications,
but the performance of existing encoding schemes degrades in
the presence of large sensor arrays and a wide range of event
rates. In this paper, we introduce a new AER encoding scheme
based on hierarchical token-rings (HTR), which blends event-
based and scanning approaches. We show that HTR offers
significant improvement in latency, throughput, and power
compared to existing tree-based approaches in the context of
scientific imaging applications.

I. Introduction
Silicon neuromorphic systems have a large distributed

array of computation units (“neurons”) that operate at rela-
tively slow Biological timescales. Each computation unit has
extremely high output fan-out, which makes direct point-to-
point wiring intractable when designing large-scale systems
with millions or billions of neurons. The standard approach
to this problem is to leverage the speed of modern CMOS
and use time-multiplexed wires [20].

As shown in Fig. 1, a simple implementation of such
a system can be designed by taking a large number of
relatively slow inputs, representing information to be trans-
ferred, and time-multiplexing them on a high-speed commu-
nication channel to send data across the interface. Depending
on the application domain, for example neural processing
unit, vision system or imaging system, the computational
unit are neurons or pixels and the communicated information
consists of a spike, event, or pixel data. Address-Event
communication, sparse readout, asynchronous readout, and
event-driven readout are some of the names used to describe
the mechanism of communicating sparse data between pop-
ulations of such computational units.

Address-Event-Representation (AER) is an example of a
communication protocol to encode neural events and time-
multiplex that information onto a shared output channel.
Early work by Sivilotti [2] and Mahowald [3] used AER
to communicate between neuromorphic chips using spikes
and later work demonstrated its use in several neuromor-
phic chips (e.g. [4], [6], [16]). AER has been used in

Fig. 1: Address Event Encoding

many applications including imagers based on the silicon
retina [8]–[10], [13], [15], [19] and many other bio-inspired
systems. A similar event-driven approach was developed
for imaging devices such as pixel array detectors (PADs)
and monolithic active pixel sensors (MAPS) for scientific
applications [21], [22]. Some of these access topologies
are examined and compared in [8] for throughput, latency,
and power consumption. Even though AER-based commu-
nication has been demonstrated in various neuromorphic
and imaging system, different approaches have benefits and
drawbacks. Encoding based on a binary tree topology [7]
is suitable for applications with low event-rates and small
array size; however, latency and throughput degrades when
the array size increases or when bursts of events arrive in a
short time frame. Another approach is to use a ring-based
topology [16]. This approach can quickly service a burst of
localized events but suffers when sparse events are far apart
in space.

In this paper, we present a new parameterized address
event encoding scheme based on hierarchical token rings
that is tailored to the requirements of scientific imaging
applications. The proposed design is able to scan through
burst of spatially correlated events and reduces token travel
distance for sparse events. As shown in Fig. 3(a), an arbi-
tration mechanism is implemented using hierarchical token
rings. Leaf servers (gray boxes) manage communication
requests from a pixel array. A single token travels through
hierarchical rings to provide multiplexed access to the shared
output bus in a fast and timely manner. By changing the
size of the rings and the number of levels of hierarchy,

1

this approach can be tailored to the needs of different
applications.

We discuss some imaging applications from parts of the
electromagnetic spectrum outside visible light and chal-
lenges they pose for AER-based readout (Section II). In Sec-
tion III we discuss previously designed encoding schemes
for AER and our motivation for designing a new encoding
scheme. Details of the proposed encoding scheme and
circuit implementation are provided in Section IV. Section V
presents results and comparisons with previous schemes and
Section VI concludes this paper.

II. Imaging applications

In this section we look into few techniques in electron
microscopy and synchrotron radiation imaging. We also
discuss some of the imaging modes and capabilities which
are essential for a good imaging device.

A. Electron Microscopy

An electron microscope is a complex scientific instrument
which uses beam of accelerated electrons to capture high
resolution images of biological and non-biological images.
Over the years, it has been used to study materials in a
wide range of research areas such as life sciences, material
science, pharmaceuticals, semiconductors, and electronics
manufacturing. Scanning transmission electron microscopy
(STEM) is a technique used in electron microscopy to
study the structure of materials at the nano-scale. A highly
focused electron beam raster scans a thin specimen and the
diffraction pattern resulting from their interaction is recorded
with the help of an imaging device. This recorded data con-
tains quantitative information about the sample and helps in
extracting properties such as thickness, strain & tilt, polarity,
and electric & magnetic fields with atomic resolution [23]. A
full diffraction image at every scan position is often recorded
for post-processing.

