Check for
Updates

Split gRPC: An Isolation Architecture for RPC
Software Stacks

Esteban Ramos
U.C. Santa Cruz
Santa Cruz, CA, USA

Robert Soulé

Yale University
New Haven, CT, USA

Peter Alvaro
U.C. Santa Cruz
Santa Cruz, CA, USA

Pietro Bressana Edmund Chen Uri Cummings
Intel Corporation Unaffiliated Unaffiliated
Santa Clara, CA, USA USA USA
Rui Li James Tsai Rajit Manohar
Intel Corporation Intel Labs Yale University

Santa Clara, CA, USA
ABSTRACT

Remote procedure calls are a major contributor to perfor-
mance variance in distributed systems due to lack of isolation
and contention on shared resources. We propose a novel split
architecture for a popular RPC framework, gRPC. The design
partitions RPC applications into two communicating com-
ponents: one dedicated to user-implemented business logic,
and one dedicated to RPC infrastructure processing. The
infrastructure process can be run on a dedicated core or on
a smart NIC (e.g., IPU or DPU), providing effective physical
isolation and predictable performance. An initial evaluation
shows that the split architecture adds modest overhead for
average case latency, but allows for lower latency and and
higher throughput under host CPU load.

CCS CONCEPTS

« Hardware — Hardware accelerators; « Computer sys-
tems organization — Client-server architectures; « Soft-
ware and its engineering — Message passing.

KEYWORDS
Remote Procedure Call, gRPC, SmartNIC

ACM Reference Format:

Esteban Ramos, Robert Soulé, Peter Alvaro, Pietro Bressana, Ed-
mund Chen, Uri Cummings, Rui Li, James Tsai, and Rajit Manohar.
2024. Split gRPC: An Isolation Architecture for RPC Software Stacks.

(©MOM

This work is licensed under a Creative Commons Attribution International
4.0 License.

APSys °24, September 4-5, 2024, Kyoto, Japan

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1105-3/24/09
https://doi.org/10.1145/3678015.3680484

Santa Clara, CA, USA

81

New Haven, CT, USA

In ACM SIGOPS Asia-Pacific Workshop on Systems (APSys °24), Sep-
tember 4-5, 2024, Kyoto, Japan. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3678015.3680484

1 INTRODUCTION

Remote procedure calls (RPCs) are major contributors to un-
predictable performance in distributed systems. RPC libraries
are complex software stacks that combine user-supplied
“business logic” with a rich set of “infrastructure” logic that
interacts with many different hardware and software com-
ponents. Inadequate isolation can lead resource contention,
resulting in performance volatility and high tail latency [17].
Because performance variance can result in poor user expe-
rience and reduced revenue [8, 21, 26], reducing tail latency
is an important problem.

A tried-and-true approach to addressing performance prob-
lems is to “throw more hardware at it” [7]. After all, although
transport offload is a somewhat controversial [22], the re-
cent proliferation of smart NICs, i.e., network interface cards
with additional processing units, such as Intel’s Mount Evans
IPU [20] and NVIDIA’s BlueField DPU [4], has led to revived
interest in the idea [2, 10, 16, 19].

However, production-quality RPC frameworks, like Google’s
gRPC [11] and Apache Thrift [1], implement a wealth of
functionality beyond traditional transport. A non-exhaustive
list of functionality includes message serialization, language
interoperability, support for meta-data (e.g, authentication
information or telemetry data), and security mechanisms
(e.g., TLS for end-to-end encryption). They allow for diverse
connection or communication options (e.g., multiplexing
streams of a single connection, synchronous vs. asynchro-
nous, etc.) and are extensible, allowing developers to replace
major components. Moreover, increasingly, RPC libraries
have begun to implement functionality typically associated
with a service mesh, such as load balancing.

https://doi.org/10.1145/3678015.3680484
https://doi.org/10.1145/3678015.3680484
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3678015.3680484&domain=pdf&date_stamp=2024-09-04

APSys 24, September 4-5, 2024, Kyoto, Japan

If we are to leverage smart NICs to accelerate or offload
parts of the RPC stack and improve performance predictabil-
ity, then the key design choice is to determine what logic
belongs on the host and what logic belongs on the NIC. A
natural starting point would be to identify performance bot-
tlenecks and try to offload that functionality. The already
discussed transport offload is an attractive target to avoid
the fixed overheads of kernel crossings and redundant data
copies. However, transport offload will not help in applica-
tion regimes in which these fixed overheads are dwarfed
by data- and topology-dependent costs in serialization, dis-
covery, and load balancing. The conventional wisdom that
serialization costs dominate RPC might lead us to explore
point solutions that accelerate serialization [24, 29]. How-
ever, these efforts might provide only marginal benefit for
applications that use large messages with relatively simple
serialization logic, and perhaps no benefit at all for applica-
tions that favor small messages.

