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Abstract—Quasi-Delay-Insensitive asynchronous designs can
simultaneously provide higher performance, lower energy con-
sumption and less sensitivity to the process variations compared
to their clocked counterparts. However, these circuits normally
exhibit more silicon area overhead. In this paper, a shared-
staticizer solution is presented, to eliminate some part of this
area overhead. Staticizers, also known as keepers, are one
of the most widely used primitives is asynchronous datapath
and control design. Hence, reducing staticizer gate area can
result in great area reduction for entire design. Effectiveness
of the proposed shared-staticizer method is evaluated in several
technology nodes and different asynchronous designs. Results
show this technique works correctly down to subthreshold voltage
and is superior to other staticizer implementations with respect
to area consumption with no impact on performance and power.
Shared-staticizer handles output congestion and arbitrary input
rates, safely.

I. INTRODUCTION

Synchronous designs are more power hungry due to their
clock distribution overhead, precharging and discharging in
portions of a circuit unused in the computation and their
pipeline storage elements; i.e. flipflops. On contrary, asyn-
chronous design are clock-less, have transitions only in areas
involved in the useful computation and their pipeline stages
use transparent latches or no explicit latches at all. Therefore
asynchronous pipeline designs potentially can result in less
energy consumption.

Lower energy consumption and less sensitivity to the pro-
cess variation in asynchronous designs make them competitive
rivals to their clocked counterparts in emerging technologies
that need long battery life-time such as medical implants, re-
mote sensors and portable devices. However, to ensure timing
robustness in certain encodings, asynchronous circuits require
more silicon area. The area of asynchronous control logic
that implements the handshaking normally exceeds clocked
control logics. This area overhead may result in increased
power consumption especially, if the underlying process has
poor leakage properties.

Quasi-Delay-Insensitive (QDI) asynchronous designs are ro-
bust to gate delay and very careful about energy consumption.
However they introduce significant area overhead especially in
wide datapaths. Therefore, design techniques for reducing the
silicon area overhead in QDI asynchronous design (without
sacrificing the energy and performance) are of great interest.
It helps to pay-off the tremendous design effort needed to
ensure the robustness in asynchronous circuits. It allows to
design area-efficient asynchronous circuits of some complexity

with superior robustness, performance and power metrics
compared to synchronous designs where area/energy is always
scarified for latency/throughput. This paper focuses on the area
reduction of an asynchronous circuit primitive: the Staticizer,
also known as keeper.

In asynchronous pipeline design, each functional block
stores its results using staticizers. Staticizers are lightweight
storage elements widely used in different types of asyn-
chronous circuits, from arithmetic blocks to microprocessors.
Different implementations for staticizers has been proposed
for both asynchronous and domino circuit families [1], [2],
[3], [4]. Also, it has been demonstrated that these lightweight
storage elements work correctly at subthreshold voltages with
good immunity to leakage and noise [5]. However, one of the
challenges of using staticizers is their area overhead as they
are widely used on both datapath and control path.

This paper introduces the shared-staticizer approach to
address the challenge of designing asynchronous circuits with
less area overhead. Shared-staticizer reduces the gate area and
hence the total area of the design. A comparative evaluation
on completion-detection, asynchronous constant-time counter,
a digit-serial adder and a Dadda multiplier demonstrate that
the shared-staticizer technique works correctly with area usage
superior to traditional weak feedback staticizer approach with
no impact on power consumption and performance. Simula-
tions show that shared-staticizer is a robust design and the
right choice for high-performance QDI asynchronous designs.

The rest of this paper is organized as follows. Section II
explains the operation and limitations of staticizer gate. Sec-
tions III and IV provide guidance for staticizer sizing and
introduce the shared-staticizer technique. Simulation results
and comparisons are shown in section V. Section VI concludes
the paper.

II. STATICIZER DESIGN

Asynchronous designs by definition have no globally dis-
tributed clock to control their timing. Hence, always-on stati-
cizers in datapaths and C-elements for completion detection in
control paths are necessary primitives for correct and robust
operation in this design paradigm. For correct operation, a
staticizer attached to a combinational or state holding gate 1,

1A gate is said to be combinational when either the pull-up or pull-down
network is conducting and as a result, the gate’s output is always driven.
Otherwise, if there is a state where the pull-up or pull-down network is not
conducting and the gate’s output is not driven, gate is said to be state-holding.
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Fig. 1: 2-input C-element with staticizer: (a) weak feedback
staticizer, (b) combinational feedback staticizer

must satisfy two requirements: it must hold, or staticize, the
data when the gate is not driven, and float when the gate is
driven.