Several imaging modes exist for extracting specific infor-
mation about the specimen by observing well established
regions of interest in images. Some of the common modes
are Bright Field (BF), Annular Bright Field (ABF), and An-
nular Dark Field (ADF). A full diffraction image is acquired
and masking techniques are used during post processing
to extract information. A few segmented detectors have
been designed specifically for such modes by hardwiring
pixel arrangements to match a particular mask but this
approach makes the detector unsuitable for general imaging
applications.

Applications such as single particle experiments and cryo-
EM focus on reducing dose to minimize adverse effects
in organic specimens [17]. A low dose means less signal
reaches the detector and therefore fewer events are gen-
erated. Fig. 3(a) in [18] shows the image of a specimen
collected under a low dose condition. Due to very low flux,
sparse electron hits are clearly visible in the image. An

imaging device should be able to identify individual electron
hits and communicate this information.

B. Synchrotron radiation imaging

A synchrotron light source is a large machine that gen-
erates bright x-ray beams to study static and quasi-static
properties of materials and molecules. For example, syn-
chrotron radiation imaging techniques are used for structural
analysis of crystalline and amorphous material. In such
techniques, an x-ray beam transmits through the sample
and the projection image is recorded on the detector. The
intensity distribution in the captured image is then used to
analyze the structural properties of a material. Computed
tomography (CT) is another technique which provides 3D
structural properties of the specimen. In this technique,
multiple images are taken at different angles of rotation
to reconstruct a 3D representation of the specimen. Data
collection time can be improved in such experiments by
using a fast framing detector. X-ray diffraction imaging is
another technique for characterizing materials where an x-
ray beam passes through the sample and the diffraction pat-
tern resulting from their interaction is recorded. Applications
such as scanning transmission x-ray microscopy (STXM)
and coherent X-ray diffraction imaging (CXDI) often require
a large number of diffraction images. A mechanism for
reading out selected regions of diffraction can help in
reducing data storage requirements and increase effective
frame rate.

X-ray photon correlation spectroscopy (XPCS) is a tech-
nique to study the dynamics of a material by analyzing tem-
poral correlations among photons scattered by the material
[5]. Often these temporal correlations are computed after
acquiring images using a conventional imaging device. [14]
reported that only 5% of pixels contained useful data while
compressing images. In order to detect intensity changes
at timescales of the dynamic process, a detector must have
good spatial and temporal resolution. A large pixel array
improves spatial resolution but limits temporal resolution
due to limited frame rate of the detector. A detector capable
of reading out sparse speckle data can significantly improve
readout speed, allowing study of fluctuations at a faster
timescale.

In the last few years, both fields have reported many
technological advancements and new imaging methods with
development of pixel array detector (PAD) and monolithic
active pixel sensor (MAPS) devices. These devices read
out data from all pixels sequentially and offer very limited
flexibility in reading out data from selected pixels. After
considering all of the imaging applications presented above,
it is clear that a detector used for electron microscopy and x-
ray imaging should be able to efficiently read images in one
of the three modes: sparse readout (mode-S); cluster/region-
of-interest readout (mode-C); and full-frame readout (mode-
F).

2

(a) (b) (c)

Fig. 2: Different address-event encoding schemes. (a) Binary tree. (b) Greedy tree. (c) Token-ring.
(denotes the passive end of the channel and � denotes the active end of the channel.

III. AER Topologies

Address-event encoding is an adaptation of time-division
multiplexing for communicating spike information between
neuromorphic chips [2]. In a typical AER design (Fig. 1) an
encoder waits for an incoming event and multiplexes that
information as an encoded address on the output bus. The
addresses are encoded based on the location of incoming
event and sent across the output bus as they occur. A major
benefit of this encoding scheme is that timing information
is represented by the relative position of event address in
the output stream if events are spaced apart in time. When
multiple events occur, an arbitration mechanism picks one
of them and sends its address on the output bus. This
arbitration process adds extra delay and results in loss of
timing precision.