Therefore, we take a different tack—we “cut” RPC appli-
cations around isolation boundaries, with the goal of min-
imizing interference and tail latency. In Section 2, we start
from first principles, and identify potential sources of inter-
ference. From this, we derive a fully isolated architecture
that completely separates predictable infrastructure logic
from arbitrary and mercurial business logic. The resulting
design partitions RPC applications into two communicating
components: one dedicated to user-implemented business
logic, and one dedicated to RPC infrastructure processing.
While a few prior systems have explored RPC offload to
NICs [15, 25, 30], our design is unique in that it offloads all
of the existing gRPC C++ library implementation, meaning
that the wire-format, security, load-balancing, etc. features
are all interoperable with existing gRPC-based applications.

From the application developer’s point of view, the change
is seamless. We have developed a gRPC compiler that au-
tomatically generates the partitioned application from an
interface description language (.proto) specification of the
RPC service. Our C++ prototype simply requires that appli-
cation developers include a new header file and link against
a new software library. At the same time, our design com-
pletely separates all application-independent infrastructure
logic into a separate, independent process that can be run in
software on another core or, ultimately, on a smart NIC. We
expect that, having made this partition, further performance
improvements can be made by accelerating some of the in-
frastructure logic in hardware, either via specially designed
hardware or on programmable accelerator pipelines.

We present some initial experiments using HyperProto-
Bench [12], a set of Protobuf messages that are representative
of Google’s data center workloads. Overall, our evaluation
shows the extra communication overhead due to the split
architecture is modest, and in exchange for that overhead,

82

Ramos et al.
Interference Fundamental?
Business Logic X RPC No
Interrupts X Business Logic No
Interrupts X Host OS No
Host OS x RPC No
Interrupts X RPC Yes
Business Logic X Business Logic Yes
Business Logic x Host OS Yes

Table 1: Sources of Interference

the split design allows the gRPC software to maintain compa-
rable throughput and latency for increasingly large business
workloads, demonstrating improved isolation.

2 SOURCES OF INTERFERENCE

The key to reducing performance variability is reducing
contention for shared resources. One obvious strategy for
avoiding contention is to place every task on its own isolated
physical resource, but this is rarely achievable in practice.
In general—and in particular with complex systems such
as RPCs—the number of concurrent tasks far outnumbers
the number of independent compute resources, requiring
multiplexing. Many tasks interact in non-trivial ways (e.g.,
data and control dependencies), and the costs of these inter-
actions increase when we isolate the tasks. Hence even if
we had infinite resources, some components should not be
physically separated.

In this section, we enumerate the various sources of in-
terference among components that can lead to performance
variability in RPC. For each pair of tasks that can contend
for a resource, we consider whether this contention is fun-
damental (i.e., due to a tight coupling between the tasks) or
merely circumstantial. From this simple taxonomy we derive
the SplitRPC architecture.

Sources of Interference. To support RPC-based applica-
tions, a variety of tasks must concurrently utilize hardware
resources. These include the OS kernel and OS background
processes, as well as the threads associated with the RPC
stack for transport, connection management, encryption, and
(de)serialization. Last, but by no means least, is the applica-
tion business logic, some of which (i.e., server-side function
execution) is scheduled by the RPC infrastructure. Any pair
of these tasks can mutually interfere when sharing resources,
for example, via preemption on the core or head-of-line block-
ing on a shared queue. Additionally, in the network-intensive
applications characteristic of RPC, interrupts triggered by
packet arrival can in principle preempt any running task.
The business logic is a necessary evil; indeed, the entire
purpose of the system, all of which is otherwise overhead, is
to support it. Unfortunately, the business logic is also com-
pletely outside the control of the infrastructure. Its resource

