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Abstract—We implement a digital neuron in silicon using

delay-insensitive asynchronous circuits. Our design numerically

solves the Izhikevich equations with a fixed-point number repre-

sentation, resulting in a compact and energy-efficient neuron with

a variety of dynamical characteristics. A digital implementation

results in stable, reliable and highly programmable circuits, while

an asynchronous design style leads to energy-efficient clockless

neurons and their networks that mimic the event-driven nature

of biological nervous systems. In 65 nm CMOS technology at 1

V operating voltage and a 16-bit word length, our neuron can

update its state 11,600 times per millisecond while consuming 0.5

nJ per update. The design occupies 29,500 µm
2

and can be used

to construct dense neuromorphic systems. Our neuron exhibits

the full repertoire of spiking features seen in biological neurons,

resulting in a range of computational properties that can be used

in artificial systems running neural-inspired algorithms, in neural

prosthetic devices, and in accelerated brain simulations.

I. INTRODUCTION

Neural circuits in the brain carry out complex computations
involved in a variety of phenomena such as sensory perception,
motor pattern generation, autonomous learning, and cognitive
decision making. These computations are encoded in the
spatiotemporal spiking activity of neurons in the system with
different connectivity configurations between neurons with dif-
ferent dynamical properties implementing distinct algorithms.
The human brain consists of approximately 1010 neurons and
1013 synapses, all contained within a volume of 2 L, weighing
less than 4 lbs, and running on a 20 W power budget [1].

Artificial “neuromorphic” platforms intended to mimic the
function of biological neural systems in real time and ap-
proach their compact size/weight and low power consump-
tion, must capture the distributed nature of neural systems
in an efficient way. Implementing large numbers of model
neurons and synapses in a scalable and reliable platform and
within aggressive area and power constraints requires careful
design and implementation choices to be made [2]. Specialized
hardware, especially Application Specific Integrated Circuits
(ASICs), are effective tools with which these challenges can
be met. ASIC “chips” offer better power and area efficiency
than off-the-shelf processors as the datapath, memory, and
communication circuits can be customized to implement high-
density and large-scale neural networks.

Neuromorphic chips have a variety of potential applications
such as in artificial perceptuo-motor systems, neural implants
and brain simulation platforms. To implement the full range

of spatiotemporal codes used in biological neural systems,
neuromorphic hardware designs need to incorporate neuron
models that reproduce the variety of spiking patterns of real
neurons [3], and routing circuits that transmit information
about the time and place of spikes across the system [4,5]. In
practice, neuromorphic systems can be reconfigured to execute
different algorithms by adjusting the dynamical properties
of neurons (through configurable model parameters) and by
changing the connectivity of the network (through configurable
routing).

The response properties of neurons to synaptic inputs can
be replicated through various mathematical models. These
range from low-level multi-compartment models to high-
level phenomenological models. Lower-level models precisely
account for the morphological and electrochemical properties
of neurons and synapses and capture their dynamical char-
acteristics in detail. In contrast, higher-level models reduce
the number of free parameters and capture only the neuron’s
essential properties at a more abstract level. Any reduction
in model complexity translates directly to simplifications in
ASIC circuit implementation and the corresponding savings
in energy consumption and silicon area, making high-level
neuron models attractive for implementing high-density and
energy-efficient systems. Choosing an overly simple model is
undesirable, however, as models must represent the wide range
of dynamics used in neural computation.

One similarity between all biophysically-detailed models is
that spiking dynamics is dictated by a fast inward activation
current (typically the activation of Na+ channels) and a
slow outward recovery current (typically the inactivation of
Na+ channels and the activation of K+ channels). Based on
the phase plot of two variables affected by these currents,
Izhikevich [6] reduced Hodgkin-Huxley type models into a
two-dimensional system that captured the subthreshold and
spike-initiation dynamics of a neuron while compromising the
precise shape of its spike. The model uses the interaction
between a fast variable, v, and a slow variable, u, to produce
the various spiking patterns observed in cortical neurons within
14 arithmetic operations [3]. Models such as the Izhikevich
model that can capture a neuron’s important properties without
accounting for all the biological details is ideally suited for
dense and energy-efficient neuromorphic systems.