The two most popular CMOS implementations of staticizer
in asynchronous designs are shown in figure 1. Staticizer in
figure 1(a) is attributed to A. J. Martin [3] by [5] and [6] and is
commonly called weak feedback staticizer. This staticizer has
been used in many asynchronous designs including the Caltech
asynchronous microprocessor [7] and Manchester University
low-power asynchronous ARM processor [8]. Staticizer in
figure 1(b) is introduced by I. E. Sutherland [4] and is
commonly called combinational feedback staticizer and is used
in high-performance micropipelines.

Both staticizers make sure that state-holding gate’s output
is always driven to VDD or GND. Both schemes work
correctly and show robust operation even at ultra-low-voltage
(subthreshold) designs with process variation being consid-
ered. However, each of these staticizers comes with some
disadvantages. Combinational feedback staticizer uses more
transistors and consumes more area compared to a weak
feedback design. Although this implementation of staticizer
is ratio less (no constraint on the size of transistors), it can
result in circuits that are more complex and bigger than the
state-holding operator itself and is not always applicable.

Weak feedback staticizer is simpler but needs careful
transistor sizing not to interfere the gate’s operation (race
problem). Without appropriate feedback strength, feedback
inverter may oppose any changes in state-holding output and
result in erroneous operation. However, with proper feedback
strength, opposition of feedback inverter not only does not
interfere with state-holding output, but also helps to combat
noise. Staticizer with right strength for weak feedback inverter
improves the noise margin of the gate because when the inputs
of gates are slightly above the threshold voltage, staticizer
can supply enough current to staticize the output. Transistor
of staticizer must be weak enough since they serve only to
retain an already-established value but also strong enough
to compensate for the leakage current drawn when the gate
is not driven. There are two ways to make the feedback
inverter of staticizer weaker than a minimum-sized transistor:
(i) using a smaller supply voltage for feedback inverter (e.g.
V DDfeedback = V DD/2) and (ii) reducing the driving
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Fig. 2: C-element (a) symbol, (b) circuit implementation with
weak feedback staticizer. Transistors of feedback inverter are
splitted to reduce the capacitive load at node Z.

TABLE I: 2-input C-element truth table and Boolean function.

a b z
0 0 0
0 1 previous state (ẑ)
1 0 previous state (ẑ)
1 1 1

z = a.b+ ẑ.(a+ b)

current of feedback inverter by increasing the transistor length
(e.g Lfeedback = 10 ∗ lmin). In the first technique, adding
a second supply voltage for staticizers increases the design
complexity by adding voltage level-shifters and extra routing
for second supply voltage. Second technique which proposes a
large transistor length can increase the output capacitive load
(Cgate ∝ W.L) and also results in more area consumption.
Capacitive load increase can be avoided by splitting the tran-
sistors of weak feedback , see figure 2(b), and area reduction
is the focus of this paper.

Here in this paper, first we provide the guidance for
staticizer sizing selection in weak feedback scheme and then
proposes a circuit modification technique that reduces the
area overhead of weak feedback staticizer. The proposed
technique is simple and does not add any complexity to circuit
design while greatly reduces its layout area. Simulation results
in following sections demonstrate proposed technique works
correctly in QDI asynchronous designs at different technology
nodes .

III. STATICIZER SIZING

Using a 2-input C-element (consensus element), we describe
the constraints for appropriate staticizer size selection. The C-
element is introduced by D. E. Muller [9] and if often called
Muller C-element. It is an important element in asynchronous
circuit design and is widely used for control synchronization.
In general, a C-element is a state holding gate which is
transparent when all its inputs are equal and holds the previous
output value otherwise. Table I shows the truth table of this
gate and its Boolean function. The Muller C-element can easily
be generalized to three or more inputs, requiring that all inputs
reach a new logical state before copying that new state as
output [4].
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Fig. 3: Driving and leakage current of C-element and weak
feedback staticizer at different voltages. Weak feedback stati-
cizer with (a) proper sizing (L = 10lmin) works correctly at
different voltages and satisfies the current conditions i and ii,
(b) improper sizing (L = 2lmin) fails and doesn’t satisfies the
current conditions at small voltages.
(i) staticizer Ioff + 3σ < C-element Ion − 3σ
(ii) staticizer Ion − 3σ > C-element Ioff + 3σ

