
1

SPRoute: A Scalable Parallel Negotiation-based Global Router
Jiayuan He1, Martin Burtscher2, Rajit Manohar3, Keshav Pingali4

1,4Department of Computer Science, University of Texas at Austin, Austin, TX, USA
2Department of Computer Science, Texas State University, San Marcos, TX, USA

3Computer Systems Lab, Yale University, New Haven, CT, USA
1hejy@cs.utexas.edu, 2burtscher@txstate.edu, 3rajit.manohar@yale.edu, 4pingali@cs.utexas.edu

Abstract—The complexity of global routing increases rapidly
as chip designs grow larger. In many global routers, maze routing
is the most time-consuming stage. One way to reduce its runtime
is parallelization. Existing parallel maze routers work either
by identifying and routing independent nets or by partitioning
the chip area into non-overlapping regions. In this paper, we
describe a scalable parallel global router called SPRoute that
initially exploits net-level parallelism, automatically lowers the
parallelism when livelock is identified, and finally switches to fine-
grain parallelism to guarantee convergence. We evaluate SPRoute
on a 28-core machine on the ISPD 2008 global routing contest
benchmark suite. It achieves an average speedup of 11.5 with a
wirelength penalty of 0.6% on overflow-free benchmarks, and an
average speedup of 4.5 with a total overflow penalty of 7% on
hard-to-route benchmarks over sequential SPRoute. Compared
to FastRoute 4.1, SPRoute achieves an average speedup of
11.0 and 3.1 on overflow-free benchmarks and hard-to-route
benchmarks, respectively.

Index Terms—Global Routing, Parallel Computing

I. INTRODUCTION

Global routing is a crucial stage in the VLSI physical design
flow. It can be used either to quickly estimate routability
and congestion in the early stages before routing, or to
provide guidance for detailed routing to generate the wire
layout. In the past few years, global routing has attracted
considerable research effort and many robust global routers
have been developed, including FGR [16], MaizeRouter [11],
BoxRouter [3], NTHU-Route [2], NCTU-gr [9] and Fas-
tRoute [13]. Most of these global routers are based on the
negotiation-based rip-up and reroute maze routing technique
introduced in PathFinder [10]. Techniques such as monotonic
and 3-bend routing, introduced in FastRoute 4.1 [13], can
improve the routing quality and reduce the runtime. However,
the focus of most global routers is on optimizing the routing
quality, i.e., minimizing overflow, wirelength and number of
vias; reducing runtime is a secondary concern.

As chip designs grow larger, the complexity and runtime of
global routing is increasing rapidly. Figure 1 shows the general
design flow of many modern global routers. In this flow, maze
routing is the most important step. It is not only crucial to
routing quality but it is also the most time-consuming step.
Therefore, we believe it is imperative to develop a fast and
high-quality maze routing technique for global routing.

One way to reduce the high runtime is parallelization, but
existing parallel global routers do not provide much speedup
over sequential execution even when they exhibit good scal-
ability. In this paper, we first study net-level parallelization.
In net-level parallelization, each thread acquires a net and
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Fig. 1: Design flow of many modern global routers. First, each
net is decomposed into 2-pin edges to generate a tree. Second,
pattern routing is used to generate a routing solution for the
decomposed 2-pin nets. If there is overflow on the grid after
pattern routing, the global router enters an iterative rip-up and
reroute maze routing stage until the total overflow decreases to
zero or the maximum number of iterations is reached. Finally,
a layer assignment stage is applied to generate a multi-layer
solution.

applies negotiation-based rip-up and reroute maze routing on
the thread’s local grid. After local maze routing is finished,
the thread updates the routing resource usage in the global
grid. Since other threads may have routed nets through the
same regions concurrently, resource usage may have exceeded
resource availability. One way to avoid this is to enforce
disjointness of the routing regions of different nets but this
limits parallelism and results in longer running times. Another
way to address this problem is to rollback some threads when
resource conflicts are detected but this can result in livelock.

