
1

An Open-Source EDA flow for Asynchronous Logic
Samira Ataei, Wenmian Hua, Yihang Yang, Rajit Manohar Computer Systems Lab

Yale University
New Haven, CT, USA

Yi-Shan Lu, Jiayuan He, Sepideh Maleki, Keshav Pingali Department of Computer
Science

University of Texas at Austin
Austin, TX, USA

Abstract—We present an open-source EDA flow for
digital asynchronous circuits. One of the unique aspects
of the flow is that it is designed so that it can support
many different asynchronous circuit families in a unified
framework, enabling the design of circuits that can lever-
age multiple circuit families and mix asynchronous and
synchronous logic. The tools we are developing are built on
top of the Galois parallel programming framework, which
provides a new way to express algorithms that enables it
to exploit irregular parallelism.

Index Terms—asynchronous circuits; open-source EDA;
parallel EDA tools

I. INTRODUCTION

Scalable computer systems are designed as a
collection of modular components that communi-
cate through well-defined interfaces. The interfaces
must be robust to delays and uncertainty in the
physical implementation of communication. This
view applies to computer systems at many levels of
abstraction. The Internet is a collection of commu-
nicating computers with message-passing through
the Internet protocol. A modern datacenter is a
collection of servers that communicate via message-
passing over commodity network hardware. Even
large software systems consist of a collection of
modules that use well-defined application program-
ming interfaces (APIs) to communicate. Almost all
computer systems disciplines have made the wise
choice to partition their problem into components
that communicate via protocols that are independent
of their physical realization—such as timing, energy,
or size.

The research described in this paper was supported by the DARPA
IDEA program under contract FA8650-18-2-7850.

However, in current chip designs, this mod-
ular approach is abandoned in favor of global
synchrony. A global synchronization signal (the
“clock”) dictates the time budget for every step
of the computation—regardless of what is being
computed.

Although this clocked design paradigm dominates
the design of computers today, engineers are strug-
gling to preserve the fiction of simultaneity required
by the clock, even within an individual chip. This
struggle is an inevitable result of advancing tech-
nology. As transistors get smaller and faster, the
delay of communication over wires dominates the
cost of local computation with transistors. Such
progress renders the clocked paradigm a poorer
and poorer abstraction for chip design. Modern
application-specific integrated chips (ASICs) are de-
signed as a collection of small clocked “islands” that
communicate via interfaces that break the clocking
abstraction.

To address this challenge, we are creating a
collection of open-source electronic design automa-
tion (EDA) tools that isolate the designer from the
details of the physical implementation technology,
especially when it comes to delays and timing
uncertainty.1 The approach is based on an asyn-
chronous, modular and hierarchical design method-
ology for complex chips, and it permits component
re-use from one technology to another with little
or no modification. While individual modules of
the chip can be clocked, the overall system uses
an asynchronous integration approach to achieve

1It is not possible to entirely decouple the logical correctness of a
design from timing to create completely delay-insensitive circuits [1],
[2]. However, it is possible to make a very mild and local timing
assumption that is easy to satisfy in practice [3].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3051334

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

modular composition. Hence, the EDA flow being
developed supports a combination of timing styles
in an integrated framework.

The algorithmic complexity of some of the im-
portant steps in an EDA flow are higher when
analyzing asynchronous circuits, which can have a
major impact on the overall runtime of the flow.
To reduce the turn-around time for designs, we
are implementing parallel versions of the key al-
gorithms in the tool chain, using the Galois system
described in Section III. The Galois system supports
parallelization of irregular algorithms such as those
in which the key data structures are graphs and
hyper-graphs. Since circuits can be viewed as hyper-
graphs, the Galois system is well-suited for this
parallelization effort.

II. ASYNCHRONOUS LOGIC: A UNIFIED
APPROACH

There are a large number of different asyn-
chronous logic families. Historically, each of these
families were developed by different research
groups, with differing terminology and design
methodologies. Note that this is not that differ-
ent from synchronous logic; any textbook on syn-
chronous digital logic will describe a large number
of options for synchronous design such as pseudo-
nMOS logic, pre-charge logic, dual-rail domino
logic, and self-resetting logic to name just a few
options [4]. In addition, many circuit options for
flip-flops and latches are also described, and the
merits of each discussed. Heterogeneity of this
nature is difficult to incorporate into any automated
design flow.

Instead, over the years, the mainstream industrial-
strength ASIC flow that is provided by the major
EDA vendors converged on a core synchronous
EDA flow that supported a limited set of op-
tions. Today those options include flip-flop and
(some) latch-based designs with excellent support
for single-clock designs, and limited support for
heterochronous designs. Circuit options were ig-
nored in favor of standard-cell libraries with hand-
optimized circuit layout for individual cells (an
individual CMOS gate or a small collection of
gates). This push was driven by industry, and re-
sulted in standardization of what is viewed as the
commercially supported ASIC flow today. Standard-
ization led to interoperability, and a rich intellectual

property (IP) ecosystem. Modern ASIC design is
as much about system integration as it is about
writing the detailed hardware description language
that describes the chip.

