
Timed Signalling Processes
Rajit Manohar∗
Yale University

New Haven, CT 06520, USA
rajit.manohar@yale.edu

Yoram Moses†
Technion-Israel Institute of Technology

Haifa 32000, Israel
moses@ee.technion.ac.il

Abstract—Circuits often use knowledge of time to order actions
in a computation. The commonly used bundling constraint in
bundled-data circuits states that a request signal must arrive
only after the corresponding data wires have the correct value.
Various informal and formal mechanisms have been used by
designers to capture sufficient conditions for such constraints to
be satisfied, including relative timing, pulse width requirements,
and regions where signal changes are prohibited.

We study the problem of ordering signal transitions in an
asynchronous computation when there is knowledge of wire delay
and computation delay, but where time is not avaiable directly
as a variable to any participating process. In this context, we
introduce two signalling patterns: a timing fork, and a novel
structure we call a zigzag pattern. We show that a zigzag pattern
is sufficient to order signal transitions in the timed asynchronous
setting. More importantly we show that if two signal transitions
are ordered, then there exists a generalized zigzag pattern that
guarantees their ordering.

This shows that a zigzag pattern is the fundamental construct
needed to order signal transitions in the timed asynchronous
circuit context. We show how such patterns capture commonly
used timing constraints in practical asynchronous circuits.

Keywords—timing, event ordering, asynchronous circuits

I. INTRODUCTION

The delays of gates and wires in a circuit can impact
both the performance of an asynchronous computation as
well as its functionality. Apart from purely delay-insensitive
circuits where the computation performed does not depend on
the delays of gates and wires, all other asynchronous circuit
families rely on either implicit or explicit assumptions about
the delays of gates and/or wires in the physical realization of
the circuit to ensure correct operation.

There are many ways that a designer specifies these delay
requirements. Examples of constraints include: a path through
a sequence of gates must have a delay larger than a specified
value; a signal must have a minimum pulse width; and
timing constraints that require that a particular signal transition
must occur before another one. Researchers have developed a
range of asynchronous circuit families, each of which make a
different set of assumptions about timing. Examples of such
families include delay-insensitive logic, quasi delay-insensitive
logic [1], micropipelines [2], MOUSETRAP pipelines [3],
GasP logic [4], and general timed circuits [5].

In this paper, we study the problem of ensuring that signal
transitions are ordered in an asynchronous computation. The

† Yoram Moses is the Israel Pollak academic chair at the Technion, and
was supported in part by the BSF grant 2015820 which is coincident with
NSF-BSF grant CCF 1617945.
∗ Rajit Manohar was supported in part by DARPA IDEA grant FA8650-18-
2-7850, and in part by DARPA POSH grant HR001117S0054-FP-042.

“pure” asynchronous setting where we make no assumptions
about the delays of gates or wires is captured by recent work
on asynchronous signalling processes [6]. In that setting, the
only way two signal transitions can be ordered is if one is
in the past of the other, and this can only be achieved if the
circuit has an explicit path from one signal to the other [6].

In this paper, we assume that a designer has knowledge of
delay bounds on wires and gates and can use this information
to order signal transitions. We introduce the timed signalling
processes model for an asynchronous system consisting of
a collection of concurrent processes interacting via wires.
We explictly model timing information regarding both the
durations of the internal operations of computing elements
(processes) and of communication between processes. In prin-
ciple, the proposed framework is quite general, allowing a
process to be anything from a simple Boolean gate to a much
larger system. However, our immediate goal is to facilitate
reasoning about timing in circuits. Consequently, we assume
that communication between processes occurs over wires that
communicate Boolean values of 0 or 1. Our setting assumes
the existence of upper and lower bounds on the time it takes
for a process to change its state, and bounds on the time it
takes for a wire to communicate a value.

Any asynchronous circuit can be described using our model.
In fact, our model can also describe synchronous circuits as
a special case. Moreover, our setting makes it convenient
to model circuits where different modules are individually
governed by different timing schemes, which can easily occur
in a large-scale asynchronous system.

In the timed signalling processes model, we introduce two
communication structures: a timing fork, and a zigzag pattern
that consists of a collection of timing forks in a specific
configuration.1 We prove two fundamental results on signal
ordering: (i) a zigzag pattern ensures that two signal transitions
are always ordered in a computation; and (ii) if two signal
transitions are always ordered in any computation, then a
generalized zigzag pattern must exist. In particular, either a
zigzag pattern exists, or the model admits a computation that
is potentially erroneous. Our results rigorously establish that a
zigzag pattern is both necessary and sufficient to order events
in the timed signalling processes model. Finally, we provide
a number of examples that illustrate how common timing
constraints are expressed using timing forks, including those
required for flip-flop based synchronous logic.

1Zigzag patterns are inspired by a similar communication structure in
synchronous message-passing distributed systems introduced in [7].

II. DEFINITIONS AND MODEL

A. Wires

The basic element used for communication between pro-
cesses is a wire. A wire w consists of a pair of variables
(ow, iw) in which ow is called the wire’s originating variable
and iw its destination variable. The variables ow and iw are
considered matching variables. The former serves as an output
of a process, and the latter is an input that the wire feeds into
another process. The possible values of a destination variable
are simply {0, 1, ?}. The possible values of an originating
variable are {0, 1, ?,Z}, where Z indicates that the originating
variable is no longer being actively set to a value. The value
? indicates that the variable is in an unknown state.

Definition 1 (enabled to signal): When the value of the
originating variable ow is 0 and that of iw is not 0, we say
that wire w is enabled to signal 0. Similarly, if ow is 1 (resp.
?) and iw is not 1 (resp. ?), we say that w is enabled to signal 1
(resp. ?).