To address these problems, we propose a two-phase maze
routing approach that initially exploits net-level parallelism,
automatically lowers the parallelism when livelock is iden-
tified, and finally switches to fine-grain parallel processing
of individual nets. This solution permits nets to be routed in
parallel through the same region as long as enough routing
resources are available, so performance will be good for “easy-
to-route” designs. For more difficult designs in which there is
congestion in some routing regions, this solution still permits
some parallelism to be exploited.

This paper describes an implementation of this approach
called SPRoute, a Scalable Parallel global Router. SPRoute
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Fig. 2: Grid graph of global routing. The chip area is parti-
tioned into 4× 4 bins and forms a 4× 4 grid graph. The red
lines on the grid graph show a solution to route a net that
connects pins A, B and C.

uses ideas from the sequential FastRoute 4.1 [13]. To make
it easy to use, SPRoute has a single parameter set for all
inputs. We evaluate SPRoute on the ISPD 2008 global routing
contest benchmark suite [1]. It achieves an average speedup of
11.5 with a wirelength penalty of 0.6% on a 28-core machine
on overflow-free benchmarks, and an average speedup of 4.5
with an overflow penalty of 7% on hard-to-route benchmarks
over sequential SPRoute. Compared to FastRoute 4.1, SPRoute
achieves an average speedup of 11.0 and 3.1 on overflow-free
benchmarks and hard-to-route benchmarks, respectively.

In summary, the contributions of this work are as follows.
1) We propose a novel two-phase maze routing algorithm

that combines a net-level parallel phase and a fine-
grain parallel phase. The proposed approach resolves the
livelock issue in net-level parallel routing and achieves
good speedup.

2) We describe an implementation of this two-phase
maze routing algorithm called SPRoute. We show that
SPRoute achieves good speedup on multi-core machines
with an acceptable wirelength and overflow penalty
compared to state-of-the-art global routers.

3) We study the limited parallelism in the fine-grain stage
and investigate factors that limit speedup.

SPRoute will be released as open-source code.
The rest of the paper is organized as follows. Section II

provides background on global routing and discusses the
livelock issue of net-level parallelization. Section III summa-
rizes related work. Section IV describes the proposed two-
phase maze routing approach in detail. Section V provides
experimental results. Section VI concludes the paper.

II. BACKGROUND

A. Global Routing

In global routing, a set of nets and a routing region are
given as input. Each net consists of a set of pins. Each
pin represents a pin of a cell in the circuit and has a fixed
coordinate generated by the placement stage. The routing
region is represented as a grid graph. The nodes of the grid
graph represent the routing grid bins and the edges represent
the connections between adjacent grid bins. Figure 2 shows
an example of a 4× 4 grid. The chip area is partitioned into

4× 4 bins and forms a 4× 4 grid graph. The blue rectangles
represent the cells of the circuit. Vertices A, B and C are three
pins on the same net and need to be connected. The red lines
on the grid graph show a solution to route this 3-pin net.

The capacity of an edge is the maximum number of wires
that are allowed to route through the edge and is given as
an input. The usage of an edge is the number of wires going
through the edge. The overflow of an edge is the number of
wires that exceeds the capacity.

The global routing problem is the following: for every input
net, find a route that connects the pins of the net on the grid
graph. The first objective is to minimize the total overflow of
all edges. The second objective is to minimize the wire length.
The cost of vias is also considered in multi-layer designs.

B. Modern Global Routers

Most modern global routers are based on negotiation-based
rip-up and reroute maze routing, which was introduced by
PathFinder [10]. The general design flow is shown in Figure
1. First, each multi-pin net is decomposed into a set of
2-pin nets in the net decomposition stage. A widely used
technique for decomposition is to generate a rectilinear Steiner
minimum tree (RSMT) using FLUTE [4]. In the second stage,
pattern routing is used to generate the routing solution for
the decomposed 2-pin nets. Each global router applies its
own pattern routing techniques, such as probabilistic L-shaped
pattern routing in NTHU-Route [2] or L & Z and 3-bend
routing in FastRoute [13]. If there is overflow on the grid after
pattern routing, the global router enters an iterative rip-up and
reroute maze routing stage until the total overflow decreases to
zero or the maximum number of iterations is reached. Finally,
a layer assignment stage is applied to generate a multi-layer
solution.