The Izhikevich neuron model is formulated as a system of



two differential equations

v� = ev2 + fv + g − u+ I (1)
u� = a(bv − u) (2)

with an after-spike reset.

if v > θ, then: v = c and u = u+ d (3)

v� and u� are the time derivatives of v and u. The parameters
e, f , and g are usually fixed to 0.04, 5, and 140, respectively,
although other values are sometimes preferred [7]. The pa-
rameter a describes the speed of the recovery (slow) variable,
b describes the influence of the activation (fast) variable on
the recovery variable, and c and d describe the reset value of
the variables after a spike. By tuning these four parameters,
different dynamical characteristics can be generated.

In this paper we present an asynchronous Izhikevich neuron
implemented in 65 nm CMOS technology for use in digital
neuromorphic chips. Asynchronous circuits naturally perform
event-driven computation, minimizing power consumption in
the absence of data. We gain additional energy and area
savings by representing the Izhikevich equations using fixed-
instead of floating-point numbers. While this results in a loss
of precision, our fixed-point implementation is capable of
producing the same spiking patterns as a floating-point imple-
mentation. We illustrate how our circuit’s speed, energy con-
sumption and area changes with different levels of precision.
With a word length of 16 bits, our neuron occupies 29,500
µm2 and updates the Izhikevich equations 11,600 times per
millisecond while consuming 0.5 nJ per update, making it the
most compact and energy-efficient two-variable digital neuron
we are aware of to date. Our asynchronous neuron interfaces
seamlessly with the event-driven routing fabrics typically used
in neuromorphic systems, removing the overhead associated
with network interface and synchronization circuitry.

II. DESIGN CONSIDERATIONS

Large-scale implementations of Izhikevich neurons have
been previously implemented in software, using com-
puting clusters consisting of high-performance/high-power-
consuming general purpose processors [12], lower power
fixed-point processors [13], FPGAs [14] and GPUs [15].

General-purpose processors are based on a von Neumann
computing architecture, wherein processing and memory are
physically separated and instructions are largely executed
following a sequential compute model. This architecture is
not a natural fit to the parallel and event-driven nature of
neural computations. The storage and retrieval of a large
number of neuron and synapse parameters from off-chip
memory arrays lead to high energy consumption and increased
latency, limiting efficiency and scalability. To achieve large-
scale implementations in software requires supercomputer-
levels of computational power and the associated costs, for
example [16].

Custom ASICs, as previously discussed, present an efficient
design point for implementing large-scale brain-like networks.

Neuron models can be implemented using compact and
energy-efficient circuits [2], memories storing configuration
parameters can be tightly coupled to computing datapaths [17],
routing fabrics can be tailor-made for spike-based communi-
cations [18], and synchronization methods can be deployed to
maintain hardware correspondence with software [19].

In an effort to minimize transistor count, designers can make
use of analog circuit implementations of neurons. Transistor
transconductance properties can be used to mimic the opera-
tion of neurons, reducing the number of transistors required for
reproducing the dynamics of individual neurons [8] in compar-
ison to digital implementations. Previous work has shown the
implementation of Izhikevich-like equations in analog circuits
[9-11], resulting in a number of spiking patterns.

These implementations, although compact and low-power,
have a number of drawbacks characteristic of analog circuits.
Device mismatch and environmental fluctuations, e.g. changes
in ambient temperature or voltage, limits correspondence
between intended hardware configuration, i.e. the desired
neural algorithm, and the actual circuit operation. This non-
determinism can adversely affect the usability of such circuits
in real-world applications and simulation platforms. In ad-
dition, analog circuits do not scale well to deep-submicron
CMOS processes [25], in part due to a lack of high-density
capacitors and increasing sub-threshold currents.

In contrast, digital circuits offer a deterministic and high-
precision platform. By leveraging the digital abstraction, neu-
ral algorithms can be guaranteed to reliably operate precisely
as specified. This is particularly important in cases where one-
to-one correspondence is expected with a software model. By
taking full advantage of CMOS technology scaling, the power
and area overheads associated with a digital implementation
can be overcome. For these reasons our neuron is a digital
circuit implementation of the Izhikevich model.