The same cannot be said about asynchronous
logic. The convergence that occurred in the syn-
chronous domain did not occur in the asynchronous
logic domain, and hence the EDA landscape for
asynchronous logic is quite bleak in comparison.
While there have been many academic tools de-
veloped for individual steps needed to go from a
high-level description of an asynchronous design
to a chip implementation, only a small number
of complete flows have been developed. Example
flows developed for asynchronous design include
Haste [5] and Balsa [6], and more recently Pro-
teus [7]. Each of these flows supports a restricted
style of asynchronous design, and uses commercial
synchronous tools for physical design automation.
Since the synchronous physical design tools do not
have a correct view of timing for asynchronous
logic, conservative work-arounds are used to con-
strain the design in order to ensure a valid imple-
mentation. This approach has also been adopted by
many academic groups to leverage the investment
made by the commercial EDA industry.

A. A unified approach to asynchronous logic

Instead of developing an asynchronous logic flow
that only supports a particular flavor of asyn-
chronous logic (a survey of some approaches can
be found in [8], [9], [10]), the approach we adopt
tackles the problem of heterogeneity of design styles
and circuit approaches.

1) Commonalities: Since one of the goals of
adopting an asynchronous approach is to create a
modular design style, all the differing approaches
generally share the characteristic that a design is
partitioned into a collection of concurrently oper-
ating hardware modules (we call them processes,
adopting the term from the concurrent computing
literature) that communicate with each other using
well-defined protocols on wire bundles (we call
the bundles channels). Channels are used both for
exchanging information as well as synchronization
between processes. To support this abstraction, we
use a hardware specification notation called CHP
(for Communicating Hardware Processes), an ex-
tension of Hoare’s CSP language [11]. This is the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3051334

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

combinational
logic

gc

min delay path

max delay path

D
CK

Q
CK

Fig. 1: Hold-time point-of-divergence constraint for
generated clock gc.

highest level of abstraction, and corresponds to a
behavioral description of the asynchronous chip.
A CHP description can be translated into different
asynchronous logic families.

2) Differences: The origin of a large number of
differences between varying approaches to asyn-
chronous design stems from differing assumptions
about timing. Purely delay-insensitive circuits make
no assumptions about the delays of gates or wires.
This is an extremely robust approach, and requires at
least two-output gates to be expressive enough [12].
No timing constraints have to be specified in this
case. Quasi delay-insensitive circuits and speed-
independent circuits require a timing assumption
called the isochronic fork [2], which translates to
a wire delay versus path delay assumption [3].
Bundled-data communication protocols require one
wire (the request) to be slower than the data wires.

Even though there are a large range of timing
requirements, many of them can be expressed using
a generalization of two approaches to specifying
timing constraints. The first is the approach used by
synchronous timers to express hold time constraints
for generated clocks. If a signal gc is a generated
clock, and it is connected to two flip-flops, then
the hold time constraint for the generated clock is
a “point of divergence” constraint, where—starting
from a root point—the maximum delay through
one path has to be slower than the minimum delay
through another path (see Figure 1). If the actual
delay values are known, then .sdc constraints like
set_min_delay and set_max_delay can be
used to constrain the maximum and minimum delay
on two paths so that they are ordered as required by
the hold time constraint [13].

A second approach used by the asynchronous de-
sign community is generalized relative timing [14].
In this approach, constraints are specified on sig-
nal transition events. Hence, a point-of-divergence

constraint would be expressed by using gc↑ as
the anchor event, and then using signal transitions
at the input to the flip-flop from Figure 1. The
challenge with using events (unlike paths in the
synchronous case) is that events might have data-
dependent occurrences. Also, if a signal can have
switching hazards, it might result in more than one
event corresponding to the change in the point of
divergence.

To address these issues, we introduce a general
version of both these notions that we call timing
forks. A timing fork resembles a point-of-divergence
constraint, except that it need not be a point of
divergence. A timing fork a+ : b- < c+ is a
constraint that specifies a error predicate. In any
execution of the circuit, if the sequence a+ followed
by c+ followed by b- occurs without an intervening
a+, then the constraint is violated. This timing fork
is based on recent research in the distributed systems
literature, that argues that events can be ordered
only if there is a visible set of timing forks [15].
For isochronic forks, we need a notion of the near
and far end of a wire; we augment the syntax
of timing forks so that we can specify an input
rather than the output of a gate. It should be clear
that timing forks can express point-of-divergence
constraints in a straightforward fashion. What is less
obvious is that even when there isn’t a local point-
of-divergence, one must exist at some point in the
execution history in the absence of any absolute
notion of time [15].

Bundled data asynchronous communication uses
a request line and a data bundle, where the data
bundle signals have to be stable once the request
goes high in the most straightforward version of
the protocol. The communication is initiated by
control logic; suppose that c goes high to initiate
the communication, the request signal is req, and
di is one of the data signals. The timing constraint
would be written c+ : di < req+. Note that a
scenario where di does not change is also permitted
by the meaning of a timing fork. We distinguish
between multiple uses of the same set of bundled
data wires because c+ will occur between each use
of the wires.

The synchronous timing constraint shown in Fig-
ure 1 can be expressed using this notation in the
following way: “gc+ : FF.CK+ < FF.D”. This
states that any changes in the D pin of FF must
occur after the CK pin goes high, where FF is the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3051334

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

instance name of the flip-flop on the right hand side
in Figure 1.

Since our timing constraints can specify both
synchronous and asynchronous timing constraints,
the flow supports a design with a mixture of syn-
chronous and asynchronous components. In partic-
ular, timing forks are sufficiently expressive to de-
scribe the timing constraints needed for quasi delay-
insensitive circuits, GasP pipelines [16], bundled-
data communication, and high-speed transition sig-
naling pipelines [17] to name a few circuit families.