Maze routing is the most time-consuming stage in the design
flow of many modern global routers. Thus, it is necessary
to develop fast and high-quality maze routing techniques for
global routers.

C. Livelock in Net-level Parallelism

One way to reduce the runtime of maze routing is paral-
lelization. In net-level parallelism, each thread first acquires
a net and rips up the net if there is overflow on the edges
it uses. The net is ripped up by subtracting the usage from
the global grid. Then the thread applies maze routing on the
thread’s local grid and finally adds the usage to the global
grid.

Unless care is taken, exploiting net-level parallelism can
result in race conditions or even livelock when different nets
are routed on the same region. The probability of livelock
depends on the number of concurrent nets, i.e., the number
of threads in net-level parallelism. Figure 3 shows a simple
example of livelock on a 3×3 grid in which the capacity of
each edge is 1. Assume nodes E and F are connected by two
nets and that both initial routing solutions use edge (E, F).
Edge (E, F) is an overflow edge with a capacity of 1 and a
usage of 2. Suppose two threads acquire one net each and start
rip-up and reroute at the same time. Both threads detect the
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(a) Parallel (b) Sequential

Fig. 3: An example of livelock. (a) In parallel execution,
two threads identify two nets have overflow on edge (E,F ),
rip them up, and then reroute on edge (E, F) again. (b) In
sequential execution, one net routes after the other, so the later
net is not ripped up.
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Fig. 4: Scalability and conflicts when locks are applied to rip
up edges in the first iteration of the newblue3 input.

overflow edge (E, F), and after rip-up the usage of edge (E, F)
becomes 0. During maze routing, both threads will read the
usage of edge (E, F) as 0 and route on it again. This results
in livelock.

One way to resolve the livelock is to lock the routing
region when one net is working on it, thus sequentializing
the conflicting nets. However, this reduces the amount of
parallelism. Figure 4 shows the runtime and conflicts when
locks are applied to rip up edges. The program only scales
to 2 threads because more threads result in high conflict rates
and thus sequentialize conflicted nets. The runtime of 14 and
28 threads is higher than the single-thread runtime. Figure 4

shows the performance of locking only the rip-up edges rather
than the entire routing region, which leads to more contention.

The livelock issue in net-level parallelism has been studied
in NCTU-gr 2.0 [9] and Han et al. [6]. NCTU-gr 2.0 uses a
collision-aware technique that adjusts the cost of the grid when
identifying collisions. The cost of edges in the conflicting
region is increased to reduce the probability of using edges in
the region. Han et al. implemented a scheduler to sequentialize
the conflicting nets to guarantee mutual exclusion. However,
the resulting amount of parallelism is limited and depends
highly on the input circuit.

To address this problem, we propose a net-level-sequential
fine-grain-parallel technique to resolve the livelock issue and
achieve competitive speedups. This technique is implemented
in the Galois system, described in Section II-D.

D. Galois System

Parallelism in graph algorithms such as maze routing can be
described abstractly using a data-centric algorithm abstraction
called the operator formulation [14].

The operator formulation has a local view and a global
view of algorithms. The local view is called the operator and
it specifies a state update rule that is applied to an active
node in the graph. In maze routing, the operator updates the
four neighboring nodes of the active node and expands the
boundary. The global view of an algorithm is the schedule,
which specifies the order in which active nodes must be
processed. In the case of maze routing, grid nodes that are
closer to the source nodes have higher priority and should be
expanded first.

The Galois system is an open-source C++ library de-
signed to ease the implementation of parallel graph algorithms
described using the operator formulation. The programmer
replaces serial loop constructs (e.g., for and while loops)
and serial data structures with parallel loop constructs and
concurrent data structures provided by the Galois system.
Galois is designed so that the programmer does not have to
deal with low-level parallel programming constructs such as
threads, locks, barriers, condition variables, etc.