In order for C-element to hold its output while inputs are
not equal, a staticizer must be used at the output of this
gate. Without the staticizer and with complementary inputs
being persistent, the charge stored on output of C-element can
drift over time due to subthreshold, gate and junction leakage
currents thereby changing the value of output and result in
an incorrect execution. Adding a weak feedback staticizer
to C-element gate may introduce interferences between the
original production rules of gate and the rules added by
the feedback inverter. This interference can be resolved by
adjusting the relative strengths of feedback inverter and the
switching networks this staticizer is connected to. Figure 2
shows the symbol we use for the C-element (a standard
AND logic symbol with a large C inside) and its circuit
implementation in CMOS technology with weak feedback
staticizer to maintain the gate’s output while it is not driven.
To reduce the extra capacitive load at output Z, introduced
by long keeper transistors, these transistors are splitted as
shown in Figure 2(b). Minimum sized transistors are closer
to output and the transistor with bigger length are tied ON
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Fig. 4: Monte Carlo simulation results for C-element with
weak feedback inverter staticizer: (a) at nominal voltage of
technology and (b) at subthreshold voltage.

to act as a current source with a very small current value
(I ∝ wmin/(L− lmin)).

Staticizer’s pull-down (PD) transistors sizing can be identi-
fied by capturing the leakage (Ioff ) and driving current (Ion)
of C-element pull-up (PU) network. Similar measurement with
the C-element PD network will identifies ratio constraint of the
staticizer’s PU transistors. C-element PD Ion and Ioff define
the bounds for staticizer PU feedback strength: (i) staticizer’s
PU drivability (Ion) must be greater than C-element PD Ioff
to hold the value, and (ii) staticizer’s PU Ioff must be smaller
than C-element PD Ion current to avoid any opposition (race
condition) during transitions.

IV. SHARED-STATICIZER APPROACH

Following experiments are performed using an industrial
65nm bulk CMOS technology. The effect of process variation
is included in all the tests through 1,000 point Monte Carlo
simulations2. For staticizer transistor we use the sizing shown
in figure 5(a). Figure 3 shows the current values of C-
element PU network and staticizer PD network at selected
VDD values from 1.0V (nominal voltage of technology) down
to the subthreshold 0.3V (transistor threshold voltage for this
technology is around 380 mV) for K = 10. Current deviation
(σ) is added to all the current values of figure 3, i.e. Ioff +3σ
and Ion − 3σ for C-element PD currents and Ioff − 3σ
and Ion + 3σ for staticizer PU currents. Staticizer must be

2Inter-die and intra-die variation in all process corners (TT, SS, FF, SF,
FS) is used in Monte Carlo simulations to predict the silicon distribution
accurately
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Fig. 5: (a) Staticizer transistor sizing for correct functionality,
and (b) proposed shared-staticizer design. Multiple staticizers
share their long channel transistors at nodes P and Q.

able to handle 3σ of intra-die variation to have negligible
impact on yield when design has many staticizers. As shown
in figure 3(a) a transistor with 10 times less driving current
compared to a minimum size transistor, satisfies the Ion and
Ioff relations between staticizer and C-element at different
voltages. Figure 3(b) shows with improper sizing (K = 2)
current relations are not satisfied at low voltages which results
in wrong operation.

C-element delay depends on the arriving time and order of
the inputs. Extensive simulations by altering the arriving time
and arriving order between inputs show that weak feedback
staticizer with K = 10 is a robust design. Figure 4(a) and
(b) show the Monte Carlo simulation results of C-element
input and output voltages for selected input orderings. At sub-
threshold, figure 4(b), there is a 500X performance degradation
and %60 more variation in output delay. However, with weak
feedback staticizer, C-element shows a robust operation; it can
correctly write new values and hold its previous value.

Results of above experiments show that staticizer with prop-
erly ratioed feedback path can guarantee the robust operation
of state-holding gate. However, with ever increasing Ioff/Ion
ratio and process variability in advanced process nodes, only
very long staticizers (> 10lmin) can satisfy the current bounds
defined by the pull-up and pull-down networks of the gate.
Very long staticizer has implications for the physical design
of the circuit and may not always be practical.