Definition 2 (signalling): A signal is delivered over w in a
transition that starts with w being enabled to signal, and ends
with the value of its destination variable iw assigned to the
value that ow had initially (while ow remains unchanged).

When ow has value Z, the wire w is disabled and no change
in the destination variable can take place.2

Our goal is to explicitly model time bounds for signal
propagation in wires. To this end, we associate two integer
values with each wire w: (i) lb(w) ≥ 1, a lower bound on the
wire delay, and (ii) ub(w) ≥ lb(w), an upper bound on the
wire delay. In addition, we permit ub(w) to be ∞ to model
wires that can have arbitrarily large delay.

Given a set of originating variables O, we denote by SO the
set of possible assignments σO : O → {0, 1, ?,Z}. Similarly,
given a set of destination variables I , we denote by SI the set
of possible assignments σI : I → {0, 1, ?}.

B. Processes

A process in our framework is associated with a set Q of
internal states. In addition, each process p is associated with
a set O = Op of originating variables called its outputs, and
a set I = Ip of destination variables called its inputs. A local
state of such a process consists of a triple ℓ = (q, σO, σI),
where q ∈ Q is the internal state, σO : O → {0, 1, ?,Z} maps
output variables to their values, and σI : I → {0, 1, ?} maps
input variables to their values. The actions of a process can
change its internal state q and output variables σO. We call
the pair (q, σO) the controllable (local) state of the process.

Formally, a process in our framework is a tuple p =
(Q, δ̂, O, I) that describes a nondeterministic automaton where
Q, O, and I are as above with the special state ⊥ ∈ Q (and
hence |Q| ≥ 2), and δ̂ : Q × SO × SI → (2Q×SO \ ∅) is its
nondeterministic transition function. The special state ⊥ is
used to indicate that the process is in an erroneous state. Intu-
itively, δ̂ sets the next controllable state of a process p based

2We have chosen not to have the originating variable value Z carry the
information of whether the last value “delivered” on the wire was 0 or 1. In
our formalism, this information can be captured by the internal state of the
process where the wire originates, if needed.

on p’s current local state.3 A process is said to be quiescent
in a local state (q, σO, σI) if δ̂(q, σO, σI) = {(q, σO)}. If a
process is quiescent, then one of its inputs must change before
its controllable state can change. A step of the process in local
state (q, σO, σI) changes its controllable state from (q, σO) to
(q′, σ′

O) where (q′, σ′
O) ∈ δ̂(q, σO, σI). In general, different

outputs of a process can have distinct values.
As we shall see in Section II-D, there may be situations

where there is a conflict in potential next states that can lead to
erroneous behavior. To capture this, we define the unification
operator between two possible sets of next states. If S1 and
S2 are contained in 2Q×SO

, then S1⊎S2 is defined to be S1 if
S1 = S2; otherwise it is defined to be {(⊥, σ∗

O)}, where σ∗
O

maps an output variable to 0 (resp. or 1 or Z) iff all possible
σO assignments in S1∪S2 map the output variable to the same
value; otherwise, the output variable is mapped to ?.

In the timed setting, processes take some time to process
an input change. We associate a lower bound lb(p) > 0
and an upper bound ub(p) ≥ lb(p) with each process p
that specify how long the process p might take to change its
controllable state. We permit ub(p) to be ∞. For this delay
to reflect the time it takes for the process to take one step,
we require that whenever a process takes a step, it enters a
quiescient state—i.e., that for all (q′, σ′

O) ∈ δ̂(q, σO, σI), we
have δ̂(q′, σ′

O, σI) = {(q′, σ′
O)}.

Our goal is to analyze how timing information can be used
to reason about computations using lower and upper bounds on
signal propagation and on process steps. If a process could take
multiple steps (through internal state evolution) even when its
inputs and outputs remain unchanged, then the delay taken for
a process to change its output would be state-dependent. The
requirement that a process enter a quiescient state after a step
eliminates this possibility, and provides sufficient detail in our
model so that we can analyze timing properties by examining
upper and lower bounds. Note that in the simplest case where
a process is an individual gate, the quiescient state requirement
is guaranteed to be true, so this constraint does not limit the
class of circuits that can be described using our model.

Given a set of processes P , a configuration c of P assigns
a local state c(p) = (q, σO, σI) and an integer kp < ub(p) to
every process p ∈ P , and assigns an integer kw to each wire
w. For a wire that is enabled to signal, kw tracks how long it
has been enabled. For a process p, the integer kp tracks how
long it has been since the process last exited a quiescient state.

If p’s local state in a configuration c is c(p) = (q, σO, σI),
then we denote the controllable state of p by c†(p)

def
= (q, σO).

C. Networks of Timed Signalling Processes

A TSP network is a triple S = (P,W,C0) consisting of
a set of processes P , a set W of the wires appearing in P ,
and a set C0 of configurations of P . This set C0 is called the
set of initial configurations, and will determine the possible
initial states of the system. To ensure that W represents the
input/output variables in P , we require:

3Since we allow the transition function to be nondeterministic, our pro-
cesses can correspond to a rich variety of devices, including synchronous and
asynchronous gates or sub-circuits.

1) Every input and output variable in a process p ∈ P
belongs to a wire in W , and

2) For every wire w = (ow, iw) ∈ W there are two unique
processes p, p′ ∈ P such that ow is an originating
variable (output) of p and iw is a destination variable
(input) of p′.

In order to model circuits by a TSP, we will introduce two
special processes to capture initialization; these are detailed
in Section III-C. (The definitions that follow do not depend
on the specific nature of these two processes.)