In this work, the Galois do all parallel loop and
LargeArray are used to exploit net-level parallelism. The
for each parallel loop and OrderedByIntegerMetric
(OBIM ) scheduler are used to exploit fine-grain parallelism.

III. RELATED WORK

Several parallel global routers have been developed to
reduce the running time of routing. PGRIP [17] is a parallel
global router based on integer programming. It partitions the
chip area into subregions to form subproblems and solves each
subproblem in parallel. Integer programming is a heavyweight
tool, which increases the runtime of PGRIP though the code
is parallel. NCTU-GR 2.0 [9] is a net-level parallel method.
The paper studies race conditions on routing resources and
introduces a collision-aware rip-up and reroute solution by
adjusting the cost of conflicting routing resources. Han et
al. [6] implement net-level parallelism on GPUs by identifying
and scheduling independent nets to avoid race conditions on
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routing resources. The level of parallelism and solution quality
highly depend on the input circuit. VFGR [15] utilizes both
net-level and region-level parallelism and switches between
them according to the bounding box of the nets.

IV. PARALLEL MAZE ROUTING IMPLEMENTATION

Our global router SPRoute is based on FastRoute 4.1 [13].
We parallelized the maze routing stage, which is the most time-
consuming stage in the design flow. The parallelized maze
routing has two phases: net-level parallelism and fine-grained
parallelism as shown in Algorithm 1.

Algorithm 1 Maze routing

Require: A set of nets N and a grid graph G(V,E)
Ensure: Routing solution of each net n in N

1: for each net n in N do # net-level parallelism
2: for each two-pin net e of n do
3: if ripup check(G, e) then
4: ripup(G, e)
5: WL.push(e.source nodes)
6: while !WL.empty() do # fine-grain parallelism
7: node = WL.pop()
8: neighbors = maze expand(G,node)
9: WL.push(neighbors)

10: end while
11: trace back(G, e)
12: adjust tree(n, e)
13: end if
14: end for
15: end for

During maze routing, a 2-pin net is checked to see if there
is overflow on the edges it uses (line 3). If so, it is ripped up
by subtracting the usage on the edges and its source nodes are
pushed into the worklist WL (lines 4 and 5). The worklist WL
stores the boundary of the maze expansion. The boundary is
iteratively expanded until no node is left in the worklist (lines 6
to 9). Finally, the net traces back on the grid graph to generate
a routing solution and updates the usage in the grid graph (line
11) before adjusting the tree structure if necessary (line 12).

In Algorithm 1, lines 1, 2 and 6 comprise three nested loops
that are possible candidates for parallelization. Section IV-A
describes net-level parallelism to parallelize line 1. Section
IV-B describes fine-grain parallelism to parallelize line 6. Line
2 iterates on 2-pin nets of a net. The source and destination
nodes depend on the remaining 2-pin nets of the same net,
thus there are dependencies at the 2-pin nets level, making
this loop difficult to parallelize.

A. Net-level Parallelism

Figure 5 shows the implementation of net-level parallelism.
All threads share a global grid that contains the usage informa-
tion on the grid edges. Threads atomically subtract the usage
during rip-up or add to the usage when establishing a route.
Each thread has a local grid that stores all the information on
the grid node, including its distance from the source node, the
parent node from which the boundary is expanded, etc.

Fig. 5: Net-level Parallelism

Fig. 6: Fine-grain Parallelism

During maze routing, each thread executes lines 3 to 12
in Algorithm 1. Lines 3 and 8 both read the usage of the
edges from the global grid and make decisions based on the
usage. Line 3 determines if the net should be ripped up and
line 8 determines if the neighbors should be pushed into the
worklist. Since we do not apply locks to the routing regions,
the usage read by a thread may be stale, causing livelock, as
explained before. Thus, the solution of net-level parallelism is
nondeterministic.

After maze routing is done, we compare the total over-
flow of this iteration with the previous iteration. Once the
total overflow stops decreasing, we interpret it as evidence
of livelock and reduce the number of threads in net-level
parallelism. If livelock still exists, we finally switch to the
fine-grain parallelism phase.