B. The ACT framework
The flow we have developed includes a de-

sign language called ACT (for asynchronous circuit
toolkit). ACT is a hierarchical design language that
includes communication channels and encoded data
values as first-class objects. The language supports
representing circuits at multiple levels of abstrac-
tion, including CHP, gate-level, and transistor-level
descriptions. ACT is strongly typed, and the type
system is used to track and specify many design
constraints that traditionally are externally specified
in commercial flows (e.g. using .sdc files). Timing
forks can be included as part of the logic specifica-
tion.

By using an integrated language that can be used
at multiple levels of abstraction, we preserve the
relationships between different levels of abstraction
in the design throughout the design flow. These
relationships are captured using ACT’s type sys-
tem. Timing constraints between modules can be
specified in the type-definition of communication
channels—i.e. in the interface specification captured
by the type signature of a component. Design tools
can be viewed as transformations in the ACT frame-
work. For example, logic synthesis elaborates a
CHP-level description of a module into a gate-level
description of the same module without changing
its interface. Hence, constraints generated by logic
synthesis are made available to the rest of the flow
as part of the ACT language, and hence are visible
to both timing analysis and place-and-route tools.

The history of this language can be traced to
the MiniMIPS project at Caltech (1994–1999),
where a simplified version of ACT was developed
by Manohar to manage the design complexity of
the MiniMIPS asynchronous processor design [18].
This language, called CAST (for Caltech Asyn-
chronous Synthesis Tools), was used to implement

a microprocessor at the gate level of abstraction.
This language was used both by Manohar’s group
at Cornell as well as a startup company (Fulcrum
Microsystems). CAST continued to evolve at Ful-
crum Microsystems, which was eventually acquired
by Intel in 2012; as part of their development,
Fulcrum also developed the Proteus flow [7]. The
ACT language was created in 2005 as an evolution
of CAST, and to overcome some of its limitations.
This language was also used by Achronix Semi-
conductor, and to develop a number of chips at
Cornell and Yale. An open-source version of this
early version of ACT was also released [19]; these
early versions of ACT were only designed to support
quasi delay-insensitive asynchronous circuits.

The current ACT language [20] is the result of
an evolution over almost three decades of research
in asynchronous design grounded in the implemen-
tation of over a dozen asynchronous VLSI chips
ranging in complexity from 0.5M transistors [21] to
5.4B transistors [22], and in technologies ranging
from 0.6µm CMOS to 28nm CMOS. It is general
enough to be able to express a wide range of
asynchronous logic families, and is the basis for the
open-source EDA flow described in Section IV.

C. Keeping designs open
Our implementation of the ACT framework in-

cludes a number of configuration files. We have par-
titioned these files into two disjoint sets: technology-
independent, and technology-specific. The infor-
mation in the technology-specific files correspond
to items that may be covered by non-disclosure
agreements with foundries, and thus may not be
distributed without the appropriate agreements in
place. However, the goal is to ensure that the vast
majority of the design can be distributed without
reference to the details of the underlying technology.

Hence, while some of our tools cannot oper-
ate without detailed information from the foundry,
the original logical design specified in the ACT
framework can be distributed without any embedded
foundry-specific information because this informa-
tion is isolated to an input configuration file.

D. Integrating synchronous logic and other tools
The ACT tools are focused on supporting asyn-

chronous logic families. However, we expect that
a complex system would require integration with

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3051334

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

other logic styles—in particular, synchronous logic.
Since commercial EDA tools provide outstanding
support for design styles commonly used by indus-
try, we do not directly target synchronous logic in
the ACT framework. Instead, we provide support for
importing a design as a Verilog netlist. Importing
synchronous logic or asynchronous logic from other
flows into the ACT framework also requires that
timing constraints for imported signals be specified
using timing forks.

Module-level integration is the most straightfor-
ward way to import a Verilog netlist; this also
permits a designer from maximizing the use of
mainstream tools. Our timing analysis engine will
determine that the synchronous logic and asyn-
chronous logic are in different timing domains [23],
and simply report timing for the different compo-
nents separately. This is analogous to the scenario of
an unrelated clock domain crossing that can occur
in conventional EDA tools.

Asynchronous logic generated by any other ap-
proach can also be imported as long as the design
is specified as a Verilog netlist, and the required
timing constraints specified as timing forks. The
ACT language also supports direct specification of
logic using gates specified as pull-up and pull-
down networks, bypassing the CHP level of circuit
description and the Verilog import process.

III. PARALLELISM: THE GALOIS FRAMEWORK

Reducing the turn-around time of this design flow
without sacrificing quality of results is critical for
future designs. We believe this goal can be achieved
by parallelizing the core EDA algorithms. Since
circuits can be viewed abstractly as graphs and
hyper-graphs, a system for supporting the design
and implementation of a parallel EDA tool-chain
must have the following characteristics.

• It must support clean abstractions for reasoning
about and expressing the available parallelism
in graph (and hyper-graph) algorithms.

• It must hide parallelization details such as syn-
chronization from EDA algorithm designers.

• It must be scalable; as long as the algorithm
has sufficient parallelism, performance should
improve if more cores are used.