Mahowald proposed the first VLSI implementation of
a silicon retina that mimics the behavior of the human
retina [3]. Since then various AER-based silicon retinas
have been designed. Rather than sampling pixel values,
AER retina pixels asynchronously output address events
when they detect a significant signal [20]. In recent years,
use of address-event encoding has attracted attention from
various research groups working on vision sensors [10],
[13], [15], [19]. Based on the arbitration mechanism used
when multiple events arrive and how the address of the event
location is encoded, a few address-event encoding schemes
have emerged for use in such devices.

A. Existing AER approaches

a) Tree-based arbitration: Proposed by Lazzaro et al.
[4] and Mahowald [3], the binary tree approach is one of the
earliest and most commonly used encoding scheme based
on arbitration. Fig. 2(a) shows the structure of an 8-input
binary tree encoder. In this scheme, incoming event requests
travel through a hierarchical structure of 2-input arbiters.
The arbiter at the root level picks the winning subtree, and

this signal propagates back down the tree. This process
continues until the input gets an acknowledgment to access
the shared output bus. When multiple requests arrive in a
short time window, one of the requests wins the arbitration
while all other requests are queued until the winning input
releases the output bus. At that point, the encoder selects
another input request and grants access to the shared output
bus. Since requests are queued, pending events are preserved
at the expense of timing information of each event. One
major drawback of this scheme is a reduction in throughput
with increase in number of inputs because every request has
to propagate through log2(N) stages. This increase in delay
can be significant for image sensors for two reasons. First,
for applications where multiple events occur in close spatial
locality i.e. when neighboring inputs request access to the
output bus, the scheme performs unnecessary arbitration at
each stage of the binary tree. This delay gets worse with the
number of events. The second issue is that as the number of
events increases, a typical AER-based readout becomes less
power efficient and readout latency increases [25]. Hence,
this approach is best suited for mode-S, but not mode-C or
mode-F.

b) Greedy trees: Boahen [7] proposed the greedy tree
as an improvement to the original binary tree in situations
where multiple input requests arrive within a very short
time period. In such cases, when one input returns access
to the shared bus, access is granted to the neighboring
inputs without returning it to the root. This is illustrated by
curved arrows in Fig. 2(b). In the case of two simultaneous
events, the token has to travel a distance that depends on
the locations of the two events. In particular, the token has
to travel to at least the common ancestor of the two events.
If event requests are sparse, a greedy tree performs very
much like the original binary tree. In order to gain benefits
by sharing token with sister requests, both requests should
arrive before a request for token is acknowledged by arbiter

3

(a) (b) (c)

Fig. 3: (a) Hierarchical token-ring encoding showing two levels of rings; (b) Ring of leaf servers (Lserver); (c) Ring of
higher servers (Hserver). R, U, D, and C are used as abbreviations for Request, Up, Down, and Counter channels.
(denotes the passive end of the channel and � denotes the active end of the channel.

in higher stage. This timing requirement restricts use of
greedy tree for general applications. Hence, this approach is
best suited for mode-S, and for limited mode-C scenarios.

c) Address encoding schemes: Once an event is
granted access to the shared output bus through arbitration
(either by binary or greedy tree), its location is encoded in
the form of an address. The address encoding in early work
[3], [4] used a logarithmic encoder where each acknowl-
edge output drives log(N) address lines. As the number
of input events increases, it results in large load on the
acknowledge outputs which affects overall speed and power.
Georgiou [11] proposed a distributed encoding arrangement
where address bits are encoded in every stage as the token
moves through arbiter tree. This scheme reduced the number
of transistors on each acknowledge output and improved
delay on the address output.

d) Token rings and counter-based encoding: An
address-event encoding using token-ring was presented by
Imam [16] to improve performance when events arrive in
bursts. As shown in Fig. 2(c), the arbitration is implemented
using a token ring of mutual exclusion elements and a shared
counter keeps track of the token. When a request arrives, a
token circulates in the ring until it reaches the request input,
and grants access to the shared output channel. The counter
updates address as token moves in the ring. As a result,
this design doesn’t require a logarithmic encoder block for
address encoding. One important benefit of this approach is
that it can quickly scan through a section of the ring when a
cluster of request arrives and arbitrate between inputs when
requests are sparse. A major drawback of this encoding
scheme is increased delay when the token has to travel long
distance for each input request. Hence, this approach is well-
suited for mode-F and certain mode-C scenarios when the

cluster size is large.