We make use of our asynchronous digital circuit design
methodology [22], which transforms a high-level program de-
scription into a set of parallel CMOS circuits that communicate
with one another via delay-insensitive channels. Our circuits
satisfy the Quasi-Delay Insensitive (QDI) model, which has
minimal timing assumptions. As a result, QDI circuits are
robust to timing, temperature, voltage, and device variations.
This hardware model closely emulates that of a biological
neural system, where neurons communicate with one another
via chemical and electrical signaling often without a global
synchronization signal or “clock”, as would be the case in
a synchronous digital system. Any synchronization in our
circuits is accomplished locally between hardware processes
through request-acknowledge handshakes.

An asynchronous design has the advantage of demand-
driven switching activity, consuming dynamic energy only
when computation is taking place [21]. While synchronous
systems can implement this by adding clock-gating circuits,
asynchronous circuits naturally provide the benefits of fine-
grained clock gating with no additional overhead. Removing
the clock entirely also has the benefit of eliminating the clock
distribution circuitry and the associated area and power over-



heads, which can be very expensive for large neuromorphic
systems.

Globally Asynchronous, Locally Synchronous (GALS) ar-
chitectures have been the traditional compromise for large
synchronous systems when faced with the difficulties of clock
distribution. However, large-scale neuromorphic systems are
already globally asynchronous. In these systems, it is typical
to use clockless event-driven routing fabrics to communicate
the sparse and irregular spikes between neurons [5]. As our
neuron is itself self-timed, i.e. asynchronous, it can seamlessly
integrate with the routing fabric without the necessity to cross
timing domains as would be the case in a GALS system.
Applying an asynchronous design methodology across the
whole system eliminates the need for synchronization circuits
and design difficulties such as timing closure [26].

Furthermore, because they are self-timed, asynchronous
circuits are robust to delay variations resulting from CMOS
process variations and environmental changes to ambient
temperature, system voltage, or electrical noise sources [27].
This robustness, especially compared against analog circuits,
directly translates to preserving neuromorphic system func-
tionality across a wider array of situations, such as the unusual
operating environments found in robotics applications.

While these benefits typically come at the cost of increased
design effort, developments in asynchronous design method-
ologies [22] and circuit synthesis tools [28] have streamlined
the construction of asynchronous circuits from high-level
descriptions to physical layout.

III. NEUROMORPHIC SYSTEM ARCHITECTURE

Neuromorphic systems are made up of many neurons con-
nected by synapses. Typical neurons have 103 to 104 synapses,
which make point-to-point connections with dedicated wires
on an ASIC intractable for any significant number of neurons.
Fortunately, neuron activity is measured in the Hz range,
whereas ASIC wire bandwidth can reach hundreds of MHz to
several GHz. Thus, most custom-ASIC neuromorphic systems
[19,23,24] time multiplex wire usage to implement the con-
nections of a group of neurons, encapsulated in neural cores.

Communication in neuromorphic systems is discretized
into address-event representation (AER) packets [4], which
encode information about neuron spiking activity. The minimal
packet is a (source, destination, timestamp) tuple indicat-
ing the source, destination, and time of a spike. Inter-core
packet traffic is handled by routing circuits [5,18] using the
source/destination packet fields for addressing. As an example,
we show a 2D mesh routing network in Fig. 1.

Neurons are typically organized as illustrated in Fig. 2.
When exiting or entering a core, AER packets traverse a
lookup table that maps the source and destination core fields
of the packet to individual neurons in the local core. These
lookup tables are indicated as the synaptic memory and routing
memory in Fig. 2.

As an arriving packet traverses the synaptic memory, its
source field is mapped to a user-configured subset of neurons
in the neuron array, which are the local spike recipients. Any

Neural
Core

Mesh
Router

Fig. 1. Array of Neural Cores, connected by a 2D Manhattan mesh network.
Other network topologies are possible [18].

transforms based on the chosen synapse model may be applied
here, or in the circuitry of individual neurons. Typically, a
weight parameter, stored in the synaptic memory, is applied to
the spike before being forwarded to the appropriate neurons. In
some neuromorphic cores, the timestep field of the AER packet
may be used to delay the delivery of the spike to the target
neurons to model the axonal delay of a biological neuron.
In the outbound packet case, as a locally generated spike
leaves the core, the routing memory maps the locally spiking
neuron to a remote core, writing the appropriate remote core
to the destination field. High neural fanout can be efficiently
implemented by clustering neurons that are often co-recipients
of a spike, in the same core.

AER
Reciever

Synaptic
Memory

Routing
Memory

AER
Transmitter

Neuron
Array

Fig. 2. A Typical Neural Core.