It is sometimes convenient to consider the communication
graph GS = (VS , ES) underlying a given TSP network
S def

= (P,W,C0). This is a directed graph with vertex set
VS = P consisting of the processes of S, and where there is
a directed edge (q, p) ∈ ES iff there are matching output and
input variables ow ∈ Oq and iw ∈ Ip. The associated wire w
is considered an output wire of q and an input wire of p. Note
that while a process typically has external inputs and outputs,
a TSP network has neither. In this sense, a process may be
open to external interaction, but a TSP system is closed—
i.e., it includes the circuit being modeled as well as the
environment. Since we have complete knowledge of the entire
system, a “full system” analysis might provide insights into
timed behavior that would not be available when a collection
of processes is analyzed in isolation.

D. Computations and Valid Computations

A computation of a TSP network S = (P,W,C0) is
a sequence c = c0, c1, c2, . . . of configurations of S. A
valid computation of a TSP network S = (P,W,C0) is a
computation in which c0 ∈ C0 is an initial configuration of S,
and for all j ≥ 0, configuration cj+1 is obtained from cj by
applying the following sets of rules to processes and wires.

Processes: The following rules apply to determine c†j+1(p)
from cj(p). If more than one rule applies, the earlier rule listed
is given precedence.

• (idle) If a process p is quiescient at time j, then kp is set
to 0 at time j + 1 (i.e. in cj+1) and c†j+1(p) = c†j(p);

• (min-delay) if kp + 1 < lb(p) then kp is incremented by
one, and c†j+1(p) = c†j(p);

• (act/delay) if lb(p) ≤ kp + 1 < ub(p), then either
– (delay) kp is incremented by one and c†j+1(p) =

c†j(p), or
– (act) kp is set to 0 and process p takes a step—which

corresponds to picking (q′, σ′
Op) ∈ δ̂(cj(p)) and

updating its controllable state from c†j(p) = (q, σOp)

to c†j+1(p) = (q′, σ′
Op);

• (max-act) if kp + 1 = ub(p) then process p takes a step
(as in the act rule above) and kp is set to 0.

Wires: For each wire w = (ow, iw):
• (idle) if w is not enabled to signal in cj , then kw is set

to 0 and iw is unchanged in cj+1;
• (min-delay) if w is enabled to signal in cj and kw +1 <

lb(w), then kw is incremented by one and iw is unchanged
in cj+1;

• (act/delay) if w is enabled to signal in cj and lb(w) ≤
kw + 1 < ub(w), then either

– (delay) iw is unchanged and kw is incremented by
one in cj+1, or

– (act) a signal is delivered over w (i.e., iw is set to
the value of ow) and kw is set to 0 in cj+1;

• (max-act) if w is enabled to signal in cj and kw + 1 =
ub(w), a signal is delivered over w (i.e., iw is set to ow)
and kw is set to 0 in cj+1.

If iw in cj+1 differs from iw in cj , then we say that a signal
is delivered over wire w at time (j + 1) in computation c.

We also apply the following rule after the ones above:
• (reset) If kp is set to a non-zero value in cj+1 by the

rules above and δ̂(cj+1(p)) ̸= δ̂(cj(p)), then kp is set to
0 in cj+1 and the controllable state is set to δ̂(cj(p)) ⊎
δ̂(cj+1(p)).

If kp is set to a non-zero value in cj+1 by the rules above and
δ̂(cj+1(p)) = δ̂(cj(p)) but cj+1(p) ̸= cj(p), we say that p
absorbs the input change at time j. Note that cj+1(p) ̸= cj(p)
is another way of stating that some input of p changed, because
c†j+1(p) = c†j(p) when kp > 0.

The process rules determine the new values of q, σOp , and
kp for each process p. The wire rules determine the new values
of σIp for each process p, and the new values of kw for each
wire w. Finally, the reset rule is applied to reset the process
delay counter if an input change causes the possible next states
to be modified.

For a computation s = c0, c1, c2, . . ., we use s(t) to denote
the configuration ct, and we use sp(t) to denote the local state
(q, σO, σI) of process p in configuration ct.

The definition of a valid computation captures the following
intuitions about signal propagation over bounded delay wires.
If a wire is enabled to signal for a time period smaller than its
minimum propagation delay, it cannot signal (rule min-delay);
if the period reaches the upper bound of the propagation
delay, then it must signal (rule max-act); in the intermediate
cases, it may signal and the choice is non-deterministic (rule
act/delay).

Recall that a signal that is delivered at time t is reflected
in the input variable of the receiving process at time t; hence,
the step taken by the process at time t can, in general, depend
on the signal’s updated value. This is the convention we adopt
when we use the phrase “delivered at time t.”

Note that while process steps have bounded delays in our
model, the timer kp that we use in the model to track the delay
is not part of any local state—and is therefore not accessible
to the processes.

E. Erroneous States and ?-Signalling
Up to this point the state ⊥ and the signal value ? have been

treated just as an ordinary state and signal. We now introduce
new rules and constraints that capture the intuition that these
two symbols are meant to refer to erroneous behavior and
switching hazards.

If w is enabled to signal in cj , a signal is not delivered over
w at time (j + 1), and ow at time (j + 1) differs from ow at
time j, then iw is set to ? in cj+1 and kw is set to 0. This

models a switching hazard on w, and we say that the signal
delivery was cancelled.

To capture the fact that a “?” input cannot be used to provide
information, we impose the following constraint on δ̂. We say
that σ′ ≈ σ if the two functions agree on all non-? values.

δ̂(q, σI , σO) =
⊎

σ′
I≈σI ,σ′

O≈σO

δ̂(q, σ′
I , σ

′
O)

Note that the value of δ̂ when an input or output variable
is “?” can be determined from its value when all inputs and
outputs are non-“?” values. We also impose the constraint that
an output variable of a process can be “?” state if and only if
the process is in the “⊥” state.