B. Proposed hierarchical token ring
We present a new encoding scheme based on hierarchical

token-rings (HTR) which can service sparse events like
a binary tree and quickly scan through a section of the
array like a linear token ring. It supports imaging modes
with event activities ranging from few events (mode-S) to
a cluster (mode-C). The full-frame mode (mode-F) can be
viewed as a really large cluster. As shown in Fig. 3(a),
the design consists of multiple leaf token rings which are
connected to each other through a higher level token ring.
The higher level ring allows a token to quickly travel
from one leaf ring to another. This can be repeated in a
hierarchical fashion. Fig. 3(b) illustrates the design of a leaf
ring. It consists of processes called leaf servers (Lserver)
which receives a request from the pixel array. When a pixel
wants to communicate an event, it requests access to the
shared output bus. The Lserver grants access if it has the
token; otherwise it requests the token from the neighboring
Lserver. Similarly, the neighbor provides the token if it holds
the token; otherwise it requests one from its neighbor and
passes it to the Lserver requesting token. A token moves
from one Lserver to another through this process, eventually
leading to access to the shared output bus.

Similarly, a ring of higher server (Hserver) connects
multiple leaf rings as illustrated in Fig. 3(c). A state variable
in each Hserver indicates one of the three possible locations
for the token: (i) Hserver has the token; (ii) leaf ring has
the token; or (iii) Hserver and its leaf ring does not have the
token. In case (iii), the token is located in one of the other
Hservers or its leaf ring. When a Lserver receives request for
the token and it doesn’t hold the token, it sends a request to
the neighboring Lserver. The request is sent to the Hserver

4

Fig. 4: Leaf server (Lserver)

if none of the Lservers in that ring have the token. Next,
the Hserver provides the token if it holds it; otherwise it
propagates the request to its neighboring Hserver.

Two separate counters, Lcounter and Hcounter, track the
location of the token as it moves in the hierarchical rings.
Hcounter tracks the location of the token in the higher ring
and provides the most significant bits of the address output.
Lcounter, on the other hand, tracks the location of the token
within a leaf ring and provides the least significant bits of
the address output. When a Hserver passes token to another
Hserver, it increments the shared Hcounter to indicate which
Hserver or it leaf ring has the token. Similarly, when the
token passes from one Lserver to another in a leaf ring,
the shared Lcounter is incremented. Since the token can be
present in only one leaf ring at a time, one Lcounter can be
shared by all leaf rings.

The scheme can be extended to multiple levels of hierar-
chy (using Hserver processes). By changing the number of
processes in the rings and the number of levels of hierarchy,
the design can be tailored to different application scenarios.

IV. Circuit implementation

In this section, we present implementation details of
our circuit. We start by describing the circuit functional-
ity using Communicating Hardware Processes (CHP) and
use Martin’s synthesis method [1] to translate them into
production rules for CMOS implementation. The non-
deterministic selection are handled using a standard CMOS
arbiter consisting of a latch and metastability filter [12]. For
a communication channel, request signals are named with a
“.d” suffix, and enable (inverted sense of the acknowledge)
signals end with “.e.”