A. Operator formulation of algorithms
A clean abstraction for expressing parallelism

in graph algorithms is the operator formulation,

d b
a

c

: neighborhood

v : active node

Fig. 2: Operator view of algorithms in Galois.

a data-centric abstraction in which algorithms are
described as a composition of a local view and a
global view of the computation.

The local view is described by an operator, which
is a graph update rule applied to an active node in
the graph (some algorithms have active edges). Each
operator application, called an activity or action,
reads and writes a small region of the graph around
the active node, called the neighborhood of that
activity. Figure 2 shows active nodes as filled dots,
and neighborhoods as clouds surrounding active
nodes, for a generic algorithm.

An active node becomes inactive once the activity
is completed. Morph operators can modify the graph
structure of the neighborhood by adding and re-
moving nodes and edges. And-inverter graph (AIG)
rewriting [24] deploys morph operators. Label com-
putation operators, in contrast, only update labels
on nodes and edges without changing the graph
structure. Field programmable gate array (FPGA)
routing [25], formulated as a single-source shortest
path problem (SSSP) within a routing resource
graph, uses label computation operators.

The global view of a graph algorithm is cap-
tured by the location of active nodes and the
order in which activities must appear to be per-
formed. Topology-driven algorithms make a number
of sweeps over the graph until some convergence
criterion is met, e.g., the Bellman-Ford SSSP algo-
rithm. Data-driven algorithms begin with an initial
set of active nodes, and other nodes may become
active on the fly when activities are executed. They
terminate when there are no more active nodes.
Dijkstra’s SSSP algorithm is a data-driven algo-
rithm. The second dimension of the global view of
algorithms is ordering [26]. Activities in unordered

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3051334

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

algorithms such as SSSP can be performed in any
order without violating program semantics, although
some orders may be more efficient than others.

Parallelism can be exploited by processing ac-
tive nodes in parallel, subject to neighborhood
and ordering constraints. The resulting paral-
lelism is called amorphous data-parallelism. It is
a generalization of the standard notion of data-
parallelism [27].

B. Galois system

The Galois system implements this data-centric
programming model (see details in [28]). Appli-
cation programmers write programs in sequential
C++, using certain programming patterns to high-
light opportunities for exploiting amorphous data-
parallelism. The Galois system provides a library
of concurrent data structures, such as parallel graph
and work-list implementations, and a runtime sys-
tem. The data structures and runtime system ensure
that each activity appears to execute atomically. In
this way, the Galois system encapsulates paralleliza-
tion details and realizes performance scalability at
the same time.

The Galois system has been used to implement
parallel programs for many problem domains in-
cluding finite-element simulations, n-body meth-
ods, graph analytics, intrusion detection in net-
works [29], FPGA routing [25], and AIG rewrit-
ing [24].

IV. THE OPEN-SOURCE FLOW

The key steps of the design flow we have devel-
oped are:

• Design elaboration/expansion, which expands
the design and customizes it based on param-
eters specified by the user [20];

• Technology mapping and gate generation,
which identifies the unique gates needed to im-
plement the asynchronous circuit and generates
the layout for the cells, if a new gate is found
in the design [30], [31];

• Static timing analysis, which implements the
asynchronous equivalent of timing analysis, de-
termines the performance/power of the design,
and checks any timing constraints needed for
correctness [31];

• Design partitioning and floor-planning;

Design

Expanded
design

Technology
mapping

New cell
generation

Characterizer

Placement

Asynchronous static
timing engine

Routing

Floorplan

Layout
finishing

.lib

.act

.spice

.lef

.rect
.act

.act .def

.def

.gds

Layout editor

.lef

.gds

.v

.v

.def

.spef .act

translation to
proprietary
commands

.def

cell layout

Fig. 3: Design flow for asynchronous logic.

• Asynchronous timing-driven placement [32],
[33];

• Timing-driven global routing [34], followed
by detailed routing to complete the physical
implementation.

The rest of the steps are standard, including insert-
ing fill and adding the pads and seal ring. The flow
is summarized in Figure 3. To inter operate with
commercial tools, at key steps we can import/export
designs using standard formats such as a Verilog
netlist, SPICE netlist, and LEF/DEF. We also accept
parasitic information via SPEF files, and timing
information using the .lib format. All the tools—
both those under development and those ready for
use—will be distributed at [35].

A. Timing and Power Analysis

We have implemented a static timing analysis
engine for asynchronous logic. Since asynchronous
logic might have non-standard gates, we also im-
plemented a cell characterization engine that uses
SPICE simulations to create .lib files for individ-
ual gates. The characterizer computes both delay
and power tables for the gates.

Timing is one of the biggest differences between
developing an asynchronous EDA flow and a syn-
chronous EDA flow. Asynchronous timing has to
handle cyclic circuit structures. Our timing analysis
flow includes the following major steps: (i) creating
an event-based timing graph for the asynchronous

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3051334

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

TABLE I: Runtime of static timing analysis im-
plemented using the Galois framework on a 56-
core Intel Xeon server. The numbers in parentheses
specify the number of threads used to obtain the best
runtime. “bd203*” is a bundled-data sample design;
the others are heavily pipelined and de-synchronized
versions of their synchronous counterparts.