Here we propose a shared-staticizer design where multiple
weak feedback staticizer can share the long foot transistors in
order to reduce the state-holding gate area. Proposed scheme is
shown in figure 5(b). As shown in this figure both long channel
NMOS and PMOS devices which contribute to more than %40
area of staticizer (see figure 7), can be shared between multiple
staticizers.

Figure 6 shows a C-element tree, commonly used as com-
pletion detection in dual-rail asynchronous designs. In this
design the output z cannot change until all n dual-rail inputs
are equal, i.e A0...An = n′b0 or A0...An = n′b1. We applied
the shared-staticizer design to an 8-bit C-element tree and
compared the delay, power and area values with the same size
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Fig. 6: N-input C-element tree

Fig. 7: Area comparison for 8-bit C-element trees: (a) without
sharing the staticizers and (b) with shared-staticizer design.

C-element tree where staticizers are not shared in multiple
technology nodes. Simulation results in table II show that
C-element tree with shared-staticizer has almost the same
delay and power consumption as C-element tree with weak
feedback staticizer in different process nodes. However, the
layout area is significantly smaller when long transistors of
feedback inverter, are shared. The layout area numbers of
table II are calculated using standard-cell-like C-elements and
automated routing. Figure 7 shows even with custom layout,
C-element tree with shared-staticizer consumes %20 less area
compared to other C-element tree. 3

Shared staticizer is a simple structure and easy to imple-
ment. However, there is a ceiling for number of staticizers
that can share their foot transistors which should be defined
by designer. This ceiling value is technology dependent and is
related to the capacitors at nodes Q and P (CQ and CP ),
shown in figure 5(b). CQ and CP go high with area of
source/drain. Higher number of shared staticizers, increases
these capacitance as every staticizer contribute some diffusion

3Both layouts are drawn manually in SCMOS 0.5um process node with
same number of metal layers.



TABLE II: power and delay comparisons for 8-bit C-element trees in different technology nodes, with shared-staticizer and
conventional weak feedback staticizer.

Technology 0.5um 65nm 28nm
Design shared-staticizer conv-staticizer shared-staticizer conv-staticizer shared-staticizer conv-staticizer

VDD (V) 5.0 5.0 1.0 1.0 1.0 1.0
power (mW) 2.88 2.9 0.34 0.37 0.16 0.16
Delay (nSec) 1.16 1.2 0.13 0.14 0.096 0.1

Layout Area (normalized) 1 1.5 1 1.43 1 1.46

15 shared-staticizer
7  shared-staticizer
3  shared-staticizer

No shared-staticizer

2x	slower

1.3x	slower
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Fig. 8: Performance of a 8-bit C-element tree at (a) VDD = 1.0V and (b) VDD = 0.5V with different number of shared
staticizers. At low-voltages 15 shared-staticizer slows down the design bt 2x while 2 shared-staticizer has negligible effect.

capacitance on these nodes . Large CQ and CP reduce the
voltage headroom and become the source of delay by shifting
the switching point of the gate to right.

Figure 8(b) shows 2x slowdown in performance of a 8-
bit C-element tree in 0.5V supply voltage when 15 staticizers
share their foot transistors while with 7 staticizer sharing there
is 1.3x slowdown and with 3 staticizer sharing there is only
1.08x slowdown. Figure 8(a) shows at nominal voltage there
is no slowdown because the voltage swing is big enough that
is not effected by values of CQ and CP .

As a side note, reduced voltage swing improves the propa-
gation delay of the gate when VDD/VTH ratio is big, however
it slows down the circuit and might lead to incorrect results
in low-voltage designs where VDD/VTH ratio is small.

SOI (Silicon-on-Insulator) technologies have smaller par-
asitic capacitance and virtually eliminate the diffusion ca-
pacitance, hence allow more staticizers to share their foot
transistors.

V. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of the proposed shared-
staticizer scheme, this technique is applied to three different
asynchronous designs using an industrial 28nm process node.
Both shared and regular weak feedback implementations are
examined in following asynchronous designs and for each de-
sign, we measure the latency, cycle time, power consumption
and layout area. In implementation, simulation and layout
generation of following asynchronous circuits, we used the
ACT framework developed at Yale University [10].

Asynchronous counter: Counters play critical role in the
control logic and pipeline management of both synchronous
and asynchronous designs. We picked an 8-bit counter as our
first case study. This counter has a constant response time
and is implemented in the most robust asynchronous logic
family, QDI circuits. There are a total of 14 staticizer in the
implementation of this counter where all staticizers are used in
weak-conditioned half buffer (WCHB) handshake circuits. In
this design every 4 and 6 staticizers share their foot transistor.
Simulation results summarized in tableIII show sharing the
staticizer does not have any impact on latency, cycle-time and
power consumption of this design. However the layout area is
decreased by %16.

