
Opportunistic Mutual Exclusion
Karthi Srinivasan

Department of Electrical Engineering
Yale University

New Haven, USA
karthi.srinivasan@yale.edu

Yoram Moses
Department of Electrical Engineering
Technion-Israel Institute of Technology

Haifa, Israel
moses@ee.technion.ac.il

Rajit Manohar
Department of Electrical Engineering

Yale University
New Haven, USA

rajit.manohar@yale.edu

Abstract—Mutual exclusion is an important problem in the
context of shared resource usage, where only one process can be
using the shared resource at any given time. A mutual exclusion
protocol that does not use information on the duration for
which each process uses the resource can lead to sub-optimal
utilization times. We consider a simple two-process mutual
exclusion problem with a central server that provides access to
the shared resource. We show that even in the absence of a clock,
under certain conditions, the server can opportunistically grant
early access to a client based on timing information. We call
our new protocol opportunistic mutual exclusion. Our approach
requires an extra request signal on each channel between client
and server to convey extra information, and the server can grant
early access based only on the order of events rather than through
measuring time. We derive the handshaking specification and
production rules for our protocol, and report on the energy and
delay of the circuits in a 65nm process.

Index Terms—mutual exclusion, arbitration, timing, asyn-
chronous

I. INTRODUCTION

The mutual exclusion problem - guaranteeing mutually
exclusive access to a certain shared process among a number
of other competing processes that each request for access -
has been known for decades, and several algorithms have been
proposed to solve this under various models [1]–[3].

Conventionally, the mutual exclusion problem is solved by
instantiating a central server that holds a token which grants
access to the shared resource. When any of the clients request
for use, the server hands out the token to the client, which then
uses the resource and returns the token to the server once it
is done. This process then repeats. Since only one client may
hold the token at any time, mutual exclusion is guaranteed.
There also exist distributed solutions to this problem—for
example using rings [4], [5], or trees of processes [6].

Generally, no assumptions on the behavior of the requesting
processes is assumed in the design of the mutual exclusion
server that handles the whole system. However, in the context
of asynchronous circuits, timing analysis and timing simula-
tions are used to determine performance during the design flow
[7], [8]. These measurements can also inform efforts to further
optimize the design. In this article, we look at an opportunity
to optimize the mutual exclusion process, based on knowledge
of the timing behavior of the requesting processes, and present
a novel technique to achieve the same.

We look at the simple case with a single token server and
two clients making requests to use a shared resource. We show

that if certain bounds on the timing behavior of the clients
are known by the server beforehand, then it can, without an
internal clock and using only the ordering of signal arrivals
from the clients, pre-emptively grant access to one client while
another is still using, and thus reduce the idle time of the
shared resource, potentially by an unbounded amount.

In the following sections, we detail the kinds of timing
constraints that we use in the design of the opportunistic
mutual exclusion circuit, and show how these particular con-
straints can be incorporated into the circuit itself. We then
derive a straightforward implementation of the circuit that
uses three arbiters. Next, we show that there is an alternate
implementation which seemingly uses two arbiters but can in
fact be reduced to a single arbiter. We conclude with SPICE
simulation results and a discussion of potential uses of this
circuit.

II. TIMING FORKS AND ZIGZAGS

In circuit design, there are ways to infer ordering of pairs of
events using a common event that caused them both. This is
particularly interesting in situations where it is possible to infer
the time ordering of two events on two different processes de-
spite there existing no actual communication between the two
processes.These are known as point of divergence constraints.
A common example of this is the setup time constraint in
synchronous logic design, where the data must be valid at
least a certain time before the clock edge arrives.

A simple model of such a point of divergence constraint,
known as a timing fork, is shown in Fig. 1. Suppose A, B
and C are three processes such that an event in B, e1 causes,
directly or indirectly, events e3 (called the head) and e2 (called
the tail) on A and C respectively. Let the time of occurrence
of event ei be ti. Assume that the delay between t3 and t1 is
dA, and that between t2 and t1 is dC , both of which can fall
anywhere within a certain range. Now, if dA is always larger
than dC , we can conclude that:

W = inf(dA − dC)

= inf((t3 − t1)− (t2 − t1))