Speed, energy efficiency, and area, all of which affect the
scalability of the system, are primarily determined by the
following architectural structures:

• Neuron: The speed of neural updates governs how fast
the entire system can run. The energy per neuron update,
summed across all neurons, contributes significantly to
overall system energy consumption. The area footprint
of a neuron dictates the size of the neuron array.



• AER TX/RX: The speed of the AER transmitter/receiver
determines the maximum number of neuron communica-
tions that can be multiplexed together, setting a direct
limit on the size of the neuron array. Spiking patterns
are typically bursty and sparse. Therefore, event-driven
asynchronous AER circuits are usually used to minimize
power consumption during idle periods while maintaining
high throughput during bursty periods.

• Routing Network: The network must have sufficient
bandwidth to accommodate spiking activity from all the
cores in the system, while guaranteeing packet delivery
within the axonal delay time. Again, asynchronous cir-
cuits are usually used to handle bursty and sparse spiking
traffic efficiently.

• Synapses: Synapses outnumber neurons by three to four
orders of magnitude, so the design of the synaptic mem-
ory is a large determinant of the neural core area for
an on-chip memory design. This memory will critically
affect the energy consumption and speed of operation
when off-chip memory is employed.

These systems can be designed to run a discrete-time
simulation based on an externally defined timestep. In such
a design, the total synaptic current for each update (I in
Equation 1) is passed to the neuron by circuits between the
neuron and the synaptic memory, that accumulate the spikes
coming in for one timestep. A global update signal oscillating
with a period equal to the timestep of the simulation initiates
a neural update. The period of the update signal provides
an absolute bound within which all the communication and
computation in the system has to take place. With the use
of synchronization circuits, this kind of design can create a
one-to-one correspondence between hardware operation and
software simulation [17,19].

Alternatively, these systems can run freely without a global
update signal. Neural updates can be carried out as AER
packets come in, or updates can be continuously made and
incoming packets checked for between updates. Such a design
would operate at maximum speed, but will not produce a
strict correspondence between hardware and software due to
a lack of synchronization between the neurons and the non-
deterministic routing network.

IV. NEURON DESIGN AND IMPLEMENTATION

In designing a neuron, we assume a typical system architec-
ture with neurons operating next to a synaptic memory array,
as described in Section III. We optimize primarily for neuron
area to maximize the number of neurons in each core, and
keep energy and speed as an important secondary and tertiary
considerations respectively.

Minimizing the number of arithmetic units needed to imple-
ment the Izhikevich equations results in small circuit footprint.
Therefore, we break Eqs. 1 and 2 into the sequential steps
shown in Table I.

Each row in Table I corresponds to an add and/or multiply.
Each step uses the results of one of the previous steps. The
addition of the lump synaptic current, I , is done in the last step

TABLE I
CALCULATION BREAKDOWN

Step Multiplier Adder
1 ev g − u
2 bv ev + f
3 v(ev + f) bv − u
4 a(bv − u) v(ev + f) + g − u
5 v + v(ev + f) + g − u
6 u+ a(bv − u)
7 v + v(ev + f) + g − u+ I

in order to parallelize the accumulation of synaptic currents to
the neuron with the other steps (1-6). All computation takes
place on fixed-point numbers represented in two’s comple-
ment. We tested our circuit with different levels of precision
in the fixed-point numbers, discussed in Section V.

This formulation requires a datapath of two arithmetic
computation units, a two-operand fixed-point adder and a two-
operand fixed-point multiplier, as shown in Fig. 3. A control
block, detailed in Section IV-A, feeds the datapath with the
appropriate operands and routes the outputs to the appropriate
place. The neuron state variables (i.e. v and u) are stored in
a local neuron memory along with the neuron parameters.

X

+
Control

Neuron Memory

State Variables
Neuron Parameters

Synaptic Current

Datapath

Fig. 3. Neuron Architecture

A. Control
The control of the neuron is illustrated in Fig. 4. A finite

state machine, implemented using an asynchronous token-ring
[20], controls a series of merges (M) and splits (S) which
route operands to/from the adder and multiplier to implement
the steps of Table I. Operands can be sourced from either
the neuron memory or from datapath results. The results of
the multiplier are routed to the adder and the results of the
adder can be routed to the multiplier, back to the input of the
adder, to a comparator, or back to registers in the local neuron
memory. The comparator evaluates if v has crossed threshold
(usually set to 30), the result of which decides if v and u are
to be reset as in Eq. 3 and if a spike is to be sent to the AER
transmitter.