Split gRPC: An Isolation Architecture for RPC Software Stacks

requirements are unknown, and so it is not reasonable to pin
it to static or wimpy resources; it cannot be expected to yield
cooperatively and so it must be preemptively scheduled.
By contrast, the RPC stack is completely within control of
the infrastructure, and could reasonably be specialized for
an embedded target with modest compute, such as a smart
NIC. RPC tasks can often be pinned to individual core or
cooperatively scheduled, simplifying the requirements of the
embedded OS and further reducing scheduling variability.
On a typical RPC server, as shown in Table 1, all pairs of
the sources of interference discussed above may contribute
to tail latency. Adding a pool of dedicated compute resources
(e.g., on a smartNIC) permits us to use isolation to avoid
contention. Our brief analysis shows that there is a natural
partitioning of the RPC stack that fits these non-uniform
resources: placing the user-supplied business logic on the
host cores while placing the infrastructure code that is re-
sponsible for all other aspects of the RPC framework on
the lower-powered NIC cores. This architecture splits the
traditional monolithic RPC stack in a way that cuts “at the
joints” [23] coupling components that need to frequently in-
teract while decoupling components that need not interfere.

A Cut at the Joints. We now consider in turn each of the
conflicts in Table 1 under such a partitioning. First, our par-
titioning has separated conflicts that are not fundamental.
Because the business logic (BL) and RPC infrastructure (RPC)
are physically separated, there is no longer any need for (e.g.)
a BL thread to preempt a RPC thread (BL x RPC). Nor is
there any need for a network interrupt to preempt a business
logic task (Interrupt X BL), or the OS kernel or background
tasks supporting it (Interrupt x OS).

The remaining sources of interference, however, seem
fundamental. The RPC infrastructure, likely the only tasks
utilizing the network, should be “close” to the interrupts
that concern only them (RPC x Interrupts). Business logic
will conflict with other concurrently-running business logic,
for which we can rely on the OS scheduler and abundant
preemptible resources (BL X BL), as well as with the OS
functionalities that support it (BL x OS).

The elephant in the room is the seemingly unnatural sep-
aration of the RPC infrastructure from the business logic
with which is it tightly coupled in terms of both control
(the infrastructure decides when BL functions are run) and
data (function arguments and returns must be copied). Next,
we describes how we optimize this pipeline to realize the
benefits of the SplitRPC architecture.

3 SYSTEM DESIGN

Our design splits the RPC stack into a business logic pro-
cess and RPC infrastructure process. This architecture is

83

APSys ’24, September 4-5, 2024, Kyoto, Japan

c++ linked and compiled

Application .)

—> Channel Stubs Message Object
Register RPC Access Methods
Create Channel & Memory Mgmt.
Completion Queue)

Linearized

SUSEELEN Asynchronous queuing | Objects |
Layer andevent/F

Data Transformation

Serialization/
Deserialization

Control Plane Core

Channel &
Connection Setup

| schema

Filter, load balancer,
Observabilty
Transport

Stream Processing
HTTP2/3, security

xDS Agent

RPC Infrastructure Packet Processing
(IPU/CPU) (CNI) &Network

Figure 1: An overview of the Split architecture.

amenable to several possible deployments (e.g., to a dedi-
cated CPU core or to various types of smart NICs), but we
focus our discssion on an implementation which leverages
an IPU. An IPU is an appealing target becuase it is “close to
the network”, has sufficient computational resources, and is
physically isolated from the CPU. Apart from initial setup,
only the business logic executes on the CPU. No changes are
required to application code.

To offload all the RPC infrastructure processing to a sep-
arate IJPU process, we must run the gRPC stack on the IPU.
The RPC system calls are replaced with stubs that simply
communicate the call to the IPU process. When the server
starts, we launch a CPU thread that waits for information
from the IPU process, executes the business logic, and then
sends the reply back to the IPU process.

To support this behavior, we require a separate IPU pro-
cess that receives the service information/stub calls from the
CPU and executes them locally on the IPU. When the service
on the IPU starts, we register a fixed business logic imple-
mentation that communicates inbound RPC messages to the
CPU process, waits for a reply from the CPU, and transmits
this reply back to the original requester. Finally, we need a
communication layer for exchanging data between the IPU
and CPU processes.

In summary, the key aspects of the split architecture, il-
lustrated in Figure 1, are: (i) a shepherding layer, used to
communicate between the IPU and CPU processes; (ii) a
strategy for efficient data transfer between the IPU and CPU;
and (iii) a modified RPC compiler plugin that emits the code
for the IPU executable that transfers messages to/from the
CPU using the shepherding layer.