Finally, the constraint we impose on the ⊥ state is a process
in the ⊥ state is either quiescient, or any non-quiescient
transition must take it out of the ⊥ state.

F. Self-timed Circuits as TSP Networks

There are many possible valid computations of a TSP
network that start with a particular initial configuration c0. The
existence of lower and upper bounds for signal propagation
and process execution permits computations to use timing
information for coordinating activity.

TSP systems provide a unified setting to model many asyn-
chronous circuit families. The class of purely delay-insensitive
(DI) circuits can be directly captured by mapping gates to
processes with a single state each, where the function δ̂ for a
gate captures the behavior of the gate’s pull-up and pull-down
switching logic. All upper bounds are infinite, and all lower
bounds are set to 1.

All other asynchronous circuit families introduce timing
assumptions either on wires, on gates, or on both. Speed-
independent circuits can be modeled by setting both the upper
and lower bound on wire delays to 1, with processes (used to
model gates) having a delay with a lower bound of 1 and upper
bound of infinity. For circuit families that use more knowledge
about gate and wire delays, assumptions about minimum and
maximum delay of gates and wires can be encoded using the
lower and upper bounds available in the TSP model.
Example: bundled-data channels: A bundled-data communi-
cation channel uses n data wires together with a request and
acknowledge wire to transmit n bits of information. In the
simplest version of the channel, the bundling constraint is
that the data wires must be correctly set when the request
wire transitions from zero to one, and the data can be
modified once the acknowledge transitions from zero to one.
Such a communication protocol cannot be handled by purely
asynchronous signalling processes that permit arbitrarily large
delays on every wire in the system. The TSP model can bound
delays on circuit components and wires that are used to drive
the bundled data channel signals, and hence can be used to
establish whether or not the bundling constraint is satisfied.

G. Spontaneous Events and Wire Fanout

It is useful to include special processes that are the source
of spontaneous events—events where we have no control over
when they occur. This corresponds, for example, to when an

input signal might change at an unknown time to initiate part
of a computation.

Definition 3 (spontaneous process): A process p =
(Q, δ̂, O, I) in a TSP network is said to be a spontaneous 0-to-1
process iff it satisfies the following:

• Q = {init}
• I = ∅ and O = {ow} (a singleton)
• In every initial configuration of the TSP network, ow = 0

and the matching input variable iw = 0
• δ̂(init, σI , σO) = {(init, (ow 7→ 1))}, where (x 7→ v)

denotes a partial function that maps x to v
• ub(p) = ∞ and lb(p) = 1

A spontaneous 1-to-0 process is similar, except the state
transition function flips the output variable ow from 1 to 0.

Our model only has point-to-point wires. To support wire
fanout, we introduce a special process called a deterministic
wire fork.

Definition 4 (deterministic wire fork): A deterministic wire
fork is a process with delay bounds of [1, 1], a single input,
and multiple output variables with output wire delay bounds
of [1, 1]. The wire fork simply propagates any input change to
its set of outputs with a fixed delay.

III. TIMED SIGNALLING PROCESSES

The sequence defined by a computation is indexed by an
integer, which plays the role of an external notion of time. (We
use both t’s and m’s for these indexes.) But, in the setting we
consider, processes in the system do not have access to the
current time, and it does not affect their operation. However,
processes can learn about the passage of time through input
changes coupled with guarantees about time bounds.

A. Timed Precedence

In what follows, we use notation borrowed from [8] that
states timed precedence relations between events. We write
e

x−→ e′ to state that event e takes place at least x time units
before e′ does. This orders events e and e′, and also places a
lower bound on the time difference between events e and e′.
A direct example of such timed precedence in asynchronous
circuits is in the case of bundled data communication discussed
earlier. The value of x corresponds to the timing margin in the
timing assumption.

Suppose we wish to ensure that b 0−→ c where b is an action
of B and c is an action of C. A direct way to ensure this would
be for process B to have an output wire that connects to one
of C’s inputs. Once B has performed action b, then it could
signal this to C by changing the output.

Due to known time bounds on signal propagation, such a
timed relationship can also be guaranteed indirectly via a third
process A. Suppose A has an output that is connected to B’s
input, and another output connected to C’s input. If the delay
from A to B is smaller than that from A to C, and both B
and C act in response to a signal from A, then knowledge of
time bounds on signal propagation and on processing delays
may be sufficient to ensure that b 0−→ c.

B. Nodes

To reason about such relationships and to distinguish the
information available to a process at different times, it is useful
to be able to refer to a process when it is in a particular local
state. Since the number of distinct local states of a process
is finite, a process may leave a particular state at some point
in time and then return to it at a later point. This fact is not
observable by the process itself, but reasoning from the outside
we would like to be able to distinguish between these different
occurrences of the same state in a computation. To do so, we
introduce the notion of an occurrence index.

Definition 5 (occurrence index): Given a computation c,
process p, and integer m, we define idx(c, p,m) inductively
as follows. Base case: idx(c, p, 0) = 0 for all c and p. For the
inductive step, we use case analysis as follows:
(a) if ck+1(p) = ck(p), then idx(c, p, k + 1) = idx(c, p, k);
(b) if ck+1(p) ̸= cm(p) for all m ≤ k, then we define

idx(c, p, k + 1) = 0;
(c) otherwise define idx(c, p, k+1) = idx(c, p,m)+1 where

m < k is the largest integer such that cm(p) = ck+1(p).
We define ν = ⟨p, l, i⟩ consisting of process p with its local
state l and an integer occurrence index i ≥ 0 to be a node.
We say that ν is a p-node as it refers to process p, and use
proc(ν) to denote p. Given a computation c, we say that node
ν = ⟨p, l, i⟩ appears in c if cm(p) = l and idx(c, p,m) = i
holds, for some time m.