= inf(t3)− sup(t2) > 0

This kind of constraint regarding the relative time difference
of two event occurrence times is called a timing fork, and the
quantity W , which measures the minimum time separation

Fig. 1. Timing Fork. A simple example of a point of divergence constraint.
Red boxes represent the windows of time during which an event may occur.
Red dots represent a particular realization of the event.

between the two events, is referred to as the weight of the
fork. Note that the ‘minimum separation’ intuition only holds
for positive-weight forks. If the weight of the fork is negative,
then the definition does not change, but the intuition about the
quantity it captures switches to being a ‘maximum separation’.
In addition, the three processes do not have to be distinct.
There can be a degenerate case where A and B, or C and
B, are the same process. The constraint still holds as long
the occurrence times still behave the same way. Note that the
actual times can occur over a range, but the weight of the fork
is calculated based on the upper and lower bounds of these
occurrence times. Now, we can extend this concept by using
multiple timing forks as follows.

Consider the case shown in Fig. 2, where A, B and C are
three different processes. We want to make an absolute deci-
sion on the ordering of events e5 and e6, without information
about the actual ordering of the events that caused them, e1
and e2.

Suppose e1 in process A causes two events e3 and e5, which
can each occur over a range of times such that

t3 − t5 ≥ −W1 (W1 > 0)

thereby forming a timing fork. In other words, the minimum
separation between the occurrence times of the two daughter
events is lower bounded by a number:

inf(t3)− sup(t5) = −W1

Similarly, for process C:

t6 − t4 ≥ W2 > 0,where
inf(t6)− sup(t4) = W2

Note that nothing about this formulation requires events e1
and e5 to be on the same process, only that e5 is caused by
e1, and hence occurs at a later time. Fig. 2 is depicted this
way to tie in better with later sections. The same holds for e2

Fig. 2. Timing Zigzag. Combining two timing forks, with ordering informa-
tion on a pair of events to infer the relative time of events that do not share
the same point of divergence.

and e6. Now, under a particular case, which is when e4 occurs
after e3 (t4 − t3 ≥ 0) and W2 −W1 > 0, we can determine
an ordering of the events e5 and e6 as follows:

(t6 − t5)− (t4 − t3) ≥ W2 −W1

=⇒ (t6 − t5) ≥ W2 −W1

=⇒ t6 − t5 > 0

This type of timing constraint, where combining multiple
timing forks appropriately allows for determining ordering on
events that are not connected by a single point of divergence,
is called a timing zigzag. The quantity W2−W1 is referred to
as the weight of the zigzag. The crucial point to understand is
that there is no common event, no single point of divergence,
that determines the time of events e1 and e2, and that they
are completely independent of each other. In other words, this
case is fundamentally different from a simple timing fork and
cannot be reduced to one. In fact, we did not even assume
an ordering on the events e1 and e2 in our analysis above.
Despite this, there is timing information that is not a simple ”a-
before-b” relation, that can be inferred based on other timing
information.

Further, this method of combination can be easily extended
to create a zigzag with any number of constituent timing
forks. This can lead to significantly more detailed, higher-
order information about the timing of sets of events that are
seemingly unrelated.

In the description that follows, we make, to the best of our
knowledge, the first known use of zigzag causality [9], [10], in
circuit design. In particular, we apply this to solve the classic
mutual exclusion problem.

III. OPPORTUNISTIC MUTUAL EXCLUSION

In the conventional mutual exclusion setup, there is a shared
resource that needs to be used by at most one client at a time,
clients which compete for the use of this resource, and a server,
which holds a token which determines who is allowed to use

the resource. The server hands out the token to one of the
clients that made a request, making a decision arbitrarily. The
client returns the token once it is done using the resource.
When the server receives the token, it can now make the next
decision on which client the resource should be allocated to.
This process repeats, possibly forever.

Consider the scenario shown in Fig. 3, where C1 and C2
are the two processes making requests to a server, S, in order
to use a shared resource (not shown). In the most general
case, we do not assume any a priori knowledge on when each
process is going to request for use, or stop using and release
the shared resource.

In the scenario we describe here, suppose the server had
knowledge of the following:

1) Early Release Time: The time (t3 − t1) prior to the
actual cessation of use of the resource, that C1 informs
the server.

2) Pre-emption Time: The time (t4−t2) prior to requiring
the resource, that C2 sends a request to the server.