APSys 24, September 4-5, 2024, Kyoto, Japan

Shepherding Layer. The shepherding layer ensures efficient
and reliable communication between the split components
of our system. We optimized the design of the shepherding
layer to minimize data copies and to allow for concurrent
access. It includes two independent communication channels.
Each channel is implemented in a separate shared memory
segment. The shared memory implements two FIFO ring
buffers of a configurable size and four counting atomic head-
/tail pointers, two for each ring buffer. The counting atomic
head and tail pointers provide both control access to the ring
buffers and concurrent access to different slots in the ring
buffers. A Boolean flag is coupled to each slot of the ring
buffers to mark the slot data valid to read or write.

Linearization. In our split architecture, RPC request mes-
sages and reply messages have to be transferred between
the two different processes: one that handles the RPC infras-
tructure and the other that handles the business logic. The
two processes may have entirely different address spaces; in
the case when one process is on the IPU and the other on
the host CPU, it is also possible that the IPU and CPU use
different underlying instruction set architectures. Hence, a
conventional implementation of data transfer between the
two halves of the split architecture would copy data from one
process to the other. To avoid this extra copy, we introduce
an object linearization mechanism. The key idea is to transfer
the object as a contiguous block of memory that can accessed
by the receiver as a valid C++ object, meaning the pointers
to the vtable, etc. are all set appropriately. Thus, rather than
copying data, there is only a minor “pointer fixup” pass over
the data structure, which reduces the cost of data transfer
between the IPU and CPU.

Compiler for Split Architecture. There are three parts of
the overall split RPC system that require code generation
using information about the RPC specified in the .proto
file: (i) object linearization methods for each of the protobuf
objects used by a particular RPC; (ii) insertion of object lin-
earization calls at the appropriate points in the RPC stack;
and (iii) the creation of the RPC server on the IPU that han-
dles all the RPC processing, and exchanges linearized ob-
jects with the CPU process that contains the user-specified
business logic. We re-use the existing plugin infrastructure
provided by the protobuf compiler to implement the three
generators described above.

4 IMPLEMENTATION

We have implemented two versions of our split RPC archi-
tecture, a functional prototype and a performance prototype.

The functional prototype targets a pre-production sili-
con of Intel’s Mount Evans IPU [5]. Because we used pre-
production silicon, we did not have access to drivers for DMA
communication. Therefore, we implemented a version of the

84

Ramos et al.

shepherding layer over TCP using a socket interface, which
incurs the obvious overhead of passing through the network-
ing stack twice for every message transfer. We refrain from
sharing the performance numbers as they are misleading,
given that they simply represent a functional test.

The performance prototype approximates the expected
performance on the IPU when the DMA communication
path is enabled. The infrastructure and business logic pro-
cesses are compiled and run on the host server cores, and
the shepherding layer is implemented using the System V
shared memory API to communicate over a shared memory
region. The evaluation in Section 5 use this prototype.

5 EVALUATION

Our evaluation shows that (i) the overhead due to inter-
process communication in the split design is small (5.2) and
(ii) the split design maintains throughput and latency under
larger amounts of business logic (5.2).

5.1 Methodology

We measure three key metrics—core utilization, throughput,
and latency—for an RPC client sending requests to an RPC
server, as we increase the amount of business logic performed
at the server. We compare two configurations: a baseline with
an unmodified RPC server and the performance prototype
Split RPC server, in which the IPU logic runs on the host
server core. Using numactl, the business logic and IPU pro-
cesses reside on the same socket, but each have dedicated
cores connected via the shared memory shepherding layer.

Testbed. The client and server were both two socket 32-core
Intel Xeon Platinum 8360Y 2.4GHz CPUs with 64GB DDR4
connected via 100Gbps Intel E810-C NICs.

RPC Workload. We used Google’s representative set of Pro-
tobuf messages, HyperProtoBench [12]. To simplify the pre-
sentation, we share the results from three messages, that are
“small” (1KB), “medium” (48KB), and “large” (476KB): Bench-
mark 3, Message 3 (bench3_M3); Benchmark 4, Message 43
(bench4_M43); and Benchmark 5, Message 34 (bench5_M34);

Server Business Logic Workload. Each service takes an
m message as input and returns a different m message as
response. To simulate supplementary processing time within
the business logic, we introduce an additional configurable
processing “busy” loop.

5.2 Key Results

The results of our experiments appear in Figure 2. We have
presented all of the metrics together to (i) illuminate the
overall system trends and (ii) fit the results within the page
limits. The primary y-axis is the measurement for the gRPC
requests per second in units of 1,000 (KRPS) and the core
utilization for the business and infrastructure processing.