B. Datapath
The datapath is made of a fixed-point adder and a fixed-

point multiplier. The adder is implemented as a simple ripple-
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Fig. 4. Neuron Control Block

carry design to minimize area costs. The multiplier is a Booth-
encoded serial multiplier employing a counterflow struc-
ture [29], where control and data flow in opposite directions in
a pipeline. A high-level representation can be seen in Fig. 5.

Add/Subtract/Shift ShiftB A

P

Control

Carry

Data
Command

Fig. 5. Counterflow Serial Booth-Encoded Multiplier

Each unit in the pipeline of Fig. 5 is either a shifter
block (labeled as “Shift”) or an ALU block (labeled as
“Add/Subtract/Shift”). A multiplier control resides on the
right-most side of the pipeline. The shifters initialize with the
bits of the multiplier A, and the ALUs initialize with the bits
of the multiplicand B. The pipeline then shifts and processes
the values of A and B in a bit-serial fashion, depending
on booth commands sent from the multiplier control unit.
This unit determines the next command to be injected into
the pipeline by analyzing two consecutive data bits coming
out of the rightmost shifter. Based on the Booth algorithm,
an addition command is sent if a 1 is followed by a 0, a
subtraction command is sent if a 0 is followed by a 1, and a
shift command is sent if consecutive bits match (00 or 11).
A sentinal token initializes in the middle of the pipeline (in
the rightmost ALU) and flows with the data. When the control
block receives this token, a final command is sent causing each
unit to pass its value out to P .

The ALU unit of the pipeline is show in Fig. 6. The

blocks labeled “PCHB” and “WCHB” are specific kinds of
asynchronous buffers [30], that copy the data on their input
channel to their output channel. The “en” label in the WCHB
blocks refers to an enable signal. Depending on the command
(CMDin) coming from the right, any one of the four WCHBs
is enabled to produce the data value going to the right (Dout).
The input Cin and the output Cout are the carry-in and carry-
out bits to the neighboring units of the pipeline. The shifter
units are similar to Fig. 6, but they don’t have the add/sub
blocks and the associated WCHBs and carry bits. Also, the
input to the initialization buffer (the top-most WCHB in Fig. 6)
of a shifter is a bit from the multiplier A.

WCHB

+

-

Cout Cin

Din

Dout

CMDinCMDout

P

B

B

0
en

en

en

en

WCHB

WCHB

WCHB

WCHB

PCHB

en

Fig. 6. Multiplier Add/Subtract/Shift Unit

The multiplier block is the most significant driver of the
area, energy consumption and speed of our neuron. We used
the Booth algorithm because it leverages strings of consecutive
zeros or consecutive ones in the multiplier (A) to reduce the
number of additions and subtractions required in a standard
bit-serial algorithm. Our asynchronous design methodology
is well-suited for the counterflow pipeline implementation
of the algorithm, and leads to an area and energy-efficient
design. The counterflow architecture also enables overlapped
execution of consecutive multiplications since units in the
pipeline can start processing the next set of operands without
waiting for all other units to finish.

We used a bit-serial multiplier to achieve a compact im-
plementation. Alternatively, an array-based multiplier can be
used. This will lead to better energy efficiency and higher
speed at the cost of larger area.

V. RESULTS

We transformed the processes of a single neuron in the
neuron array of Fig. 2 into QDI CMOS circuits using the
synthesis technique described in Section II. We evaluated our



design in a commercially available 65 nm CMOS process. We
present SPICE simulation projections for the process at 25◦C
in the Typical-Typical corner at 1 V. Our SPICE framework
includes conservative wire capacitance estimates, resulting in
performance and power numbers similar to actual silicon
measurements from a variety of fabricated chips [31]. We
estimate area via an automated tool that synthesizes “standard”
cells for place and route [28]. On average, our tool produces
layout 2x larger than unassisted human layout.