3) Link Delay: The delays on the wires between C1, C2
and S.

Once again, the definitions above are actually intervals,
and when we say the server has this knowledge, we mean
that it knows the bounds on these time intervals. With this
information, S can calculate the upper bound, W1 on t3− tre1
and the lower bound W2 on t4 − tr2. If W2 ≥ W1, then there
is something interesting that the server can do. We call this
the asymmetric case, since the complementary bounds on the
times when C2 releases early, and C1 requests preemptively
are not known. If they are known, then we are in the symmetric
case.

Now, suppose C1 is using the resource and C2 places a
request while the resource is still in use. If the request from C2
arrives before the early release, as shown in Fig. 3(a), then the
server cannot ensure mutual exclusion. Since it has no internal
clock, there is no measure of how early the preemptive request
arrived. So, the server must wait for the actual release from C1
to know that the resource is free, and only then grant approval
to C2.

The important physical difference in the channels, as shown
in Fig. 4, is that C1 must have two request wires coming in
to the server, the early (re) and actual (ra), both of which
are raised when requesting the resource. When releasing the
resource, C1 lowers the early wire first, according to the early
release time constraint above to signal that it is ‘almost done’.
Then, when it is finally done with using the resource, it lowers
the actual wire as well.

The interesting case is if the request from C2 arrives after
the early release from C1. In this case, since we know that the
zigzag has positive weight (W2 −W1 ≥ 0), the server knows
that even if it grants the approval immediately, the earliest
time at which the resource will be used is later than the latest
time at which the resource will be released. Hence, it grants
the advance approval, as shown in Fig. 3(b). This results in a
reduction of the time for which the resource is idle, as opposed
to the usual scenario when the server must wait for explicit

information about the end of use of the resource to reach
it. Note that, for checking if this advance approval is legal,
the server does not need to know the relative times between
tr2 and tre1, only the order in which they occurred, voiding
the necessity for an internal clock. We call this opportunistic
mutual exclusion, since the necessary ordering of events that
needs to occur can only be known at runtime. If the interesting
case does occur, the server can ‘opportunistically’ grant access
to the other resource before revoking access from the first one,
without violating the actual mutual exclusion constraint.

The symmetric case is quite similar, with both channels
needing the early and actual request wires, as in Fig. 5. For
this to happen, we need two distinct zigzags to have positive
weight. The two zigzags are not inter-dependent. One relates
the early release time of C1 with the pre-emption time of C2,
and the other relates the early release time of C2 with the
pre-emption time of C1. In effect, each of C1 and C2 have
two independent time variables that they can independently
determine, which may result in zero or more zigzags having
positive weight. In this case, the designer has additional
freedom to decide what would count as a pre-emptive request.
In the asymmetric case, C2 only had one request wire to
raise in order to potentially receive the opportunistic grant.
Here, the server could require that it raise both wires to be
considered for the opportunistic case, or require only one. In
the implementation described later, we assume the former. The
circuit for both cases can be augmented with just a few gates
so that the opportunistic mode can be turned on or off with a
single bit.

Once again, the behavior described above cannot be cap-
tured by a timing fork, since the behavior of C1 and C2 are
not coupled in any way, and a zigzag is needed in order to
obtain any useful timing information.

IV. THREE ARBITER METHOD

The straightforward implementation of the asymmetric case
described in the previous section, requiring only one internal
state variable, is shown below. Refer to Appendix I for details
about the CHP notation.

x = 0;
*[[|C1.re ∧ C1.ra −→ C1.a↑

[] x ∨ C2.r −→ C2.a↑
|];
[¬C2.a −→

[|¬C1.re −→
[|¬C1.ra −→ C1.a↓
[] C2.r −→ C2.a↑; x↑; [¬C1.ra];C1.a↓
|]

[] C2.r −→ [¬C1.ra];C1.a↓
|]

[]¬C1.a −→ [¬C2.r];C2.a↓; x↓
]

]

The first arbitration chooses between the two requesters in
the idle state of the resource and grants approval in the form

Fig. 3. Timing Zigzag. (a) The standard case where the request from the second process arrives too early to exploit the timing zigzag. (b) The interesting
case where the request from the second process arrives in between the early release and actual release of the first process.