Name #Pins Seq (s) Best(#thr) (s) Speedup
bd203* 495 0.03 0.03 (1) 1.0
tv80-a 315,219 65.5 12.22 (42) 5.36

ac97ctrl-a 650,709 102.82 16.59 (28) 6.20
usbfunct-a 798,895 57.96 9.41 (42) 6.16
s38584-a 807,903 51.10 8.88 (35) 5.76
aescore-a 1,017,817 95.38 12.38 (42) 7.70
vgalcd-a 5,689,435 2,889.26 145.18 (56) 19.90

design from a gate-level representation; (ii) esti-
mating steady-state slew rates in cyclic circuits;
(iii) analyzing the cycles in the event-based rep-
resentation, and computing the critical cycle ratio
which is a good metric of performance for the
asynchronous circuit; (iv) computing arrival time
and required time for asynchronous circuits, and
hence computing the performance slack for each
node of the timing graph; and (v) computing the
slack for timing forks.

When importing a design from a different flow
as a “black box,” the timing graph fragment for the
module must be included in the import (analogous
to .lib files in synchronous logic). If a module is
imported using a gate level netlist with timing forks,
the event graph can be computed by our timing
analysis engine.

Once event transitions are identified, we also
compute the power consumption of the circuit. Since
many of the steps needed by power analysis are the
same as for timing analysis, we have integrated the
two into a single unified engine.

The time complexity of timing analysis is much
higher than in the synchronous case due to step (iii),
which computes the critical cycle ratio. We use
the parametric shortest path algorithm to compute
this ratio [36], which provides better run-time per-
formance than previous approaches that use linear
programming when the circuit size is large [31].
Another source of complexity is that the periodicity
of an asynchronous circuit may not be from one
iteration to the next. Instead, a circuit might have
an unfolding factor M , where the circuit timing is
only periodic every M iterations [37], [38]. When

TABLE II: Performance comparison of our tim-
ing engine core against a recent open-source syn-
chronous timing analysis engine (OT = OpenTimer).
The numbers in parentheses specify the number of
threads used to obtain the best runtime. All times
are in milliseconds.

Circuit # Pins
Best Runtime (#thr) Speedup
OT Ours over OT

ac97ctrl 40,238 312.0 (21) 35.3 (7) 8.83
aescore 66,221 493.3 (7) 53.0 (7) 9.31
desperf 295,808 2,762.7 (14) 155.0 (14) 17.82
vgalcd 380,730 3,660.7 (28) 187.7 (14) 19.51
desperf*10 2,958,071 29,923.3 (14) 1,366.7 (14) 21.90
vgalcd*10 3,807,291 31,212.7 (35) 1,708.7 (14) 18.27

M is high, timing propagation has to be performed
on a graph that is logically the M -fold unfolding of
the cyclic graph.

We have implemented our timing analysis engine
using the Galois framework described in Section III.
Our current implementation parallelizes the follow-
ing parts of the full timing analysis: slew rate
estimation, arrival time/required time, performance
slack, and timing fork slack. The current runtime
of our timing engine is shown in Table I with
example circuits ranging from 0.3M–5.6M pins.
The sequential runtime for large designs would be
quite prohibitive—above 48 minutes for the largest
example. However, the Galois framework can trans-
parently speed up our runtime by large factors;
for the largest example, we achieve almost 20×
speedup, resulting in a more manageable runtime
of roughly 2.5 minutes.

The same timing propagation core can be used
to perform timing analysis for synchronous circuits,
and hence, we can compare the performance ob-
tained using the Galois approach to parallelization
versus existing synchronous timing analysis en-
gines that support multi-threaded execution. Table II
shows the result of this comparison against Open-
Timer, an open-source synchronous timing analysis
engine that supports multi-threaded execution [39],
demonstrating that our parallel timing analysis core
achieves good parallel performance.

B. Partitioning and floorplanning

For large designs, we have implemented a min-
cut based approach to floorplanning and design
partitioning. To this end, we have developed a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3051334

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

deterministic, parallel hypergraph-based partitioner
using the Galois framework.

Our implementation uses the multi-level graph
partitioning framework, where the original hyper-
graph is subjected to a number of coarsening steps
to create a much smaller hypergraph. The small hy-
pergraph is then subjected to an initial partitioning.
Finally, the small hypergraph is expanded out to the
original graph by inverting the coarsening steps, and
in each step the partition is further refined.

Experimental results on a 28-core Intel Xeon
show that our partitioner achieves 7× speedup for
hypergraphs with roughly 10 million nodes and 4–
6× speedup for hypergraphs with 2–3 million nodes.

C. Placement
Asynchronous circuits make use of a wide range

of gates, especially state-holding gates that have
pull-up and pull-down networks that are not com-
plementary. The unbalanced pull-up and pull-down
combined with keeper circuits for state-holding
gates can lead to inefficient layout using traditional
single/double height standard cells. To alleviate
this potential inefficiency, we have adapted existing
standard-cell based placement algorithms to account
for cell heights that need not be uniform. We call
this approach gridded-cell layout, where cells can
have both height and width that is an integer mul-
tiple of a routing track. [32] Many techniques have
been adapted for this non-standard height cell layout
approach, and new algorithms developed for both
fast legalization and well-alignment in the presence
of non-uniform cell heights.

Experimental results show that our current placer
implementation is capable of handling large de-
signs, with a performance that is almost an order
of magnitude faster than commercial placers while
suffering a 13% (geometric mean) quality loss when
measured in terms of half-perimeter wire length.