A. Leaf server

Leaf servers (Lserver), as shown in Fig. 3(a) & (b), are
the processes at the lowest level of token-rings and serve
input requests. Each Lserver communicates with the input
request and neighboring Lserver above through passive com-
munication channel R (Request) and U (Up) respectively.
Active communication channels D (Down) and C (Counter)
are used to communicate with Lserver below and the address
counter. Wires on each communication channel are shown
in Fig. 4 and its CHP description is given by:

*[[R −→ [b −→ skip[]¬b −→ D!]; b↑; R?
|U −→ [b −→ skip[]¬b −→ D!]; C!; b↓; U?
]]

When the server receives a communication request on
channel R, it performs a four-phase handshake if it has the
token. If it doesn’t have the token, the server requests a token
from the server below using a four-phase handshake on
channel D and updates the token variable. Similarly, when
the process receives a request on channel U from server
above, it sends the token, updates the local token variable,
and completes the four-phase handshake on channel U. If
the process receives a request on both channels, an arbiter
selects one of them. The shared address counter which keeps
track of the token location is also updated before finishing
the handshake on channel U.

The handshaking expansion used is given below:

*[[r.d −→
[w −→ skip
[]v −→ d.d↑; [¬d.e]; w↑; d.d↓; [d.e]
]; r.e↓; [¬r.d]; r.e↑

| u.d −→

[w −→ skip
[]v −→ d.d↑; [¬d.e]; w↑; d.d↓; [d.e]
]; u.e↓; c.d↑; [¬c.e]; v↑; c.d↓; [c.e]; [¬u.d]; u.e↑

]]

The dual rail variable (w, v) is used to encode the b vari-
able from the CHP. This handshaking expansion is directly
translated into CMOS-implementable production rules.

B. Higher server

Higher server (Hserver), shown in Fig. 3 (a) & (c), are the
processes in higher token rings that connect to each other
as well as the lower level rings. Fig. 5 shows wires on each
communication channel and its CHP is given below:

Fig. 5: Higher level server (Hserver).

*[[U −→ [b = 0 −→ skip
[]b = 1 −→ D!
[]b = 2 −→ DH!
]; b := 1; U?

|UH −→ [b = 0 −→ skip
[]b = 1 −→ D!
[]b = 2 −→ DH!
]; CH!; b := 2; UH?

]]

5

Similar to Lserver, a local variable (b) is used in each
Hserver to represent token position. The variable is imple-
mented using a one-of-three encoding with three wires, and
indicates the token position as:
• b=0: Hserver has the token
• b=1: Leaf ring has the token
• b=2: Hserver and it’s leaf ring doesn’t have the token

A token moves in the leaf ring through channels U (Up)
and D (Down). Channels UH (Up-Hierarchical) and DH
(Down-Hierarchical) are used for token movement in the
higher ring. Hserver tracks the location of the token. If a
token request is received from either the lower or higher
ring, it is either handled locally (b=0), propagated to the
lower ring (b=1), or to the higher ring (b=2). The local state
is updated to reflect the new token location as necessary.

A shared channel CH (Counter-Hierarchical) is used for
communicating with a counter representing the high order
bits of the token address. Performing a full four-phase
handshake on CH before completing communication on UH
ensures that token address is updated correctly.

C. Counter

A ripple counter is used to track the token movement and
provide its address in the usual way. We design the counters
using the optimized QDI circuit templates with internal state
developed by Bingham [24].

V. Results and discussion

The hierarchical token-ring encoding discussed above has
been designed in a 65nm bulk CMOS process and simulated
to verify correct operation. To gain better understanding,
we designed existing encoding schemes and compared their
performance against our design through pre-layout SPICE
simulation with Xyce, a high-quality open-source SPICE
simulator [26]. A small capacitance was added on the output
of every gate to account for parasitic loads. We used the
same methodology for simulating our proposed circuits as
well as previous AER designs.

We considered three readout arrangements (sparse event,
cluster, full frame) and evaluate performance of different
address-event encoding schemes. In a sparse mode, a ran-
dom request was selected from the K inputs and delay
from req to ack was measured for the input request. An
average latency for K such measurements, one from each
input, was calculated. For cluster and full frame readout,
we extracted different delays from SPICE simulation and
computed the overall delay to keep simulation time tractable.
For HTR design, we used a two-level tree and selected

√
K

processes in each ring for a symmetric design; this can
be modified as required by the application. The delay for
each encoding scheme is summarized in Table I in terms
of hop-count for token movement for handling individual
events. The delay numbers for each mode are estimated

based on the expression for 16, 64, and 256 inputs; for each
case, the measured delay from SPICE simulation presented
in parenthesis which takes into account the differences in
circuit complexity.