Fig. 4. Opportunistic Mutual Exclusion Block - Asymmetric Case

Fig. 5. Opportunistic Mutual Exclusion Block - Symmetric Case

of an acknowledge signal, based on an arbitration. Since this
is the asymmetric case, if C2 was granted access, there is
nothing interesting to be done and the server just waits for
the handshake to be completed and returns to the beginning.
However, if C1 was granted access, then the server enters the
second arbitration. Here, there are three cases: two standard
and one interesting. The two standard ones are:

• C2 requests before the early release.
• C1 finishes using before C2 even requests.

In the first case, we cannot exploit the zigzag since it is
possible that mutual exclusion will be violated if approval
is granted to C2. It is pertinent to remember that the server
does not have any information about ‘how early’ C2 requested
before the early release and thus cannot exploit the zigzag. In
the second case, C1 completes before C2 requests, so there is
nothing interesting to be done, either.

Finally, the interesting case, which the circuit is designed

to exploit, occurs when:

• C2 requests between the early release and actual release
of C1.

In this case, the server grants approval to C2 and only then
completes the handshake with C1, whenever C1 performs the
actual release. The state variable x is used to bypass the
first arbitration whenever approval was granted to C2 in this
manner, so that the handshake can be completed. Once this is
done, the system is back in the quiescent state, and the process
repeats.

In this implementation, three non-deterministic selections
are required, resulting in three arbiters. This can be quite
expensive during realization.

Next we present an alternative method that reduces the
number of arbiters. The handshaking expansion described
initially looks like it would require two arbiters but we show
that it can be reduced to a single arbiter.

V. SINGLE ARBITER METHOD

In the alternate implementation below, we require two state
variables, but only two non-deterministic selections, instead
of three. The second process performs the initial arbitration.
As before, granting approval to C2 first does not result in
any interesting cases. If approval is granted to C1 and C2
requests too early, the handshake with C1 is completed before
proceeding. The purpose of the first process is to complete
the handshake with C1 in parallel with the other operations,
whenever the state variable g is set. If C2 requests between
the early and actual release, then the C1 handshake is allowed
to complete in parallel with approving C2. In essence, this
is a parallel form of the method described earlier, with three
arbiters.

g = 0;
*[[g ∧ ¬C1.ra ∧ ¬C1.re];C1.a↓; g↓]
∥
*[[|¬g ∧ C1.re −→ [C1.ra];C1.a↑;

[| C2.r −→ g↑; [¬g]
[]¬C1.re −→ g↑
|]

[] C2.r −→ C2.a↑; [¬g ∧ ¬C2.r];C2.a↓
|]

]

Now, notice that we can actually rewrite the nested non-
deterministic selections as a single 4-way non-deterministic
selection, with the introduction of a new state variable to
distinguish between the two different ‘modes’ of the selection.
This results in the following version:

g = 0; f = 0;
*[[g ∧ ¬C1.ra ∧ ¬C1.re];C1.a↓; g↓]
∥
*[

[| ¬f ∧ ¬g ∧ C1.re −→ [C1.ra];C1.a↑; f ↑
[] ¬f ∧ C2.r −→ C2.a↑; [¬g ∧ ¬C2.r];C2.a↓
[] f ∧ C2.r −→ g↑; [¬g]; f ↓
[] f ∧ ¬C1.re −→ g↑; f ↓
|]

]

Finally, impelled by the facts that the 4-way arbitration
actually has two two-element sets of disjoint guards and that
the two sets of guards are actually quite similar, we attempt
to decompose this into a single arbiter. If the ‘mode’ of the
arbiter is determined by f , then one guard of the arbiter is
trivial, it is just C2.r. For the other, notice that if the fourth
guard had a ¬g term in conjunction, then the first and fourth
guards could be combined. Observing that g is always low
when entering the ‘f -mode’ of the arbiter, we can see that
adding a ¬g term to this guard is a valid strengthening. After
doing this, the second guard to the single arbiter would reduce
to G = ¬g ∧ (f ⊕ C1.re).