If a node ν = ⟨p, l, i⟩ appears in a computation c at time
m, the process p may continue to be in local state l for
some interval of time that includes m. We define timec(ν)
to be the smallest (i.e. earliest) m such that cm(p) = l and
idx(c, p,m) = i.

A given computation is uniquely determined by the set of
its nodes and their respective times, but different executions
can lead to computations with the same set of nodes that differ
in their timing.

A node ν′ is called the next local node of a node ν in c
if proc(ν) = proc(ν′), timec(ν) < timec(ν′), and there is
no other proc(ν)-node ν′′ such that timec(ν) < timec(ν′′) <
timec(ν′).

We remark that the definitions above of nodes, time and idx
can be applied to any computation, not just valid computations.

Definition 6 (successor): Let p and q be two processes
connected by a wire w where ow is an output variable of p
and iw is its matching input variable in q. Suppose that c is a
computation where (i) p-node νp first appears at time (t− 1)
and ow at time t differs from ow at time (t−1); and (ii) either
(a) a signal from p is delivered to q over w at time (t + d)
where d ≥ 1;4 (b) ow is unchanged for all times between t
and (t + d); and (c) the q-node at time (t + d) is νq; or (a)
ow at time t differs from ow at time (t− 1) causing iw to be
set to ? at t and νq is the q-node at time t. Then we write
νp ↪→c νq and call νq a successor of νp.

Intuitively, this captures the fact that a signal from p changes
an input variable in q, and can causally affect the future

4As stated earlier, a signal delivered at time (t + d) is reflected in iw at
time (t+ d). Recall that iw is part of q’s local state.

behavior of q. We capture the temporal ordering between two
p-nodes as follows:

Definition 7 (local ordering): Suppose ν and ν′ are both
nodes for the same process p in a computation c. If timec(ν) <
timec(ν′), we write ν <c

ℓ ν′; similarly if timec(ν) ≤
timec(ν′), we write ν ≤c

ℓ ν′. The local distance between ν
and ν′, denoted distc(ν, ν′) is the number of distinct nodes ν′′

where ν <c
ℓ ν

′′ ≤c
ℓ ν

′.
These two ordering relations can be combined to define a

notion of “happens before” or potential causality as follows.
Definition 8 (happens-before): Given a computation c, we

define the happens-before relationship among nodes that ap-
pear in c, denoted ν ≺c ν′ to be the minimal relation that
satisfies

• Locality: for nodes of the same process, if ν <c
ℓ ν

′ then
ν ≺c ν′

• Signalling: if ν ↪→c ν
′, then ν ≺c ν′

• Transititivity: if ν ≺c ν′ and ν′ ≺c ν′′, then ν ≺c ν′′

We say that ν′ is in the past of ν in c if ν′ ≺c ν′, and
define past(c, ν) = {ν′ : ν′ ≺c ν}. Nodes that are in the set
past(c, ν) either because they refer to the the process proc(ν),
or via a causal succession of signals over wires. We make the
latter precise by introducing the notion of signalling chains.

Definition 9: A signalling chain from ν to ν′ in the
computation c is a sequence of nodes ⟨µ0, ν1, µ1, . . . , νk⟩ with
µ0 = ν, νk = ν′, µi ↪→c νi+1 for 0 ≤ i < k, and with
νj ≤c

ℓ µj for 1 ≤ j < k.
The notion of a signalling chain is analogous to a message

chain in a distributed computation [9], to a firing chain in
asynchronous quasi delay-insensitive circuits [10], and to a
signalling chain in the pure asynchronous signalling process
model [6]. Associated with each signalling chain is a path in
the TSP network’s communication graph.

The fact that ‘ ≺c ’ is the minimal relation satisfying the
Locality, Successor and Transitivity conditions means that
ν ≺c ν′ holds only if it can be derived by a finite number
of applications of these conditions. Based on this, a rather
straightforward consequence of the definition of ≺c is the
following lemma:

Lemma 1: For nodes ν = ⟨p, l, i⟩ and ν′ = ⟨q, l′, i′⟩ where
processes p ̸= q, if ν ≺c ν′ then timec(ν) < timec(ν′), and
there exists a signalling chain from µ to µ′ in c where nodes
µ and µ′ satisfy ν ≤c

ℓ µ and µ′ ≤c
ℓ ν

′.
Proof: The proof can be constructed by structural induction
on the derivation of ν ≺c ν′ using the rules for locality,
signalling, and transitivity. □

Lemma 1 immediately implies that if ν ≺c ν
′ then there is

a path from proc(ν) to proc(ν′) in the TSP network graph.
Consider a process A that has outputs connected to pro-

cesses B and C via wires wB and wC respectively, and
suppose that A changes its output to B and C simultaneously.
Then, the input to B will change t time units later, where
lb(wB) ≤ t ≤ ub(wB), and C’s input will change t′

units later where lb(wC) ≤ t′ ≤ ub(wC). Notice that if
ub(wC) < lb(wB), then the arrival of a new signal from A
on B’s input indicates to B that C has already received a new
signal on its input from A. Figure 1 illustrates this scenario.