Our choice of a fixed-point number representation results
in an accumulation of round-off errors after every arithmetic
operation. In time, the results of a fixed-point implementation
will drift away from the results of a floating-point one. The
lower the fixed-point precision, the larger the fixed- to floating-
point discrepancy, as shown in Fig. 7. In this figure, a (x,y)
fixed-point number denotes a value with x bits of precision
in the integer and y bits of precision in the decimal. Despite
the discrepancy, neural computations can be carried out in
low precision implementations using the temporal patterns of
spikes irrespective of how closely the fixed- and floating-
point solutions match (see the caption of Fig. 8 for further
description). Precise temporal characteristics of these patterns,
such as the onset latency or the inter-spike interval, can
be adjusted by tuning the parameters of the model. Higher
precision implementations will allow a higher dynamic range,
and therefore more flexibility, in the adjustments of these
values.

in Section II. We evaluated our design in a commercially
available 65 nm CMOS process. We present SPICE simulation
projections for the process at 25◦C in the Typical-Typical cor-
ner at 1 V. Our SPICE framework includes conservative wire
capacitance estimates, resulting in performance and power
numbers similar to actual silicon measurements from a variety
of fabricated chips [29]. We estimate area via an automated
tool that synthesizes “standard” cells for place and route [36].
On average, our tool produces layout 2x larger than unassisted
human layout.

Our choice of a fixed-point number representation results
in an accumulation of round-off errors after every arithmetic
operation. In time, the results of a fixed-point implementation
will drift away from the results of a floating-point one. The
lower the fixed-point precision, the larger the fixed- to floating-
point discrepancy, as shown in Fig.7. Despite this discrepancy,
neural computations can be carried out in low precision imple-
mentations using the temporal patterns of spikes irrespective
of how closely the fixed- and floating-point solutions match.
For example, tonic spikes can be used to indicate consistent
presence of a stimuli, a phasic spike can indicate the start
of a stimulus, and an integrator can carry out coincidence
detection. Precise temporal characteristics of these patterns,
such as the onset latency or the inter-spike interval, can
be adjusted by tuning the parameters of the model. Higher
precision implementations will allow a higher dynamic range,
and therefore more flexibility in adjusting these values.
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Fig. 7. Fixed- versus floating-point implementations with parameters for
tonic spikes. Step current is applied from time 100 to 300. The v and time
axes are dimensionless.

Several different spike patterns generated by our circuit
along with the associated phase portraits is illustrated in
Fig. V. Each of the patterns can be used in distinct com-
putations, as described in the caption. Our neuron reproduces
all the prominent spiking patterns seen in biological neurons
[4]. Many of them can be generated through a (9,7) fixed-
point twos complement number representation (i.e. 9 bits of
precision for the integer portion and 7 bits of precision for
the fraction). Some patterns, such as the resonator in Fig. V,
require 10 bits of precision in the fraction.

The results of our SPICE simulations for various fixed-point
precisions are presented in Table II. Here, the number of bits

in the integer is fixed at 9, and that in the fraction is varied.
With a (9,7) fixed-point representation (16 bits), our circuit
performs over 11,600 updates per millisecond, consumes 0.5
nJ per update and occupies 29,500 µm2. To our knowledge,
this is the most energy- and area-efficient implementation of
a two-variable digital neuron reported to date.

TABLE II
THE EFFECTS OF PRECISION AT 1 V

Precision [b] Update Speed [ns] Energy/Update [nJ] Area [µm2]
12 64 0.289 22,505
16 86 0.511 29,500
20 107 0.776 36,862
24 129 1.109 44,233

Table III lists the performance and energy consumption of
our circuit for different supply voltages. Our neuron can carry
out over 18,500 updates per millisecond at 1.2 V, or consume
only 313 pJ of energy per update at 0.8 V.

TABLE III
SUPPLY VOLTAGE SCALING WITH 16-BIT PRECISION

Voltage [V] Update Speed [ns] Energy/Update [nJ]
1.2 54 0.726
1.1 68 0.590
1.0 86 0.511
0.9 123 0.403
0.8 202 0.313

VI. DISCUSSION

Our neuron is intended for dense digital neuromorphic
systems. A 16-bit implementation of our circuit occupies less
than 30,000 µm2 (Table II) in 65 nm technology. Hundreds
of thousands of these neurons can be packed in a medium- to
large-sized chip. Digital circuits are presently being fabricated
using feature sizes as small as 22 nm. By levereging this
scaling, digital models of large brains can be constructed using
our neurons in compact multi-chip systems.