The shared counter scheme with a shared channel to
increment the counter imposes overhead on token move-
ment. This is because each process has to complete its full
handshake on the counter increment channel before it can
relinquish the token; otherwise, mutual exclusion on access
to the increment channel would be violated.1

It is clear that HTR performs best when all three modes
must be supported. It offers significant improvements in
delay compared to the linear token ring for sparse mode
but the real benefit comes with increased event activity. For
a full frame readout, HTR design reduces token movement
to K + 2H compared to 2K ∗ (log2 K − 1) for a binary
tree. SPICE measurement for cluster and full frame mode
in greedy tree were not done because the delay in such
cases is highly dependent on the timing of event arrival and
accurately measuring such delay depends on the response
time of the pixel and its noise characteristics [25], which is
beyond the scope of this paper.

Note that while the HTR scheme is slower than the tree-
based approach in the case of sparse events, the performance
in this case is not as critical compared to the full-frame
scenario for scientific imaging applications. Most of the
applications in scientific imaging are still based on capturing
regions of 2D images and few applications even require
hundreds to thousands of images. On the other hand, event-
based applications which truly benefit from a sparse readout
imaging device are very limited so far. This is one of the
reason why most of the efforts are focused on improving
readout speed of the frame based imaging devices. A readout
scheme that offers improvements in case of the sparse
and cluster readout without sacrificing performance in full
frame mode would allow the scientific community to explore
event-based approaches without a dedicated event-based
imaging device.

In summary, the encoding scheme based on hierarchical
token rings provides performance that blends the benefits
of existing encoding schemes across a range of activity
patterns. It handles sparse events without traveling long
distances and scans neighboring events quickly in case of
an event cluster.

An interesting property of hierarchical rings worth ex-
ploring in future work is that the number of cells in the
leaf ring and higher rings can be changed depending on the
application requirements. Further extensions can be made
by increasing the levels in the hierarchy. For example,
Fig. 6 illustrates how hierarchical rings can be turned into
a topology that is closer to a binary tree by using only two
cells in every ring. Each ring in this case functions as lazy

1We remark that a direct encoder can also be used with the token-ring
scheme, but without the optimization from Georgiou [11].

6

TABLE I: Delay estimate for different address-event encoding. K = total number of inputs, H & L are number of inputs
in leaf & higher rings, and cluster size M = K/2
*Assuming the delay in moving a token to the cluster is small compared to the delay of handling events
+Delay is measured with assumption that token always starts with initial location (at Reset) and moves to one of the Lserver

Delay K=16 K=64 K=256

Sparse event+

Binary tree 2 ∗ (log2 K − 1) 6 (1.4 ns) 10 (2.1 ns) 14 (2.8 ns)

Greedy tree 2 ∗ (log2 K − 1) 6 (1.5 ns) 10 (2.2 ns) 14 (3.0 ns)

Token-ring (K + 1)/2 8.5 (8.2 ns) 32.5 (34.6 ns) 128.5 (140.2 ns)

Hier-ring (H + L)/2 4 (4.2 ns) 8 (8.4 ns) 16 (16.8 ns)
where K = H ∗ L

Event cluster (K/2 events in the middle)

Binary tree 2M ∗ (log2 K − 1) 48 (11.2 ns) 320 (67.2 ns) 1,792 (358.4 ns)

Greedy tree 3M − 6(M/K) 21 93 381

Token-ring* M 8 (7.7 ns) 32 (34.1 ns) 128 (139.7 ns)

Hier-ring* M + 2(H/2) 12 (12 ns) 40 (42.6 ns) 144 (149.6 ns)

Full frame

Binary tree 2K ∗ (log2 K − 1) 96 (22.4) 640 (134.4 ns) 3,584 (716.8 ns)

Greedy tree 3K − 6 42 186 762

Token-ring K 16 (17.6 ns) 64 (70.4 ns) 256 (281.6 ns)

Hier-ring K + 2H 24 (25.6 ns) 80 (86.4 ns) 288 (313.6 ns)

Fig. 6: Binary tree using hierarchical token-rings.
(denotes the passive end of the channel and � denotes
the active end of the channel.

arbiter, which would hold the token unless requested by
another process in the system. An additional benefit of such
design is the relaxed timing requirement for the sister input
compared to a greedy arbiter.