A

B

C <latexit sha1_base64="i9POSW6iq2E9flAmiHs3yhoYu0I=">AAAB7HicbZDNSsNAFIVv6l+Nf1WXbgaL1FVJulA3YsGNywqmLbShTKaTduhkEmYmQgl9BjcuFHEl+Aq+hxvxbZy0XWjrgYGPc+5l7r1BwpnSjvNtFVZW19Y3ipv21vbO7l5p/6Cp4lQS6pGYx7IdYEU5E9TTTHPaTiTFUcBpKxhd53nrnkrFYnGnxwn1IzwQLGQEa2N5XZFWKr1S2ak6U6FlcOdQvvqwL5O3L7vRK312+zFJIyo04Vipjusk2s+w1IxwOrG7qaIJJiM8oB2DAkdU+dl02Ak6MU4fhbE0T2g0dX93ZDhSahwFpjLCeqgWs9z8L+ukOrzwMyaSVFNBZh+FKUc6RvnmqM8kJZqPDWAimZkVkSGWmGhzH9scwV1ceRmatap7VnVunXK9BjMV4QiO4RRcOIc63EADPCDA4AGe4NkS1qP1Yr3OSgvWvOcQ/sh6/wFoTpFb</latexit>

⌫00

<latexit sha1_base64="0Yqr22J6WyNNqUTwPvuoiLw8VCg=">AAAB63icbZDLSgMxFIbPeK3jrerSTbCIrspMF+pGLLhxWcFeoB1KJs20oUlmSDJCGfoKblwo4k58Bt/Djfg2ZtoutPWHwMf/n0POOWHCmTae9+0sLa+srq0XNtzNre2d3eLefkPHqSK0TmIeq1aINeVM0rphhtNWoigWIafNcHid5817qjSL5Z0ZJTQQuC9ZxAg2udWR6Um3WPLK3kRoEfwZlK4+3Mvk7cutdYufnV5MUkGlIRxr3fa9xAQZVoYRTsduJ9U0wWSI+7RtUWJBdZBNZh2jY+v0UBQr+6RBE/d3R4aF1iMR2kqBzUDPZ7n5X9ZOTXQRZEwmqaGSTD+KUo5MjPLFUY8pSgwfWcBEMTsrIgOsMDH2PK49gj+/8iI0KmX/rOzdeqVqBaYqwCEcwSn4cA5VuIEa1IHAAB7gCZ4d4Tw6L87rtHTJmfUcwB857z8G4pEq</latexit>

⌫0

<latexit sha1_base64="TBfROzy0Qqi9Ehjo5IAudqMRycE=">AAAB6nicbZC7SgNBFIbPeo3rLWppMxgEq7CbQm3EgI1lRHOBZAmzk5NkyOzsMjMrhCWPYGOhiKW+g+9hI76Nk0uhiT8MfPz/Ocw5J0wE18bzvp2l5ZXVtfXchru5tb2zm9/br+k4VQyrLBaxaoRUo+ASq4YbgY1EIY1CgfVwcDXO6/eoNI/lnRkmGES0J3mXM2qsdduSaTtf8IreRGQR/BkULj/ci+Tty62085+tTszSCKVhgmrd9L3EBBlVhjOBI7eVakwoG9AeNi1KGqEOssmoI3JsnQ7pxso+acjE/d2R0UjrYRTayoiavp7PxuZ/WTM13fMg4zJJDUo2/aibCmJiMt6bdLhCZsTQAmWK21kJ61NFmbHXce0R/PmVF6FWKvqnRe/GK5RLMFUODuEITsCHMyjDNVSgCgx68ABP8OwI59F5cV6npUvOrOcA/sh5/wGlkJD5</latexit>⌫

<latexit sha1_base64="+E/yQ9aYo3+PODu7ZRvj3h/7LPY=">AAAB83icbVA9SwNBEJ3zI8b4FbW0OQyCVbhLoZZBG8sEzAfkQtjb7CVL9vaO3Tk1HPkRNmksFBGs/COWduKfcfNRaOKDgcd7M8zM82PBNTrOl7Wyurae2chu5ra2d3b38vsHdR0lirIajUSkmj7RTHDJashRsGasGAl9wRr+4GriN26Z0jySNziMWTskPckDTgkayfOQ3aMO0rtR57KTLzhFZwp7mbhzUihnqt8f44e3Sif/6XUjmoRMIhVE65brxNhOiUJOBRvlvESzmNAB6bGWoZKETLfT6c0j+8QoXTuIlCmJ9lT9PZGSUOth6JvOkGBfL3oT8T+vlWBw0U65jBNkks4WBYmwMbInAdhdrhhFMTSEUMXNrTbtE0UomphyJgR38eVlUi8V3bOiUzVplGCGLBzBMZyCC+dQhmuoQA0oxDCGJ3i2EuvRerFeZ60r1nzmEP7Aev8B7sSV9w==</latexit>wB

<latexit sha1_base64="JUDyGSgcOwO+ZNUlSJZ3+hm2Kpw=">AAAB83icbVC7SgNBFL3rI8b4ilraDAbBKuymUMtAGssEzAOyIcxOZpMhsw9m7qphyUfYpLFQRLDyRyztxJ9x8ig08cCFwzn3cu89XiyFRtv+stbWNzYzW9nt3M7u3v5B/vCooaNEMV5nkYxUy6OaSxHyOgqUvBUrTgNP8qY3rEz95i1XWkThDY5i3gloPxS+YBSN5LrI71H76d24W+nmC3bRnoGsEmdBCuVM7ftj8vBW7eY/3V7EkoCHyCTVuu3YMXZSqlAwycc5N9E8pmxI+7xtaEgDrjvp7OYxOTNKj/iRMhUimam/J1IaaD0KPNMZUBzoZW8q/ue1E/SvOqkI4wR5yOaL/EQSjMg0ANITijOUI0MoU8LcStiAKsrQxJQzITjLL6+SRqnoXBTtmkmjBHNk4QRO4RwcuIQyXEMV6sAghgk8wbOVWI/Wi/U6b12zFjPH8AfW+w/wSJX4</latexit>wC

time

Fig. 1. A, B, and C are
signalling processes with
two outputs from A directly
connected to B and C re-
spectively. The gray region
shows the time window
when the signal could be
delivered at B and C based
on time bounds on wire de-
lay. Nodes are shown on
timelines of A, B, and C.