Hence, we can decompose the arbitration in the process to a
simple arbiter that operates in two different modes, as shown
below. This is the final form that we convert to production
rules to implement the circuit.

g = 0; f = 0;
*[[g ∧ ¬C1.ra ∧ ¬C1.re];C1.a↓; g↓]
∥
*[[| G −→ v↑; [¬G]; v↓

[]C2.r −→ u↑; [¬C2.r]; u↓
|]]

∥
*[[¬f ∧ v −→ [C1.ra];C1.a↑; f ↑
[] ¬f ∧ u −→ C2.a↑; [¬g ∧ ¬C2.r];C2.a↓
[] f ∧ u −→ g↑; [¬g]; f ↓
[] f ∧ v −→ g↑; f ↓
]]

It is trivial to check that the 4-way selection is now

deterministic, since u and v are arbiter outputs and only one
of them can be high at any time.

VI. SYMMETRIC CASE

The symmetric case, described briefly earlier, occurs when
both zigzags have positive weights, i.e. if there is a possibility
of C2 requesting in between early and actual release of C1,
and, a possibility of C1 requesting in between early and actual
release of C2, and mutual exclusion can be guaranteed in both
cases. The resulting circuit has the following handshake expan-
sion, which can be derived quite easily from the asymmetric
case. The 6-way non-deterministic selection that exists now is
an extension of the 4-way selection before, with the additional
two cases being the symmetric counterpart of the ‘f -mode’.

g1 = 0; g2 = 0; f 1 = 0; f 2 = 0;
*[[g1 ∧ ¬C1.ra ∧ ¬C1.re];C1.a↓; g1↓]
∥
*[[g2 ∧ ¬C2.ra ∧ ¬C2.re];C2.a↓; g2↓]
∥
*[

[| ¬f 1 ∧ ¬f 2 ∧ ¬g1 ∧ C1.re −→ [C1.ra];C1.a↑; f 1↑
[] ¬f 1 ∧ ¬f 2 ∧ ¬g1 ∧ C2.re −→ [C2.ra];C2.a↑; f 2↑
[] f 1 ∧ ¬f 2 ∧ ¬g2 ∧ C2.r −→ g1↑; [¬g1]; f 1↓
[] f 1 ∧ ¬f 2 ∧ ¬C1.re −→ g1↑; f 1↓
[] ¬f 1 ∧ f 2 ∧ ¬g1 ∧ C1.r −→ g2↑; [¬g2]; f 2↓
[] ¬f 1 ∧ f 2 ∧ ¬C2.re −→ g2↑; f 2↓
|]

]

As before, this can be decomposed into a single arbiter
operating in 3 modes, determined by f1 and f2. We use the
shorthand Cx .r = Cx .ra ∧Cx .re in the third and fifth guards.

VII. CIRCUIT DESIGN AND EVALUATION

We realized the final circuits described above, in the TSMC
65nm technology node, and performed simulations using Xyce
[11]. All simulations were done at the schematic level. We
include energy metrics for the sake of completeness. The
resulting design for the asymmetric case consumed an energy
of 133fJ for a sequence of two handshakes, one on each
channel. The total leakage power was 876nW. We measured
the response delays on the C1 and C2 ports, with pulse sources
generating requests. Under this test condition, the asymmetric
circuit exhibited a 330ps delay on the C2 port, and a 910ps
delay on the C1 port. The difference is due to the asymmetry
in the circuit and channel models. The sequence of transitions
for C1 is longer than C2, due to the additional computation to
setup the circuit to respond to a possible early request from
C2.

The corresponding energy per sequence of handshakes and
leakage power of the circuit for the symmetric case were
201fJ, and 1.61µW respectively. The delays on both ports were
1.05ns, which, as expected, are slightly longer due to the more
complex circuit.

The SPICE simulation results are shown in Figs. 6 and 7.
Only the relevant input and output variables are shown, with

Fig. 6. Waveforms from a SPICE simulation of the circuit for the asymmetric case. Requests, generated by the environment, are shown in black. Acknowledges,
generated by the circuit, are shown in red. In the case to the left of the dotted line, both requests on C1 are asserted, followed by the corresponding acknowledge.
Then, the early request of C1 is deasserted (top), and the C2 request (bottom) is asserted before the actual request of C1 (middle) is deasserted, resulting in the
advance approval described above. In the case to the right of the dotted line, both requests on C1 are asserted, followed by the corresponding acknowledge.
Then, before the early request of C1 can be deasserted, the C2 request is asserted. Now, the server must wait for C1 to fully complete before acknowledging
C2. 133fJ was consumed over one sequence of handshakes (30ns - 45ns).

the inputs to the circuits (requests) in black and the outputs
generated by the circuit (acknowledges) in red. The periods
where the two acknowledges overlap are the latency reductions
that are obtained by exploiting the timing zigzag.