When comparing standard cell versus non-
standard height cells for asynchronous logic, we
found that our placement approach can improve
density by 10% to 17% compared to commercial
standard-cell placers [32].

D. Global routing
The last major piece of the flow that we are devel-

oping is a parallel global router. We have developed
SPRoute, a Galois-based parallel implementation of

Fig. 4: Routed example design in a 65nm process.
Detailed routing was performed using a commercial
EDA tool.

the FastRoute [40] global router. We use FastRoute,
because it has good sequential performance for the
global routing problem.

SPRoute uses a novel two-phase parallel scheme
to achieve good speedup. In the initial phase,
SPRoute exploits net-level parallelism. In this ap-
proach, different nets are routed in parallel. This
proceeds until there is congestion due to a lack of
routing resources. This phase can achieve significant
speedup, because uncongested regions do not have
any resource conflicts and thus net routing can
proceed in parallel. Once congestion is detected,
SPRoute switches to fine-grained parallelism where
parallelism is exploited for frontier exploration dur-
ing maze routing.

This scheme achieves 11× speedup with 0.6%
quality of results reduction on a 28-core machine
when compared to the baseline FastRoute imple-
mentation [34].

After global routing, the rest of the flow can
proceed using standard tools since all the major
decisions that impact timing have been accounted
for during placement and global routing. Figure 4
shows the routed design of a simple asynchronous
benchmark circuit, where the detailed router used
was a commercial tool. Note that the placement does
not use the standard cell rows.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3051334

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

E. Memory compiler

The last major missing ingredient is a high qual-
ity memory compiler. Almost every digital ASIC
requires memory, and asynchronous designs are
no different. While many commercial memories
include self-timed internal access, standard memory
compilers provide a “black box” implementation
that only provides a synchronous interface.

To address this challenge, we have built AMC, an
asynchronous memory compiler [41] that is based
on the OpenRAM framework [42]. AMC makes
a number of changes to the design of the SRAM
it generates compared to its baseline OpenRAM
implementation: (i) it uses asynchronous logic to
implement the control, and therefore provides an
asynchronous interface to the core memory; (ii) it
supports pipelined memory access for multi-banked
memories with multiple in-flight transactions, where
bank access is interleaved to improve effective
throughput; (iii) it supports sub-banking with a
hierarchical word-line structure to improve access
time and reduce power consumption; (iv) it supports
technologies upto 28nm, including thin cell and
foundry cell bit-cells; (v) it supports an atomic read-
modify-write operation, which takes significantly
less time than a read followed by a write. AMC
includes a built-in self-test engine, as well as syn-
chronous wrapper circuits (at reduced performance).

Our comparisons show that the memories gen-
erated by AMC are competitive with published
designs in the literature, as well as the memories
available from the foundry [41].

F. Current status

We currently have a flow that can can be used
to design and implement quasi delay-insensitive
asynchronous circuits, as well as a restricted set
of bundled-data circuits. The memory compiler
has successfully been used to build memories in
65nm, 28nm, and 12nm process technologies, as
well as older technology nodes. The full flow has
been exercised to design a mixed quasi delay-
insensitive/bundled data 65nm ASIC, and a 28nm
ASIC is in progress. The key additional work
needed to support a richer class of asynchronous
circuits is a more general timing analysis engine
front-end. While the core timing analysis engine
implements the algorithms needed for asynchronous
timing analysis, the front-end that generates the

input for the analysis engine is currently being
improved so that it can support a richer set of asyn-
chronous circuit families. The rest of the physical
design flow supports any asynchronous logic family.
Finally, we are working on a tighter integration of
the timing analysis engine with all the steps in the
design flow.

V. SUMMARY

We have embarked on developing a high quality
open-source design flow for asynchronous circuits.
In doing so, we developed a unified timing method-
ology that can handle both synchronous and a
number of different asynchronous circuit families.
By building this timing abstraction into all the key
EDA tools, our goal is to create an extensible frame-
work where EDA developers can easily support new
circuit families.

Significant work is still required both for improv-
ing the run-time performance of certain aspects of
the flow, as well as improving the quality of results
of the design. Some of the major ongoing efforts
include: improving the accuracy of timing analysis,
as well as its run-time performance in the presence
of millions of timing constraints; better incorpora-
tion of timing information into both placement and
routing, as well as buffer insertion when timing
constraints cannot be met during place and route;
improved cell generation when a circuit is not found
in the standard library; and extending configuration
files and algorithms to support the requirements of
sub-10nm designs.

REFERENCES

[1] R. Manohar and Y. Moses, “The eventual c-element theorem
for delay-insensitive asynchronous circuits,” in Asynchronous
Circuits and Systems (ASYNC), 2017 23rd IEEE International
Symposium on, pp. 102–109, IEEE, 2017.

[2] A. J. Martin, “The limitations to delay-insensitivity in asyn-
chronous circuits,” in Sixth MIT Conference on Advanced
Research in VLSI (W. J. Dally, ed.), pp. 263–278, 1990.

[3] R. Manohar and Y. Moses, “Analyzing isochronic forks with
potential causality,” in Asynchronous Circuits and Systems
(ASYNC), 2015 21st IEEE International Symposium on, pp. 69–
76, IEEE, 2015.

[4] N. H. Weste and D. Harris, CMOS VLSI design: a circuits and
systems perspective. Pearson, 2010.