Split gRPC: An Isolation Architecture for RPC Software Stacks

APSys ’24, September 4-5, 2024, Kyoto, Japan

— — —

EIOO ' : 6 5 Y éloo Yyl ——0 éloo — + ¢

E —— krps p99 E —— krps p99 E —— krps p99

= 80 —— jutii —— p90 = 80 —— jutii —— p90 = 8o —— jutii —— p90

X i X i X i

€ 60 —4— hutil p75 € 60 —4— hutil p75 € 60 —4— hutil p75

5 5 5

g 40 g 40 g 40

o o o

g 2 €20 N, —t | g 20

= e = e — -

» -~ el B n e e | D — N N

0 2 0 2 0

o o 4
0 5 10 15 20 25 30 0 10 20 30 40 0 20 40 60 80

Business Logic Processing Loops (1K) Business Logic Processing Loops (1K) Business Logic Processing Loops (1K)
(a) Baseline: bench3_M3 (b) Baseline: bench4_M43 (c) Baseline: bench5_M34

B 100 2 100 '_'W_’_H B 100

E E —— krps p99 E —#— krps p99

= 80 x 80 N — pQO\ < 80 —— iutil — p90

X X —4— hutil p75 X —4— hutil p75

= 60 =~ 60 = 60

5 5 5

g 40 S 40 g 40

o o o

& 20 S 20 S5 20

wn [- — (%]

o o = 2. e T————— | O —

o 0 . o e o o T e e e
0 5 10 15 20 25 30 0 10 20 30 40 0 20 40 60 80

Business Logic Processing Loops (1K)

(d) Split gRPC: bench3_M3

Business Logic Processing Loops (1K)

(e) Split gRPC: bench4_M43

Business Logic Processing Loops (1K)

(f) Split gRPC: bench5_M34

Figure 2: Throughput, latency, and core utilization for gRPC, Split RPC, and Split RPC with a protobuf accelerator.

The secondary y-axis, on the right, measures the P75, P90
and P99 RTT in milliseconds. The x-axis shows increasing
amounts of supplemental business logic processing.

Cost of Split Architecture The overhead incurred by the
Split gRPC architecture is primarily associated with the shep-
herding and linearization functions. We measure the over-
head using a profiler when the business logic load set to zero,
i.e., the host does no work beyond constructing the RPC
message instance. For the small message (bench3_M3), less
than 25% of host cycles are associated with shepherding. For
the large message (bench5_M34) 45% of cycles are attributed
to linearization. In all of these measurements, because the host
is doing no real business logic, the overall runtime is very small,
s0 25% or 45% of host cycles is negligible.

Benefits of Split Architecture Figures 2a, 2b, and 2c dis-
play the results for the Baseline configuration on our three
representative messages, and Figures 2d, 2e, and 2f display
the results of the Split gRPC configuration. In both sets of
figures, the red line logs the host core utilization (hutil). For
the Baseline, the host core utilization includes the entire busi-
ness logic and gRPC stack. For the Split gRPC runs, the hutil
only includes the business logic. The IPU core utilization
(iutil), shown as the black line, logs the utilization of the IPU
process running the gRPC infrastructure logic.

85

We see similar behavior in all three messages. The Split
RPC incurs overhead due to linearization and communica-
tion, resulting in lower throughput and higher latency when
there is no business logic (i.e., the graph’s left most points).

However, as we increase business logic processing, we
see that the throughput and latency worsen for the Baseline
configuration. Because the hutil is saturated, the additional
business logic hurts performance. In contrast, the Split gRPC
configurations are able to maintain their throughput and la-
tency under larger amounts of business logic. The split design
is able to effectively use the host and IPU processes. In the
figure, we see this as a “knee event”, which happens when
the business logic is increased to the point that the host core
becomes saturated. For larger messages, the “knee” is further
to the right in the graphs.

Finally, the Baseline shows a large degree of variance for
the P99 latency. Since the hutil is at 100%, the latency can
be significantly impacted by system interference, even on a
dedicated machine. In contrast, the Split configuration allows
for greater isolation, allowing for more stable latency.

6 RELATED WORK

Remote Procedure Calls and Optimizations. Remote
procedure calls have existed since the mid-1970s and there
is a wealth of prior work on the topic [3, 6, 9, 13, 18, 27, 28].