As discussed in Section II, memory organization signifi-
cantly affects the speed, energy-efficiency, and scalability of
neuromorphic systems. Our design is well suited for archi-
tectures that exclusively use local on-chip memory, such as
the recently implemented neurosynaptic core [16,17]. In the
neurosynaptic core architecture, individual neurons store their
parameters in local registers and a crossbar memory local to
a neuron core implement large synaptic fanout efficiently. A
system in which our energy-efficient neurons are embedded
in this architecture can achieve energy-efficiency two or three
orders of magnitude better than software implementations.

Our circuit operates 11,600 times faster than real time at 1
V (Table III). Systems that are designed to operate at lower
speeds, such as a platform intended for real-time operation,
can get significant improvements in neuron density by us-
ing one physical neuron circuit to implement multiple time-
multiplexed virtual neurons, as previously demonstrated in a
FPGA implementation [14]. Instead of storing the parameters
of neurons in separate registers, a combined neuron memory

Fig. 7. Fixed- versus floating-point implementations with parameters for
tonic spikes. Step current is applied from time 100 to 300. The v and time
axes are dimensionless.

Several different spike patterns generated by our circuit
along with the associated phase portraits is illustrated in Fig. 8.
Each of the patterns can be used in distinct computations,
as described in the caption. Our neuron reproduces all the
prominent spiking patterns seen in biological neurons [3].
Many of them can be generated through a (9,7) fixed-point
two’s complement number representation. Some patterns, such
as the resonator in Fig. 8, require 10 bits of precision in the
fraction.

The results of our SPICE simulations for various fixed-point
precisions are presented in Table II. Here, the number of bits
in the integer is fixed at 9, and that in the fraction is varied.

With a (9,7) fixed-point representation (16 bits), our circuit
performs over 11,600 updates per millisecond, consumes 0.5
nJ per update and occupies 29,500 µm2. To our knowledge,
this is the most energy- and area-efficient implementation of
a two-variable digital neuron reported to date.

TABLE II
THE EFFECTS OF PRECISION AT 1 V

Precision [b] Update Speed [ns] Energy/Update [nJ] Area [µm2]
12 64 0.289 22,505
16 86 0.511 29,500
20 107 0.776 36,862
24 129 1.109 44,233

Table III lists the performance and energy consumption of
our circuit for different supply voltages. Our neuron can carry
out over 18,500 updates per millisecond at 1.2 V, or consume
only 313 pJ of energy per update at 0.8 V.

TABLE III
SUPPLY VOLTAGE SCALING WITH 16-BIT PRECISION

Voltage [V] Update Speed [ns] Energy/Update [nJ]
1.2 54 0.726
1.1 68 0.590
1.0 86 0.511
0.9 123 0.403
0.8 202 0.313

The static power dissipation of a 16-bit instantiation of our
neuron at 1 V is 203 nW. While this can be further reduced
with the use of high-Vt transistors and static power reduction
techniques, the synapse memory rather than the neuron circuits
will dominate the leakage current of a large system since the
former exceeds the latter by three to four orders of magnitude.

VI. DISCUSSION

Our neuron is intended for dense digital neuromorphic
systems. A 16-bit implementation of our circuit occupies less
than 30,000 µm2 (Table II) in 65 nm technology. Hundreds
of thousands of these neurons can be packed in a medium- to
large-sized chip. Digital circuits are presently being fabricated
using feature sizes as small as 22 nm. By leveraging this
scaling, digital models of large brains can be constructed using
our neurons in compact multi-chip systems.

As discussed in Section II, memory organization signifi-
cantly affects the speed, energy-efficiency, and scalability of
neuromorphic systems. Our design is well suited for archi-
tectures that exclusively use local on-chip memory, such as
the recently implemented neurosynaptic core [17,19]. In the
neurosynaptic core architecture, individual neurons store their
parameters in local registers and a crossbar memory local to
a neuron core implement large synaptic fanout efficiently. A
system in which our energy-efficient neurons are embedded
in this architecture can achieve energy-efficiency two or three
orders of magnitude better than software implementations.