[5] S. F. Nielsen, J. Sparso, J. B. Jensen, and J. S. R. Nielsen,
“A behavioral synthesis frontend to the haste/tide design flow,”
in Asynchronous Circuits and Systems, 2009. ASYNC’09. 15th
IEEE Symposium on, pp. 185–194, IEEE, 2009.

[6] D. Edwards and A. Bardsley, “Balsa: An asynchronous hard-
ware synthesis language,” The Computer Journal, vol. 45, no. 1,
pp. 12–18, 2002.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3051334

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

[7] P. A. Beerel, G. D. Dimou, and A. M. Lines, “Proteus: An
ASIC flow for GHz asynchronous designs,” IEEE Design and
Test of Computers, vol. 28, no. 5, pp. 36–51, 2011.

[8] S. Hauck, “Asynchronous design methodologies: An overview,”
Proceedings of IEEE, vol. 83, pp. 69–93, Jan 1995.

[9] S. M. Nowick and M. Singh, “Asynchronous design—part 1:
Overview and recent advances,” IEEE Design & Test, vol. 32,
no. 3, pp. 5–18, 2015.

[10] S. M. Nowick and M. Singh, “Asynchronous design—part 2:
Systems and methodologies,” IEEE Design & Test, vol. 32,
no. 3, pp. 19–28, 2015.

[11] C. A. R. Hoare, “Communicating sequential processes,” Com-
munications of the ACM, vol. 21, no. 8, pp. 666–677, 1978.

[12] R. Manohar and Y. Moses, “Asynchronous signaling processes,”
in Asynchronous Circuits and Systems (ASYNC), 2019 25rd
IEEE International Symposium on, IEEE, 2019.

[13] S. Gangadharan and S. Churiwala, Constraining Designs for
Synthesis and Timing Analysis. Springer, 2013.

[14] S. A. Seshia, R. E. Bryant, and K. S. Stevens, “Modeling and
verifying circuits using generalized relative timing,” in 11th
IEEE International Symposium on Asynchronous Circuits and
Systems, pp. 98–108, IEEE, 2005.

[15] A. Dan, R. Manohar, and Y. Moses, “On using time without
clocks via zigzag causality,” in Proceedings of the ACM Sym-
posium on Principles of Distributed Computing, pp. 241–250,
ACM, 2017.

[16] I. Sutherland and S. Fairbanks, “Gasp: A minimal fifo control,”
in Asynchronus Circuits and Systems, 2001. ASYNC 2001.
Seventh International Symposium on, pp. 46–53, IEEE, 2001.

[17] M. Singh and S. M. Nowick, “Mousetrap: Ultra-high-speed
transition-signaling asynchronous pipelines,” in Computer De-
sign, 2001. ICCD 2001. Proceedings. 2001 International Con-
ference on, pp. 9–17, IEEE, 2001.

[18] A. J. Martin, A. Lines, R. Manohar, M. Nyström, P. Penzes,
R. Southworth, U. Cummings, and T. K. Lee, “The design of
an asynchronous mips r3000 microprocessor,” Proceedings of
the 17th Conference on Advanced Research in VLSI, pp. 164–
181, 1997.

[19] D. Fang. https://github.com/fangism/hackt/.
[20] R. Manohar. https://github.com/asyncvlsi/act/.
[21] C. T. O. Otero, J. Tse, R. Karmazin, B. Hill, and R. Manohar,

“ULSNAP: An ultra-low power event-driven microcontroller for
sensor network nodes,” in 15th International Symposium on
Quality Electronic Design, pp. 667–674, IEEE, 2014.

[22] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam,
et al., “Truenorth: Design and tool flow of a 65mw 1 million
neuron programmable neurosynaptic chip,” IEEE Transactions
on Computer Aided Design of Integrated Circuits and Systems,
October 2015.

[23] R. Manohar, “Exact timing analysis for asynchronous cir-
cuits with multiple periods,” To appear, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
2020.

[24] V. Possani, Y.-S. Lu, A. Mishchenko, K. Pingali, R. Ribas, and
A. Reis, “Unlocking fine-grain parallelism for aig rewriting,”
in ICCAD ’18: International Conference on Computer Aided
Design, 2018.

[25] Y. O. M. Moctar and P. Brisk, “Parallel fpga routing based
on the operator formulation,” in DAC ’14: Design Automation
Conference, 2014.

[26] M. A. Hassaan, M. Burtscher, and K. Pingali, “Ordered vs.
unordered: a comparison of parallelism and work-efficiency
in irregular algorithms,” in Proceedings of the 16th ACM

symposium on Principles and practice of parallel programming,
PPoPP ’11, (New York, NY, USA), pp. 3–12, ACM, 2011.

[27] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A.
Hassaan, R. Kaleem, T. Lee, A. Lenharth, R. Manevich,
M. Méndez-Lojo, D. Prountzos, and X. Sui, “The tao of
parallelism in algorithms,” in PLDI 2011, pp. 12–25, 2011.

[28] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight in-
frastructure for graph analytics,” in Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, (New York, NY, USA), pp. 456–471, ACM, 2013.

[29] A. Lenharth, D. Nguyen, and K. Pingali, “Parallel graph ana-
lytics,” Commun. ACM, vol. 59, pp. 78–87, Apr. 2016.