APSys ’24, September 4-5, 2024, Kyoto, Japan

Serialization Accelerators. Optimus Prime [24], Zerial-
izer [29], and the design by Karandikar et al. [14] proposed
specialized hardware for serialization. The designs for data
transformation in these systems are similar, differing on
whether the data transformation logic is in the DMA path,
or implemented as a co-processor.

RPC Accelerators. HGum [30], Dagger [15] and Cerebros [25]
are hardware accelerators for RPCs. However, in contrast to
our approach, HGum and Dagger are both inoperable with
existing RPC frameworks because they propose their own
wire-format for data encoding. Cerebros connects the Op-
timus Prime [24] serialization accelerator to a TCP offload
engine in a NIC. It does not implement the full functional-
ity provided by existing RPC frameworks (e.g., processing
of meta-data, streaming connections over HTTP, security,
load-balancing, etc.). We evaluate our prototype on a live
system, while Cerebros evaluates in a simulation.

7 CONCLUSION

Overall, this paper describes an architecture that splits RPC-
based applications into separate processes that can be run
on separate hardware. The design leverages SmartNICs to
reduce tail latency and maintain throughput under larger
amounts of business logic, while maintaining interoperability
with existing frameworks and without changes to user-code.

ACKNOWLEDGMENTS

This work is partially supported by the National Science
Foundation under Grant No. CNS-2212235.

REFERENCES

[1] Apache Thrift 2021. Apache Thrift. https://thrift.apache.org.

[2] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer

Rexford, David Walker, and David Wentzlaff. 2020. Enabling Pro-

grammable Transport Protocols in High-Speed NICs. In 17th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

20). 93-109.

Andrew Birrell and Bruce Jay Nelson. 1984. Implementing Remote

Procedure Calls. ACM Trans. Comput. Syst. 2, 1 (1984), 39-59.

Bluefield 2023. NVIDIA BlueField Data Processing Units. https://www.

nvidia.com/en-us/networking/products/data-processing-unit/.

Brad Burres, Dan Daly, Mark Debbage, Eliel Louzoun, Christine

Severns-Williams, Naru Sundar, Nadav Turbovich, Barry Wolford, and

Yadong Li. 2021. Intel’s Hyperscale-Ready Infrastructure Processing

Unit (IPU). In 2021 IEEE Hot Chips 33 Symposium (HCS). 1-16.

Brent Callaghan, Theresa Lingutla-Raj, Alex Chiu, Peter Staubach,

and Omer Asad. 2003. NFS over RDMA. In Proceedings of the ACM

SIGCOMM Workshop on Network-I/O Convergence: Experience, Lessons,

Implications (NICELI "03). 196-208.

Coding Horror 2008. Hardware is Cheap, Programmers are Expen-

sive. https://blog.codinghorror.com/hardware-is-cheap-programmers-

are-expensive/.

[8] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.
ACM 56, 2 (feb 2013), 74-80.

86

Ramos et al.

[9] Matt DeBergalis, Peter Corbett, Steve Kleiman, Arthur Lent, Dave
Noveck, Tom Talpey, and Mark Wittle. 2003. The Direct Access File
System. In Proceedings of the 2nd USENIX Conference on File and Storage
Technologies (FAST °03). 175-188.
Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018.
Azure Accelerated Networking: SmartNICs in the Public Cloud. In
USENIX Symposium on Networked Systems Design and Implementation
(NSDI).
[11] gRPC 2023. gRPC. https://grpc.io.
[12] HyperProtoBench 2022. HyperProtoBench. https://github.com/google/
HyperProtoBench.
[13] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter
RPCs can be General and Fast. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). 1-16.
Sagar Karandikar, Chris Leary, Chris Kennelly, Jerry Zhao, Dinesh
Parimi, Borivoje Nikolic, Krste Asanovic, and Parthasarathy Ran-
ganathan. 2021. A Hardware Accelerator for Protocol Buffers. In
MICRO-54: 54th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO °21). 462-478.
Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina
Delimitrou. 2021. Dagger: efficient and fast RPCs in cloud microser-
vices with near-memory reconfigurable NICs. In ASPLOS °21: 26th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Virtual Event, USA, April 19-23,
2021, Tim Sherwood, Emery D. Berger, and Christos Kozyrakis (Eds.).
36-51.
Bojie Li, Kun Tan, Layong Luo, Yanqing Peng, Rengian Luo, Ningyi
Xu, Yonggiang Xiong, Peng Cheng, and Enhong Chen. 2016. ClickNP:
Highly Flexible and High Performance Network Processing with Re-
configurable Hardware. In Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCOMM).
[17] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble.
2014. Tales of the Tail: Hardware, OS, and Application-level Sources
of Tail Latency. In Proceedings of the ACM Symposium on Cloud Com-
puting. 1-14.
[18] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete Wyckoff, and Dha-
baleswar K. Panda. 2003. High Performance RDMA-Based MPI Imple-
mentation over InfiniBand. In Proceedings of the 17th Annual Interna-
tional Conference on Supercomputing (ICS °03). 295-304.
Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius, Xi
Wang, and Amin Vahdat. 2019. Snap: A Microkernel Approach to Host
Networking. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP ’19). 399-413.
MEV 2022. New Intel Mount Evans IPU ASIC DPU at Intel Vision
2022. https://www.servethehome.com/new-intel-mount-evans-ipu-
asic-dpu-at-intel-vision-2022/.
Pulkit Misra, Maria F. Borge, Ifiigo Goiri, Alvin R. Lebeck, Willy
Zwaenepoel, and Ricardo Bianchini. 2019. Managing Tail Latency
in Datacenter-Scale File Systems Under Production Constraints. In
Proceedings of the 14th European Conference on Computer Systems (Eu-
roSys).