In the case of two cells per ring, the topology can be
further optimized to a lazy tree encoding. In such encoding
scheme, the nearest-neighbor ring connection is eliminated,

and a state variable in each cell indicates one of the three
possible location for the token: (i) left input has the token;
(ii) right input has the token; or (iii) some higher level
cell has the token. Input requests are forwarded to the
appropriate location. A major benefit of this scheme is that
token does not return to the root after handling input requests
and any new local request can be serviced quickly. The
distributed address encoding can still be used in this case.

VI. Conclusion

In this paper, we discussed few scientific imaging appli-
cations where the imaging device often works under activity
patterns ranging from few events per frame to reading out a
full frame. Existing encoding schemes based on arbitration
tree work well for sparse events but suffer from increased
latency as the event rate increases. On the other hand, a
scanning approach results in increased power consumption
from unnecessary readout and affects temporal resolution of
sparse events. Designing a custom image sensor for each
type of activity rates is not sustainable due to cost and time
required in design, fabrication and testing. We presented
a new AER encoding scheme based on hierarchical token
rings which blends the benefits of both event-based and
scanning approaches. A circulating token is used to provide
mutually exclusive access to the shared output bus for
readout. In case of sparse events, the hierarchical structure
of the ring allowed the token to bypass groups of inputs and

7

move quickly to the destination. By using a counter to track
the token location, our design naturally scales to large arrays
due to reduced load from address encoding logic. Finally, a
qualitative comparison for different encoding schemes shows
that hierarchical token rings outperform trees in scanning
mode, and simultaneously outperform token rings for sparse
events.

Appendix
The circuit functionality is described using Communicating

Hardware Processes (CHP) language and key notation of the CHP
syntax are summarized below:
• Skip: No operation
• Send: X!v means send the value of v over channel X.
• Receive: X?v means receive a value on channel X and store

it in variable v.
• Probe: X determines if there is a pending communication on

a channel X
• Assignment: a := b means assign the value of b to a.
• Sequential Composition: S1; S2 means execute statements S1

and S2 sequentially
• Parallel Composition: S1, S2 means execute statements S1 and

S2 in parallel
• Deterministic Selection: [G1 → S1 [] ... [] Gn → Sn] waits

until one of the guards (G1,G2...Gn) is true and then execute
corresponding statement. Requires that the guards must be
mutually exclusive

• Non-Deterministic Selection: [G1→ S1 | ... | Gn→ Sn] is
same as the Deterministic Selection except guards don’t have
to be mutually exclusive

• Repetition: *[S] infinitely repeats statement S

References
[1] A. J. Martin, “Compiling communicating processes into

delay-insensitive VLSI circuits,” 1986.
[2] M. A. Sivilotti, “Wiring considerations in analog VLSI

systems, with application to field-programmable networks,”
Ph.D. dissertation, California Institute of Technology, 1991.

[3] M. Mahowald, “VLSI analogs of neuronal visual process-
ing: A synthesis of form and function,” 1992.

[4] J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Sivilotti,
and D. Gillespie, “Silicon auditory processors as computer
peripherals,” IEEE Transactions on Neural Networks, vol. 4,
no. 3, pp. 523–528, 1993.

[5] S. Dierker, R. Pindak, R. Fleming, I. Robinson, and L.
Berman, “X-ray photon correlation spectroscopy study of
brownian motion of gold colloids in glycerol,” Physical
Review Letters, vol. 75, no. 3, p. 449, 1995.

[6] K. A. Boahen, “Communicating neuronal ensembles be-
tween neuromorphic chips,” in Neuromorphic systems en-
gineering, Springer, 1998, pp. 229–259.

[7] ——, “Point-to-point connectivity between neuromorphic
chips using address events,” IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing,
vol. 47, no. 5, pp. 416–434, 2000.