Though there is an added delay of about 600ps in the
asymmetric case, the expectation when using this circuit is
that the interesting case, where the zigzag can be exploited,
occurs frequently. The weight of the zigzag, W2 − W1, is
actually unbounded, since it is determined by the C1 and
C2 processes providing the server information about their
usage time of the shared resource. This could be orders of
magnitude larger than the delay of this circuit, which can
result in significant latency benefits. Comparing the symmetric
circuit to the baseline 330ps delay, we see that ∼700ps of
additional delay is incurred.

These delays can be used to determine if the overhead of
the opportunistic mutual exclusion mechanism is offset by the
gains obtained by exploiting the timing zigzag using either the
symmetric or asymmetric case.

VIII. DISCUSSION

The circuit described in this article is significantly more
complex than a simple arbiter that handles mutual exclusion
between two clients. However, in cases where certain timing

information is known, the additional hardware cost is worth
the reduction in idle time of the critical resource.

The final reduction to the form that uses only one arbiter has
one disadvantage that is not present in the cases with three/two
arbiters. Decomposing the 4-way non-deterministic selection
into a single arbiter is not without a cost. When using an arbiter
with guards that are modified between one use and the next,
there is a possibility of instability during the switching. To see
this, consider the following: the switching of modes (change of
guards) in the arbiter must be caused by a transition on some
control variable which, in this case, is f . Since it appears in
more than one process, f is a now a shared variable. In the
conventional use of shared variables, there is communication
between two processes to ensure that the two do not attempt to
modify/read this variable at the same time. This ensures that
the variable has the correct value when a process accesses
it. However, in our circuit, once f is asserted, there is no
possible transition in the arbiter that can be sent back to the
main process to acknowledge the fact that the change of guard
has been completed. The arbiter only has three possible output
variables, u, v and G. But none of them have uniquely defined
values at the end of the f transition, since they all depend on
the values of the external variables directly. Hence, the main

Fig. 7. Waveforms from a SPICE simulation of the circuit for the symmetric case. Requests, generated by the environment, are shown in black. Acknowledges,
generated by the circuit, are shown in red. To the left of the dotted line is the case described earlier in the asymmetric circuit, with C2 receiving the opportunistic
grant. To the right is its symmetric counterpart, where C1 receives the opportunistic grant. 201fJ was consumed over one sequence of handshakes (30ns -
45ns).

process cannot know whether the change of guard has been
successfully completed, without knowing the delay of the gates
in the arbiter.

As explained above, this instability is actually fundamental
when ‘overloading’ an arbiter to perform multiple arbitrations
in sequence. Though this is a problem in the simulation
scenario where all gates delays are randomized, in practice,
this can be resolved by an elementary timing assumption:
requiring that the gate that implements the boolean function
for G be faster than the sequence of transitions from f ↑ to
either of the following f ↓ transitions—both of which include a
change of the handshake variables in the opportunistic mutual
exclusion circuit followed by a response from the environment.
Through the use of additional state variables, this assumption
can be reduced to requiring that a single inverter be faster
than a few more complex gates, which is easily achievable
in practice. Our evaluation in Section VII corresponds to a
circuit that includes these additional state variables as part of
the overhead reported.

Finally, since we are already making use of timing con-
straints in order to even decide whether to use this circuit,
this additional local constraint, which can be guaranteed by
design, does not pose significant restriction.

IX. CONCLUSION

In this article, we presented a novel method to exploit
certain subtle timing constraints in order to design mutual
exclusion servers. We showed that these servers can reduce
the idle time of a shared resource by opportunistically granting
access to more than one client at a time, based on knowledge

of the expected time when the clients will stop and start using
the resource. We described handshaking expansions for the
processes, implemented the same in the TSMC 65nm node
and evaluated the performance. Finally, we discussed places
where using this circuit is actually warranted, its advantages
and possible drawbacks. All of this demonstrates the value of
using the notion of zigzag causality, originally introduced in
[9], in circuit design. To our knowledge, this is the first work
to do so.