A 16-bit instantiation of our circuit operates 11,600 times
faster than real time (1 ms timestep) at 1 V (Table III).
Systems that are designed to operate at lower speeds, such as
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Fig. 8. Neural Dynamics in Asynchronous Circuits: A subset of spike patterns generated by our circuit from transistor-level simulations. For each pattern,
the output generated in the spike channel of the neuron, the stimulus current, and the phase portrait are shown. The phase portrait illustrates the interaction
between the fast variable v and the slow variable u that generate neural dynamics. Each pattern can be used for specific computational tasks. Tonic spikes
can indicate the consistent presence of a stimuli, analogous for example to P ganglion cells in the retina. In contrast, a phasic spike can indicate just the start
of a stimulus like M ganglion cells in the retina do. Resonators can implement frequency-modulated interactions such as those found in the cochlear nucleus,
while integrators can perform coincidence detection similar to sound-localizing neurons in the auditory midbrain. Neurons exhibiting threshold variation can
be modulated in a variety of ways by precise interactions between inhibitory and excitatory synapses, while bursting neurons are believed to be behind the
gamma-frequency oscillations that are hypothesized to perform various synchronization roles in the brain.

a platform intended for real-time operation, can get significant
improvements in neuron density by using one physical neuron
circuit to implement multiple time-multiplexed virtual neu-
rons, as previously demonstrated in a FPGA implementation
[14]. Instead of storing the parameters of neurons in separate
registers, a combined neuron memory array along with a single
instance of our circuit can implement several hundred neuron
updates. This of course comes at an expense of extra energy
consumption associated with moving parameters to and from
a large shared neuron memory.

Given the sparse activity rates in neural networks, a neuron
may not receive synaptic input for long periods of time. In
the majority of such instances, the neuron will sit idle at a
fixed point in its phase plane. In these cases, carrying out the
updates of Table I will lead to wasteful energy consumption.
An addition to the neuron control block of Fig. 4 can be made
to prevent this energy overhead at a slight cost of an area
overhead. A sampling block, that periodically samples both
the state of the incoming synaptic current and the state of the

variables v and u, can detect when updates should be halted.
When the synaptic current stays zero for some period of time,
and if in that period both v and u are always within some
small region around the same point in the phase plane, the
control can shut down neural updates to save energy until a
synaptic current comes in.

Our neuron can be used in several neuromorphic appli-
cations. These applications employ algorithms inspired from
neural activity in the brain to solve a variety of artificial
sensory-motor problems where traditional computer algo-
rithms have fallen short. These include for example, visual,
auditory and chemical signal processing [32,33], and locomo-
tor central pattern generation [34]. The variety of computa-
tions used here will benefit from using the full repertoire of
dynamical features that our neuron exhibits, and our compact
and energy-efficient circuits will allow these algorithms to be
deployed in real-world applications.

Another application of our circuits is in brain-embodied
robots [35]. These robots explicitly model the brain’s inter-



action with the body and the environment in real time. They
are promising tools for studying the brain and offer novel ways
of designing intelligent robots. In contrast to robots based on
conventional artificial intelligence, these brain-based devices
autonomously learn from their experience without a priori
instructions. The activity of all elements in the neural circuits
of the devices can be recorded and examined in detail while
they interact with the body and the environment, providing
critical insights into brain function not achievable through
current techniques in animal experimentation. Fast, energy-
efficient and compact circuits such as ours are crucial in
developing these platforms.

Brain-machine interfaces have seen rapid development over
the past decade [36], and it’s another area where our circuits
will be of use. These interfaces are intended for neural pros-
thetics, and create a direct communication channel between
biological neurons and artificial systems. They translate raw
neuronal signals into motor commands and provide sensory
feedback to the brain. This is an area where both analog and
digital silicon neuron implementations may be useful, with
ultra-low-power analog neurons at the interface of biology and
silicon and reliable, higher-precision digital neurons perform-
ing computations in the rest of the system.

Finally, our circuits can also be deployed in brain simulation
technologies. With data pouring in from anatomical and physi-
ological investigations of brain structure and function, several
research groups are attempting to integrate the information
through large-scale computer simulations of neural systems
[12,16]. Simulating a system as complex as the brain requires
high-performance computing platforms, and our circuits can
be efficient building blocks of such simulators.

In conclusion, we have designed the most compact and
energy-efficient two-variable digital neuron to date. We have
demonstrated a wide range of dynamical properties that our
asynchronous neuron exhibits. Our circuits can operate in
real time or faster, and naturally fit into the event-driven
communication fabrics of neuromorphic architectures. Our
neuron is ideally suited as a building block for a variety of
real-time, compact and low-power neuromorphic systems.
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