[30] R. Karmazin, C. T. O. Otero, and R. Manohar, “celltk: Auto-
mated layout for asynchronous circuits with nonstandard cells,”
in Asynchronous Circuits and Systems (ASYNC), 2013 IEEE
19th International Symposium on, pp. 58–66, IEEE, 2013.

[31] W. Hua, Y.-S. Lu, K. Pingali, and R. Manohar, “Cyclone:
a static timing and power analysis engine for asynchronous
circuits,” in Proceedings of the IEEE International Symposium
on Asynchronous Circuits and Systems, May 2020.

[32] Y. Yang, J. He, and R. Manohar, “Dali: a gridded cell placement
flow,” in IEEE International Conference on Computer-Aided
Design, Nov 2020.

[33] R. Karmazin, S. Longfield, C. T. O. Otero, and R. Manohar,
“Timing driven placement for quasi delay-insensitive circuit,”
Proceedings of 21st IEEE International Symposium on Asyn-
chronous Circuits and Systems, pp. 45–52, 2015.

[34] J. He, M. Burtscher, R. Manohar, and K. Pingali, “Sproute:
A scalable parallel negotiation-based global router,” in 2019
IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD), pp. 1–8, IEEE, 2019.

[35] S. Ataei, W. Hua, Y. Yang, Y.-S. Lu, J. He, S. Maleki,
R. Manohar, and K. Pingali. https://github.com/asyncvlsi/.

[36] N. E. Young, R. E. Tarjan, and J. B. Orlin, “Faster parametric
shortest path and minimum-balance algorithms,” Networks,
vol. 21, no. 2, pp. 205–221, 1991.

[37] W. Hua and R. Manohar, “Exact timing analysis for asyn-
chronous systems,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 37, no. 1, pp. 203–
216, 2018.

[38] H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello, “An
algorithm for exact bounds on the time separation of events
in concurrent systems,” Tech. Rep. 94-02-02, University of
Washington, Department of Compter Science and Engineering,
1994.

[39] T.-W. Huang and D. F. M. Wong, “Opentimer: A high-
performance timing analysis tool,” in ICCAD ’15: International
Conference on Computer Aided Design, 2015.

[40] M. Pan, Y. Xu, Y. Zhang, and C. Chu, “Fastroute: An efficient
and high-quality global router,” VLSI Design, vol. 2012, 2012.

[41] S. Ataei and R. Manohar, “Amc: An asynchronous memory
compiler,” in 2019 25th IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC), pp. 1–8, IEEE,
2019.

[42] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and
M. Sarwar, “Openram: An open-source memory compiler,”
in Proc. 35th International Conference on Computer-Aided
Design, pp. 93:1–93:6, 2016.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3051334

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/fangism/hackt/
https://github.com/asyncvlsi/act/
https://github.com/asyncvlsi/

11

PLACE
PHOTO
HERE

R ajit Manohar is the John C. Malone Pro-
fessor of Electrical Engineering and Computer
Science at Yale University, New Haven, CT,
USA. His research interests are in the design
and implementation of asynchronous circuits
and systems. He has a Ph.D. in Computer
Science from Caltech.

PLACE
PHOTO
HERE

K eshav Pingali is the W.A.”Tex” Moncrief
Chair of Computing and CEO of Katana
Graph. He has a PhD from MIT. He is a
Foreign Member of the Academia Europeana,
a Distinguished Alumnus of IIT Kanpur, India,
and a Fellow of the ACM, IEEE and AAAS.

PLACE
PHOTO
HERE

S amira Ataei is an Associate Research Sci-
entist with Yale University. She received her
Ph.D. degree in Electrical Engineering from
the Oklahoma State University, OK, USA in
2017. Her research interests include memory
design for end-of-the-roadmap silicon, mem-
ory compiler, in-memory/near-memory com-
puting and computer architecture.

PLACE
PHOTO
HERE

W enmian Hua is currently with Synopsys Inc.
He received his Ph.D. degree in Electrical and
Computer Engineering from Cornell Univer-
sity, Ithaca, NY, USA in 2020. His research
interests are in timing and performance analy-
sis of asynchronous circuits.

PLACE
PHOTO
HERE

Y ihang Yang is currently pursuing his Ph.D.
degree at Yale University. He received the
MASc degree in electrical and computer en-
gineering from the University of Waterloo
in 2017. His research interests include asyn-
chronous VLSI design and its physical design
automation.

PLACE
PHOTO
HERE

Y i-Shan Lu is a PhD candidate in the De-
partment of Computer Science, UT Austin. He
received his Master degree in Computer Sci-
ence from NTHU, Hsinchu, Taiwan in 2011.
His current research focuses on parallelization
and language design for domain specific com-
putation, e.g., EDA. He is an ACM student
member.

PLACE
PHOTO
HERE

M ichael Jiayuan He is currently a Computer
Science PhD student at UT Austin. His re-
search interests include parallel computing on
multicore CPUs and GPUs, graph analytics
and place & route in EDA. He received his B.E
in Electrical Engineering and a second Bach-
elors in Economics from Tsinghua University
in 2014.

PLACE
PHOTO
HERE

S epideh Maleki is a fifth-year Computer Sci-
ence PhD student at the University of Texas at
Austin. Her research interests are graph ana-
lytics, high performance computing, electronic
design automation (EDA), and programming
languages. She received her Masters in Com-
puter Science from Texas State University.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3051334

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