B. Fine-grain Parallelism

The fine-grain phase parallelizes line 6 in Algorithm 1, as
illustrated in Figure 6. In fine-grain parallelism, a node on
the grid graph is called active when it is in the worklist. The
parallel loop starts from a set of source nodes in the worklist.
During the expansion, each thread first pops a node from the
worklist and acquires the lock for itself and its four neighbors.
Then it relaxes the edges of the node to compute the new
distance of the neighbors. The distance values are updated if
the new distance is less than the neighbor’s current distance.

As discussed in Section II-D, an algorithm has a local view
and a global view in the operator formulation. In maze routing,
the local view (operator) is the edge relaxation and boundary
expansion. The global view is the schedule of active nodes, i.e.,
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Fig. 7: OrderedByIntegerMetric (OBIM) scheduler with per
thread chunked FIFO

which node has the highest priority to be popped out from the
worklist and executed first. In sequential maze routing, nodes
with a shorter distance have higher priority and thus a priority
queue is generally used. However, priority queues are not good
concurrent priority schedulers [8]. In Galois, a scalable priority
scheduler called OrderByIntegerMetric (OBIM) is provided to
support soft priorities [12].

1) Scheduler Design: The scheduler of the fine-grain par-
allel phase uses OBIM with PerThreadChunkFIFO, which
provides thread locality to OBIM.

OBIM partitions the priority range into subranges and
assigns each subrange the same priority level by a user
specified indexer. The order within each priority level and
its detailed implementation are specified by another sec-
ondary worklist. In our fine-grain parallel design, we use
the distance/OBIM delta rounded to an integer as the
indexer, and PerThreadChunkFIFO as the secondary worklist.
OBIM delta is a function that shares the same parameters
as the cost function on edges and changes across iterations as
the cost function changes.

As an example, Figure 7 shows the structure of OBIM
with an OBIM delta of 20 and PerThreadChunkFIFO with
a chunk size of 2. The highest priority is priority 0. In OBIM
with PerThreadChunkFIFO, there is a ChunkFIFO for each
thread in each priority level. A ChunkFIFO maintains a queue
for chunks of work items. A full chunk can be stolen by other
threads for load balancing while an incomplete chunk cannot.

In maze routing, when a thread is pushing a node into the
worklist, it calculates the integer index of the node and pushes
the node into a chunk in the corresponding ChunkFIFO. When
a thread is popping a node from the worklist, it reads the
highest priority level that has work items among all threads and
then checks if there are work items in its local priority level.
If so, it pops a chunk from the local ChunkFIFO and executes
it. Otherwise, it steals a full chunk from another thread. Since
OBIM maintains soft priorities in the worklist, the order in
which nodes are popped from the worklist is nondeterministic.
Therefore, the exploitation of fine-grain parallelism is nonde-
terministic and may produce different solutions in different
runs with the same inputs.

2) Work Reduction: In maze routing, a grid node can be
pushed into the worklist multiple times and thus introduce
extra work. To reduce the extra work, we push the node as
well as its distance to the worklist. While the node is in the

worklist, a shorter path may be found and a duplicate of the
node with a smaller distance is pushed into the worklist. In this
case, the distance on the grid is updated to the smaller one.
When a node is popped out, it aborts if the push-time distance
is not equal to the distance on the grid. This optimization
eliminates more than half of the work in some cases.

Line 6 in Algorithm 1 shows that the fine-grain parallel
loop terminates when there are no items left in the worklist.
However, the maze expansion can terminate when the shortest
path is found even though the worklist is not empty. We
implement the early termination by recording the minimum
length of the paths that reaches the destination. If the worklist
pops a node with distance above the recorded distance plus
OBIM delta, which indicates that no active node in the
worklist has the same priority as the recorded distance, then
it is safe to exit routing of the current net.

V. EXPERIMENTAL RESULTS

SPRoute is implemented in C++ on Galois 4.0 [5]. We
evaluate SPRoute on the ISPD 2008 global routing contest
[1] benchmark suite on a 28-core 2.2 GHz Intel Xeon Gold
machine with 196 GB of memory. The machine has two
sockets, i.e., 14 cores per socket. We adopt the same criterion
as NCTU-gr 2.0 [9] and classify the inputs into two categories:
overflow-free cases and hard-to-route cases.