[10]

[14]

[15]

[16]

[19]

[20]

[21]

https://thrift.apache.org
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://blog.codinghorror.com/hardware-is-cheap-programmers-are-expensive/
https://blog.codinghorror.com/hardware-is-cheap-programmers-are-expensive/
https://grpc.io
https://github.com/google/HyperProtoBench
https://github.com/google/HyperProtoBench
https://www.servethehome.com/new-intel-mount-evans-ipu-asic-dpu-at-intel-vision-2022/
https://www.servethehome.com/new-intel-mount-evans-ipu-asic-dpu-at-intel-vision-2022/

Split gRPC: An Isolation Architecture for RPC Software Stacks

[22] Jeffrey C. Mogul. 2003. TCP Offload is a Dumb Idea Whose Time Has
Come. In Proceedings of the 9th Conference on Hot Topics in Operating
Systems - Volume 9 (HOTOS 03). 5.

[23] Plato. 1952. Plato’s Phaedrus. Cambridge : University Press. [265e].

[24] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland,

Zilu Tian, Mario Paulo Drumond, Babak Falsafi, and Christoph Koch.

2020. Optimus Prime: Accelerating Data Transformation in Servers.

In Proceedings of the Twenty-Fifth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(ASPLOS ’20). 1203-1216.

Arash Pourhabibi, Mark Sutherland, Alexandros Daglis, and Babak Fal-

safl. 2021. Cerebros: Evading the RPC Tax in Datacenters. In MICRO-54:

54th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO °21). 407-420.

[25

=

87

[26]

[27]

[28]

[29]

[30]

APSys ’24, September 4-5, 2024, Kyoto, Japan

Radar Theme: Web Ops 2008. Radar Theme: Web Ops. http://radar.
oreilly.com/2008/08/radar-theme-web-ops.html.

Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu Guo, and Yongwei
Wu. 2017. RFP: When RPC is Faster than Server-Bypass with RDMA.
In Proceedings of the Twelfth European Conference on Computer Systems
(EuroSys ’17). 1-15.

Brent B Welch. 1986. The Sprite Remote Procedure Call System. Techni-
cal Report. University of California at Berkeley.

Adam Wolnikowski, Stephen Ibanez, Jonathan Stone, Changhoon Kim,
Rajit Manohar, and Robert Soulé. 2021. Zerializer: Towards Zero-Copy
Serialization. In Proceedings of the Workshop on Hot Topics in Operating
Systems (HotOS ’21). 206-212.

S. Zhang, H. Angepat, and D. Chiou. 2017. HGum: Messaging Frame-
work for Hardware Accelerators. In International Conference on Re-
ConFigurable Computing and FPGAs (ReConFig).

http://radar.oreilly.com/2008/08/radar-theme-web-ops.html
http://radar.oreilly.com/2008/08/radar-theme-web-ops.html

	Abstract
	1 Introduction
	2 Sources of Interference
	3 System Design
	4 Implementation
	5 Evaluation
	5.1 Methodology
	5.2 Key Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