APPENDIX I

Communicating Hardware Processes (CHP) is a hardware
description language used to describe clockless circuits derived
from C.A.R. Hoare’s Communicating Sequential Processes
(CSP) [12]. A full description of CHP and its semantics
can be found in [13]. Below is an informal description of
a subset of that notation that we use, listed in descending
precedence, replicated from [14]. For a complete discussion of
the interaction between the handshake expansions of channel
actions like send and receive and the composition operators,
see [15].

A Channel X consists of a request X.r and either an
acknowledge X.a or enable X.e. The acknowledge and enable
serve the same purpose, but have inverted sense. With these
signals, a channel implements a network protocol to transmit
data from one QDI process to another.

• Skip: skip does nothing and continues to the next com-
mand.

• Dataless Assignment: n↑ sets the node n to true and
n↓ sets it to false .

• Probe: X ? is used determine if the channel is ready
for a receive action, returning the value waiting on the
request X .r without executing the receive. X ! is used
to determine if the channel is ready for a send action,
expanding into either ¬X .a given an acknowledge or
X .e given an enable. For dataless channels, the syntax is
simplified to X .

• Sequential Composition: S ;T executes the programs S
followed by T .

• Parallel Composition: S||T executes the programs S
and T in any order.

• Deterministic Selection: [G1 → S1[]...[]Gn → Sn]
where G

i
, called a guard, is a dataless expression and S

i

is a program. The selection waits until one of the guards,
Gi , evaluates to true , then executes the corresponding
program, S

i
. The guards must be stable and mutually ex-

clusive. The notation [G] is shorthand for [G → skip],
which corresponds to waiting for G to become true.

• Non-Deterministic Selection: [|G1 → S1[]...[]Gn →
Sn|] is the same as Deterministic Selection except that
the guards do not have to be stable or mutually exclusive.
If two or more evaluate to true simultaneously, then one
is picked arbitrarily (not necessarily random). In a circuit,
this choice is implemented by a collection of arbiters
and synchronizers. When two or more guards evaluate
to true simultaneously, it can cause a metastable state
in the arbiter or synchronizer. This metastable state then
resolves non-deterministically, giving the grant to one of
the branches of the selection statement. Therefore, the
digital model of this selection statement is also non-
deterministic in such a condition.

• Repetition: *[G1 → S1[]...[]Gn → Sn] is similar to
the selection statements. However, the action is repeated
until no guard evaluates to true . *[S] is shorthand for
[true → S].

APPENDIX II

The CMOS-implementable production rules set for the
server process (asymmetric case) is shown below. A pair
of production rules jointly define the combinational/state-
holding gate that implements that variable. Variables with
an underscore-prefix are typically used to represent inverted
forms of variables. Combinational gates are labeled with (*)
and hence the opposing production rule for that variable is
omitted. The production rules for u, v were implemented using
an arbiter.

¬Reset → Reset↑ (*)
¬ Reset ∨ ¬C1.re → C1.re↑ (*)

¬ureg1 → ureg1↑ (*)
¬ureg2 → ureg2↑ (*)
¬vreg1 → vreg1↑ (*)
¬vreg2 → vreg2↑ (*)

ureg1 ∧ ureg2 ∧ vreg1 ∧ vreg2 → reg↓ (*)

¬reg ∧ ¬g ∧
((¬ f ∧ ¬C1.re) ∨ (¬f ∧ ¬ C1.re)) → Garb↑
Reset ∨ reg ∧ (vreg1 ∨ vreg2) → Garb↓

u, v = Arbiter(Garb, C2.r)

¬u → u↑ (*)
¬v → v↑ (*)

(¬f ∧ ¬C1.a ∧ ¬g) → greg↑
C1.a ∧ vreg1 ∧ reg → greg↓
¬ greg → greg↑ (*)