In the experimental results, we first show convergence
behavior and scalability of SPRoute to explain performance.
Then we compare the total overflow, wirelength and runtime of
SPRoute with these statistics for two state-of-the-art academic
global routers, FastRoute 4.1 [13] and NCTU-gr 2.0 [9], both
of which are sequential. The total wirelength and the number
of vias are given in units of 105.

A. Convergence Behavior

In SPRoute, maze routing is called iteratively until the
overflow converges to 0. One iteration of maze routing denotes
one pass to rip up and reroute all the nets. Figure 8 shows the
convergence behavior of different execution strategies for the
bigblue1 input from the ISPD 2008 routing contest. These
execution strategies are (i) sequential execution, (ii) fine-grain
parallel execution, (iii) net-level parallel execution with 8
threads, (iv) net-level parallel execution with 28 threads, and
(v) SPRoute.

The figure shows that for bigblue1, fine-grain parallel
execution and sequential execution behave similarly, and their
overflow decreases to zero in iteration 15. The fine-grain
parallel execution strategy is net-level sequential so it does not
encounter problems with livelock. Net-level parallel execution
does not converge in 28 iterations for both 8 threads and 28
threads. The overflow of net-level parallel execution with 28
threads stops decreasing at iteration 9 and remains high. The
overflow of net-level parallel execution with 8 threads is close
to zero after iteration 9. However it does not decrease to zero
even after 28 iterations because of livelock. This illustrates
the trade-off between parallelism and convergence in net-level
parallel execution.
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Fig. 9: Runtime of the first maze routing iteration on the
newblue3 input

SPRoute implements a hybrid scheme that achieves a good
speedup with net-level parallel execution and guarantees con-
vergence by switching to fine-grain parallelism when live-
lock is detected. In Figure 8, the overflow of SPRoute until
iteration 7 is similar to that of net-level parallel execution
with 28 threads. When livelock is identified, SPRoute lowers
the level of parallelism in net-level parallel execution and
finally switches to fine-grain parallelism. SPRoute converges
in iteration 20.

B. Scalability

1) Scalability of Fine-grain Parallel Execution: Figure 9
shows the runtime of the first maze routing iteration on
newblue3. Net-level parallel execution provides close to per-
fect scaling but fine-grain parallel execution flat-lines after
8 threads. Since 8 threads provide the best speedup (4.3×),
we use 8 threads in SPRoute when switching from net-level
parallelism to fine-grain parallelism.

We use Intel’s Vtune Amplifier [7] to profile the first maze
routing iteration on newblue3 and investigate the reasons of
the limited speedup in fine-grain parallelism. Figure 10 shows
the clock cycles of two major time-consuming functions. Pop
denotes the cost of popping nodes from the worklist plus the
cost of waiting if there are not enough nodes in the worklist.
Lock denotes the cost of locking neighbors plus the cost of
waiting if any of them are already locked. The clock cycles
shown in the figure are the aggregated clock cycles of all
threads. As the number of threads increases, the clock cycles
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Fig. 11: Scalability on Overflow-free Cases

of a scalable function should remain the same whereas the
clock cycles increase if the function is not scalable. The figure
shows that both pop and lock do not scale. This explains the
reason for the limited parallelism in the fine-grain stage.

Since fine-grain parallelism is widely used in graph appli-
cations, we compare the number of nodes, number of edges,
average parallelism and average worklist size between maze
routing and the Single Source Shortest Path (SSSP) problem in
Table I. The USA road network is a standard graph for graph
analytics studies. We estimate parallelism by using the size of
the maximal independent set in the worklist, i.e., the maximal
number of work items that can run concurrently. Table I shows
that the average parallelism and worklist size for maze routing
on newblue3 are both several orders of magnitude smaller
than for SSSP. The worklist size depends on the size of the
routing region. Note that, in this example, the average number
of routing edges of a 2-pin net is 105, which indicates that
the maze expansion only explores a small routing region in
the entire 973× 1256 grid and thus the worklist size is small.