Asynchronous adder: The second case study is an asyn-
chronous digit-serial adder implemented with the combination
of bundled data datapath and QDI control. This digit-serial
adder with arbitrary-length is based on LSB first serial addition
algorithmand has the opportunity to decrease the overall
energy usage while increasing the throughput/area efficiency.
There are a total of 397 staticizer in the implementation of
this adder. Staticizers are used in WCHB FIFOs and 4-bit C-
element trees. In this design every 6 staticizers in FIFOs and
every 7 staticizer in C-element trees share their foot transistors.
Simulation results in tableIII show similar to counter, sharing
the staticizer does not have any impact on performance and
power consumption of this design. However, the total area is
reduced by %21.

Asynchronous multiplier: Multipliers are key hardware com-
ponents in a wide range of application from signal processing



TABLE III: Power, performance and area comparisons for three asynchronous circuits in 28nm technology node, with shared-
staticizer and conventional weak feedback staticizer. All designs are simulated at the nominal voltage of the technology.

Design 8-bit Counter 16-bit Adder 64-bit Multiplier
shared-staticizer conv. staticizer shared-staticizer conv. staticizer shared-staticizer conv. staticizer

power (mW) 0.94 0.97 0.74 0.75 39.8 39.7
latency (nSec) 0.38 0.38 0.97 0.97 0.95 0.96
Cycle Time (nSec) 0.63 0.64 0.57 0.59 1.01 1.02
Layout Area (Normalized) 1 1.16 1 1.21 1 1.16
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Fig. 9: (a) Design layout area with conventional staticizer vs.
shared-staticizer in 28nm process node and (b) percentage of
layout area improvement using shared-staticizer.

to machine learning accelerators. Multiplication is a hardware
intensive operation and less silicon area in its design is of
the great interest in VLSI design. Asynchronous multipliers
have higher throughput and consume less energy but are not
compact in terms of area. In our third case study we apply
shared-staticizer technique to a 64 x 8 bit Dadda multiplier
implemented with a dual-rail encoding and QDI control.

There are a total of 1365 staticizer in the implementation
of this multiplier where staticizers are used in 8-bit, 16-
bit and 32-bit C-element trees, WCHB FIFOs and single-bit
full-adders of fine-grain asynchronous precharge half buffer
(PCHB) pipelines . In this design every 7 staticizers in C-
element trees, every 6 staticizers in WCHB FIFOs and every

4 staticizers in full adder modules share their foot transistors
which reduces the number of long transistors from 2730 to 436
and helps to reduce the silicon area of this multiplier by %16.
Simulation results in tableIII show sharing the staticizer does
not have any impact on performance and power consumption
of this multiplier.

Simulation results of above case studies demonstrate stati-
cizers with shared transistors have no impact on performance
and energy consumption while significantly decrease the sil-
icon area of the design. Figure?? shows the layout area for
over 800 benchmarks. All these benchmark have QDI control
circuits. As shown in this figure shared-staticizer reduces the
layout area from %3 up to %26.

Shared-staticizer is an efficient technique that can be used
in asynchronous circuits with QDI controls. This technique
may not be as efficient in asynchronous circuit families that
use bundled-data encoding.

VI. CONCLUSION

This paper presents shared-staticizer method to reduce the
layout area of QDI asynchronous circuits. Shared-staticizer
shows area usage superior to other implementations of stati-
cizer. It is a robust and easy to implement technique that
has no implication on performance and energy consumption.
Staticizers with shared transistors can hold a stages output un-
der arbitrary congestion and remain stalled and safely handle
any uncertainty in the arrival time of circuit’s inputs. We can
say that the weak feedback shared-staticizer is definitely the
right choice for high performance QDI asynchronous designs.
Shared-staticizer is applied to multiple asynchronous designs
and evaluated in several technology nodes and simulation
results verify the effectiveness of the proposed technique.
Shared-staticizer is an improvement only for QDI circuit
family and can be a useful technique in asynchronous architec-
tures where parallel throughput is maximized through spatial
parallelism. It allows to fit more functional blocks within a
given area budget that determines the amount of parallelism.
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