¬ u ∧ ¬ f ∧ ¬reg → ureg1↑
Reset ∨ (reg ∧ g ∧ f ∧ C1.a) → ureg1↓

¬ v ∧ ¬ f ∧ ¬reg → vreg1↑
Reset ∨ (reg ∧ f ∧ v) → vreg1↓

¬ u ∧ ¬f ∧ ¬reg → ureg2↑
Reset ∨ (reg ∧ g ∧ u) → ureg2↓

¬ v ∧ ¬f ∧ ¬reg ∧ ¬greg → vreg2↑
Reset ∨ (reg ∧ C1.a ∧ f ∧ v) → vreg2↓

¬ Reset ∨ (¬C1.a ∧ ¬f) → g↑
((reg ∧ ureg1) ∨ greg) ∧ f → g↓
¬ g → g↑ (*)

¬ Reset ∨
((¬ ureg1 ∧ ¬C1.a) ∨ ¬ vreg1) ∧ ¬ g → f ↑
reg ∧ vreg2 ∧ C1.a → f ↓
¬ f → f ↑
Reset ∨ (g ∧ f) → f ↓

¬ Reset ∨ (¬vreg2 ∧
(¬ ureg1 ∨ ¬ greg) ∧ ¬C1.ra ∧ ¬C1.re) → C1.a↑
greg ∧ C1.ra ∧ C1.re ∧ vreg2 ∧ reg → C1.a↓
¬ C1.re ∧ ¬ C1.a → C1.a↑
Reset ∨ (C1.re ∧ C1.a) → C1.a↓

¬C2.r ∧ ¬ureg2 → C2.a↑
reg ∧ ureg2 ∧ C2.r → C2.a↓
¬ C2.a → C2.a↑ (*)

ACKNOWLEDGMENTS

This work was supported in part by DARPA IDEA grant
FA8650-18-2-7850, and in part by DARPA POSH grant
HR001117S0054-FP-042. Yoram Moses is the Israel Pollak
academic chair at the Technion, and was supported in part by
the BSF grant 2015820 which is coincident with NSF-BSF
grant CCF 1617945.

REFERENCES

[1] L. Lamport, “A fast mutual exclusion algorithm,” ACM Transactions on
Computer Systems (TOCS), vol. 5, no. 1, pp. 1–11, 1987.

[2] M. Raynal and D. Beeson, Algorithms for mutual exclusion. MIT press,
1986.

[3] E. W. Dijkstra, “Solution of a problem in concurrent programming
control,” Commun. ACM, vol. 8, p. 569, sep 1965.

[4] A. J. Martin, “Distributed mutual exclusion on a ring of processes,”
Science of Computer Programming, vol. 5, pp. 265–276, 1985.

[5] A. J. Martin, “Asynchronous circuits for token-ring mutual exclusion,”
1990.

[6] K. Raymond, “A tree-based algorithm for distributed mutual exclusion,”
ACM Transactions on Computer Systems (TOCS), vol. 7, no. 1, pp. 61–
77, 1989.

[7] W. Hua and R. Manohar, “Exact timing analysis for asynchronous
systems,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 1, pp. 203–216, 2017.

[8] W. Hua, Y.-S. Lu, K. Pingali, and R. Manohar, “Cyclone: A static
timing and power engine for asynchronous circuits,” in 2020 26th
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pp. 11–19, IEEE, 2020.

[9] A. Dan, R. Manohar, and Y. Moses, “On using time without clocks via
zigzag causality,” in Proceedings of the ACM Symposium on Principles
of Distributed Computing, pp. 241–250, 2017.

[10] R. Manohar and Y. Moses, “Timed signalling processes,” in IEEE
International Symposium on Asynchronous Circuits and Systems, IEEE,
2023.

[11] E. Keiter, T. Russo, R. Schiek, H. Thornquist, T. Mei, J. Verley,
K. Aadithya, and J. Schickling, “Xyce parallel electronic simulator
users’ guide version 7.6.,” tech. rep., Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States), 2022.

[12] C. A. R. Hoare, “Communicating sequential processes,” Communica-
tions of the ACM, vol. 21, no. 8, pp. 666–677, 1978.

[13] A. J. Martin, “Synthesis of asynchronous vlsi circuits,” 1991.
[14] N. Bingham and R. Manohar, “A systematic approach for arbitration

expressions,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 67, no. 12, pp. 4960–4969, 2020.

[15] R. Manohar, “An analysis of reshuffled handshaking expansions,” in
Proceedings Seventh International Symposium on Asynchronous Circuits
and Systems. ASYNC 2001, pp. 96–105, IEEE, 2001.