2) Scalability of SPRoute: Figure 11 shows the scalability
of SPRoute on overflow-free benchmarks. The average scaling
on 28 threads is 11.5. Ten of the eleven inputs achieve
more than 8× speedup. On newblue1, SPRoute does not
provide good scalability because it requires a large number
of maze routing iterations to converge. In our two-phase
implementation, most of the time is spent in the fine-grain
phase, which provides limited scalability.
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Grid #Nodes #Edges Avg. Parallelism Avg. Worklist Size
Maze routing on newblue3 973× 1256 1222088 2441947 575 12456
SSSP on USA road graph 23947347 57708624 743172 2415366

TABLE I: Average Parallelism and Worklist Size

C. Comparison with Academic Global Routers

Table II shows the wirelength, number of vias, and overall
maze routing time of five global routers on the overflow-free
cases. The standard deviation is provided to account for the
non-determinism in parallel SPRoute. The wirelength and the
number of vias are consistent with 0.06% and 0.05% standard
deviations respectively. The runtime of parallel SPRoute has
an average standard deviation of 8.7% because it depends on
when the switch is made between the two phases.

To build a deterministic global router, we can either execute
independent nets in rounds or assign priorities to nets to
remove the randomness in resolving livelocks. However, as
discussed in Section II, most nets overlap with each other and
these two methods will reduce speedup. In our ongoing work,
we are studying how to build a deterministic and fast maze
router.

The row denoted Avg. Ratio shows the overall wirelength,
vias and runtime normalized to those of parallel SPRoute.
Smaller ratios are better. Parallel SPRoute achieves an 11.5×
speedup with a 0.6% wirelength penalty compared to sequen-
tial SPRoute and a 11× speedup with a 0.6% wirelength
increase against FastRoute 4.1. NCTU-gr 2.0 in fast mode
focuses on improving the runtime with acceptable wirelength
increase, and is outperformed by SPRoute by a wirelength of
2% and a speedup of 8.4×. NCTU-gr 2.0 in regular mode is
outperformed by a number of vias of 2% and a speedup of
10.0×.

Table III shows the result for the hard-to-route cases. TOF
and MOF denote the total overflow and the maximum overflow
of all edges. WL and VIA denote the wirelength and the
number of vias. Parallel SPRoute has a 4.5× speedup with
a total overflow penalty of 0.7% and a wirelength penalty of
0.5% over sequential execution, and it has a 3.1× speedup
with a total overflow penalty of 7% and a wirelength penalty
of 0.6% relative to FastRoute 4.1. On the hard-to-route cases,
the fine-grain parallel phase accounts for most of the runtime
and thus the speedup is limited by the available parallelism in
the fine-grain phase.

Compared to NCTU-gr 2.0, SPRoute uses 0.3% more wire-
length and achieves 2.48× less total overflow than regular
mode, and achieves 3% less wirelength and 5.17× less total
overflow than fast mode. The runtime of SPRoute and NCTU-
gr 2.0 are not comparable on the hard-to-route cases because
the termination condition of maze routing is different.

VI. CONCLUSION

This paper describes how parallelism can be exploited to
reduce the high runtime of the maze routing stage in global
routing. We propose a novel two-phase parallel technique
that initially uses net-level parallelism and then steps down
the parallelism when livelock is identified. If livelock still

exists, SPRoute ultimately switches to fine-grain parallelism to
guarantee convergence. SPRoute, our scalable parallel global
router, is implemented in the Galois system and evaluated on
the ISPD 2008 global routing benchmark suite. On overflow-
free benchmarks, SPRoute achieves an average speedup of
11.5× and 11× with only 0.6% wirelength penalty over
sequential SPRoute and FastRoute 4.1, respectively. On hard-
to-route benchmarks, SPRoute achieves an average speedup of
4.5× and 3.1× over sequential SPRoute and FastRoute 4.1,
respectively.
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