[8] E. Culurciello, R. Etienne-Cummings, and K. Boahen,
“High dynamic range, arbitrated address event represen-
tation digital imager,” in ISCAS 2001. The 2001 IEEE
International Symposium on Circuits and Systems (Cat. No.
01CH37196), IEEE, vol. 3, 2001, pp. 505–508.

[9] E. Culurciello, R. Etienne-Cummings, and K. A. Boahen,
“A biomorphic digital image sensor,” IEEE Journal of
Solid-State Circuits, vol. 38, no. 2, pp. 281–294, 2003.

[10] K. A. Boahen, “A burst-mode word-serial address-event
link-I: Transmitter design,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 51, no. 7, pp. 1269–
1280, 2004.

[11] J. Georgiou and A. Andreou, “High-speed, address-
encoding arbiter architecture,” Electronics Letters, vol. 42,
no. 3, pp. 170–171, 2006.

[12] D. J. Kinniment, Synchronization and arbitration in digital
systems. John Wiley & Sons, 2008.

[13] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 × 128
120dB 15µs latency asynchronous temporal contrast vision
sensor,” IEEE journal of solid-state circuits, vol. 43, no. 2,
pp. 566–576, 2008.

[14] T. Madden, P. Jemian, S. Narayanan, A. Sandy, M. Sikorski,
M. Sprung, and J. Weizeorick, “Fpga-based compression
of streaming x-ray photon correlation spectroscopy data,”
in IEEE Nuclear Science Symposuim & Medical Imaging
Conference, IEEE, 2010, pp. 730–733.

[15] C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA
143 dB dynamic range frame-free PWM image sensor with
lossless pixel-level video compression and time-domain
CDS,” IEEE Journal of Solid-State Circuits, vol. 46, no. 1,
pp. 259–275, 2010.

[16] N. Imam and R. Manohar, “Address-event communication
using token-ring mutual exclusion,” in 2011 17th IEEE
International Symposium on Asynchronous Circuits and
Systems, IEEE, 2011, pp. 99–108.

[17] D. B. Carlson, J. E. Evans, and K. Maaz, “Low-dose imag-
ing techniques for transmission electron microscopy,” The
transmission electron microscope, vol. 95, no. 3, pp. 85–98,
2012.

[18] D. Contarato, P. Denes, D. Doering, J. Joseph, and B.
Krieger, “High speed, radiation hard cmos pixel sensors
for transmission electron microscopy,” Physics Procedia,
vol. 37, pp. 1504–1510, 2012.

[19] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck,
“A 240 × 180 130dB 3µs latency global shutter spatiotem-
poral vision sensor,” IEEE Journal of Solid-State Circuits,
vol. 49, no. 10, pp. 2333–2341, 2014.

[20] S.-C. Liu, T. Delbruck, G. Indiveri, A. Whatley, and R.
Douglas, Event-based neuromorphic systems. John Wiley
& Sons, 2014.

[21] G. M. Williams, J. Rhee, A. Lee, and S. D. Kevan,
“Pixelated detector with photon address event driven time
stamping and correlation,” IEEE Transactions on Nuclear
Science, vol. 61, no. 4, pp. 2323–2332, 2014.

[22] J. M. Margarit, Low-Power CMOS Digital Pixel Imagers
for High-Speed Uncooled PbSe IR Applications. Springer,
2016.

[23] D. A. Muller, K. X. Nguyen, M. W. Tate, P. Purohit, C.
Chang, M. Cao, and S. M. Gruner, “An electron microscope
pixel array detector as a universal stem detector,” Mi-
croscopy and Microanalysis, vol. 22, no. S3, pp. 478–479,
2016.

[24] N. Bingham and R. Manohar, “Qdi constant-time counters,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 27, no. 1, pp. 83–91, 2018.

[25] iniVation AG, “Understanding the performance of neuro-
morphic event-based vision sensors,” Tech. Rep., 2020.
[Online]. Available: https : / / inivation . com / wp - content /
uploads/2020/05/White-Paper-May-2020.pdf.

[26] Sandia National Laboratories, Xyce parallel electronic sim-
ulator, version 7.2, Nov. 2, 2020. [Online]. Available: https:
//xyce.sandia.gov.

8