A signalling chain corresponds
to a path through the TSP net-
work graph, which consists of a se-
quence of processes and wires con-
necting neighboring processes. When
an originating variable for a wire w
changes, this signal is delivered over
w after a delay that is consistent
with the wire delay bounds lb(w)
and ub(w). When a new input arrives
taking a process p out of a quiescient
state, the process changes its control-
lable state at a time that is consistent
with its delay lower bound lb(p) and
delay upper bound ub(p) provided
all other arriving inputs are absorbed

until the process changes its controllable state. In this scenario,
we have upper and lower bounds on the time taken by the
process p determined by lb(p) and ub(p).

A signalling chain can also include local state changes
within an individual process—i.e., µi need not be the same
as νi. In this case, there may be other actions taken by
pi = proc(νi), or other input arrivals at pi before the node
νi+1 appears in the computation. These input arrivals could
result in the (reset) rule being applied, which can reset the
process timer kpi

. Also, the input arrival corresponding to νi
itself might be absorbed by pi. In scenarios such as the ones
just described, the the time taken by pi to act can depend
on events in other processes, and not just on the local bounds
lb(pi) and ub(pi). In the circumstances when the local process
lower and upper bounds can be used to determine delay bounds
and processes don’t enter an erroneous state, we call the
signalling chain a signal delay chain.

Definition 10 (signal delay chain): Let ⟨µ0, . . . , νk⟩ be a
signalling chain from µ0 to νk in computation c. We say that
this signalling chain is a signal delay chain if and only if the
following constraints are satisfied: (i) all nodes in the chain
are in a non-⊥ state; (ii) for all 1 ≤ i < k, any input that
arrives at proc(νi) from time timec(νi)+1 upto timec(µi) is
absorbed; and (iii) for all 1 ≤ i < k, kproc(νi) = 0 by a signal
delivered by proc(µi−1). We write µ0 ⇝c νk to state that the
computation c contains a signal delay chain from µ0 to νk.

Suppose we are given two nodes ν and ν′ in a computation
c where ν ≺c ν′. By Lemma 1, there is a signalling chain
through a sequence of nodes µ0, ν1, µ1, . . . , νk where ν ≤c

ℓ µ0

and νk ≤c
ℓ ν′. Furthermore, proc(νi) ̸= proc(νi+1) for all

0 ≤ i < k. Let wi be the wire connecting proc(νi−1) to
proc(νi) that is used by the signal delay chain. We define the
signal chain bounds for chain ρ = µ0 ⇝c νk as:

lb(ρ) = lb(wk)+

k−1∑
i=1

(lb(wi)+max(lb(proc(νi)),distc(νi, µi)))

ub(ρ) = ub(wk) +

k−1∑
i=1

(ub(wi) + ub(proc(νi)))

These upper and lower bounds apply to the delay associated
with the signalling chain if it is a signal delay chain. Note that

if there are a sufficient number of local nodes between νi and
µi (captured by distc(νi, µi)), then that provides another lower
bound on the number of steps before a signal is transmitted
by process proc(νi)—hence we use the maximum between
this quantity and the process delay lower bound.

Consider signal delay chains in a given computation from
process A to process B and from A to C that share the starting
A-node. Let dA→B denote the delay along the signal delay
chain ρ from A to B, and let dA→C be the delay along the
signal delay chain ρ′ from A to C. To be able to unequivocally
state that dA→C < dA→B , the maximum value of dA→C

must be smaller than the smallest value of dA→B . Given our
time bounds, the smallest value of dA→B is given by lb(ρ).
Similarly, the largest value for dA→C is given by ub(ρ′).

[10,20]

[15,25]

a

b

c

Fig. 2. A signal goes through a fork and
arrives at the two inputs a and b of an
OR gate with output c. The delay along
the path to a is given by the lower and
upper bounds [10, 20], and the other
path has delay [15, 25]. Furthermore, let
the OR gate have a delay of [1, 1].

In the general case,
determining whether
dA→C < dA→B requires
a complete analysis of the
computations that a TSP
system performs. To see
this, consider the circuit
example in Figure 2.
Assume that all signals
are initially 0, and the
input changes to 1. This
change will propagate via

two wires with differing delays, and cause c to eventually
become 1. Note that if a changes before b, then a causes c
to change and there is a signal delay chain along the wire
for a; furthermore, the change in b is absorbed. While there
is a signalling chain that includes the wire for b to c, it is
not a signal delay chain. The situation can be reversed in the
symmetric case.

C. Initialization and Initially Active Processes
Consider a computation c. Given an output signal transition

that results in a new node ν, we can find the last input change
to proc(ν) in c that determined timec(ν). This input change
in turn was the result of a previous output change at some
node ν−1, whose time in turn was determined by an input
change at proc(ν−1). Repeating this process backward in time
results in an initial node ν′ and a signal delay chain ν′ ⇝c ν.
The time delay between ν′ and ν in c satisfies the bounds as
defined above. Furthermore, ν′ must change its output simply
based on the initial state of the computation, and hence the
time when this occurs is determined entirely by lb(proc(ν′))
and ub(proc(ν′)); therefore, in a precise sense, proc(ν′) is
initially active.

Initially active processes are implicitly synchronized in time
by the definition of a computation, since they all start at time
t = 0. To allow processes to start operating at arbitrary times
(not just start at t = 0), we introduce a dummy process that can
delay the start time of a computation by an arbitrary amount.

To capture this in our model, we make use of two processes:
the first is a spontaneous 0-to-1 process, and the second is a
deterministic wire fork. The output of the spontaneous process
is connected to the input of the wire fork, and each wire
fork output is connected to a distinct initially active process.

Finally, the state transition function of each initially active
process is modified to be quiescent when the newly introduced
input is 0, and to behave in the same way as the original
computation when the newly introduced input is 1. Note
that (ignoring the newly introduced processes and wires) the
resulting computations are precisely the same as we had prior
to making this modification, apart from a uniform temporal
shift that varies depending on the delay of the spontaneous
process. Hence, this modification does not change the ordering
and relative timing properties of the nodes in any computation.
In the circuit context, this synchronization is typically achieved
via a system-wide reset protocol. Our construction guarantees
that there is a single spontaneous 0-to-1 process that is initially
active, and the processes that would be initially active in its
absence are now activated simultaneously.

We refer to TSP networks with this modification as circuit
TSP networks (denoted cTSP), and these are the networks we
consider in the remainder of this paper.

In the simple case when a signalling chain from ν to ν′

consists of only one wire (as in the example in Figure 1),
then we can state that ν ⇝c ν′ for every computation c that
includes a signalling chain from ν to ν′.

IV. FORKS AND ZIGZAGS

Given two nodes θ and θ′ in a computation c, we say that
the computation c satisfies θ

x−→ θ′ iff (i) θ and θ′ appear in
c, and (ii) timec(θ) + x ≤ timec(θ′).

The basic building block for timed coordination will be a
pattern that we call a timing fork, which is similar to the one
illustrated in Figure 1.

Definition 11 (timing fork): A timing fork in a computation c
is a triple F = ⟨θ0, θ1, θ2⟩ of nodes in c, where there are signal
delay chains θ0 ⇝c θ1 and θ0 ⇝c θ2. For such a timing fork,
we denote base(F) = θ0, head(F) = θ1, and tail(F) = θ2.

We define the weight of a timing fork, wt(F), to be

wt(F)
def
= lb(θ0 ⇝c θ1)− ub(θ0 ⇝c θ2)

Given a timing fork F in computation c, it is clear that

timec(head(F)) ≥ timec(tail(F)) + wt(F)

simply from the definition of a computation and the time
bounds; in other words, tail(F)

wt(F)−→ head(F). Hence, a
timing fork is a mechanism that can order two nodes in time
by the weight of the fork.

A zigzag pattern consists of a collection of timing forks
satisfying certain constraints. In a zigzag pattern, there is an
ordering of forks so that the head of one fork and the tail
of the next fork are nodes from the same process, with the
head appearing no later than the tail. Figure 3 shows a zigzag
pattern consisting of two timing forks.

Definition 12 (zigzag): A zigzag pattern from node θ to
θ′ in a computation c is a sequence Z = (F1, . . . , Fn) of
forks in c such that: (i) θ = tail(F1); (ii) θ′ = head(Fn);
(iii) head(Fi) ≤c

ℓ tail(Fi+1) for all 1 ≤ i < n.

A. Zigzags and Timing Information

The weight of a zigzag pattern Z = (F1, . . . , Fn) is defined
to be

wt(Z) =

n∑
i=1

wt(Fi)

Each timing fork in the zigzag pattern contributes the bound
tail(Fi)

wt(Fi)−→ head(Fi). Furthermore, because the forks are
in a zigzag configuration, we know that for 1 ≤ i < n,
head(Fi) ≤c

ℓ tail(Fi+1). Since wt(Z) =
∑

i wt(Fi), we

obtain tail(F1)
wt(Z)−→ head(Fn). Thus, the existence of such

a zigzag pattern provides a time bound relating tail(F1) with
head(Fn). While a timing fork is the simplest form of a zigzag
pattern, the novelty in the notion of zigzag patterns is that
nodes may be ordered in time without the existence of a single
timing fork that relates them.

B

C

time

<latexit sha1_base64="pJv8UTj4YW5oyfq65gdLDI+dIkw=">AAAB6nicbVDLSgNBEOyNrxhfMR69DAmCp7Aroh4DiniMaB6QLGF20kmGzM4uM7NCWPIJXjwo4lX8C//Akzf/xsnjoNGChqKqm+6uIBZcG9f9cjJLyyura9n13Mbm1vZOfrdQ11GiGNZYJCLVDKhGwSXWDDcCm7FCGgYCG8HwfOI37lBpHslbM4rRD2lf8h5n1Fjp5rLjdfIlt+xOQf4Sb05KlezHe+HirVjt5D/b3YglIUrDBNW65bmx8VOqDGcCx7l2ojGmbEj72LJU0hC1n05PHZMDq3RJL1K2pCFT9edESkOtR2FgO0NqBnrRm4j/ea3E9M78lMs4MSjZbFEvEcREZPI36XKFzIiRJZQpbm8lbEAVZcamk7MheIsv/yX1o7J3UnavbRrHMEMW9qEIh+DBKVTgCqpQAwZ9uIdHeHKE8+A8Oy+z1owzn9mDX3BevwGugJBQ</latexit>

F1

<latexit sha1_base64="I+y6xZTTqZIM4zEwbZ+Bs1giEWE=">AAAB63icbVDLSgNBEOyNrxhfMR69DAbBU9gNoh4DiniMYB6QLGF2MpsMmZldZmaFsOQXvHhQxKv+hX/gyZt/42ySgyYWNBRV3XR3BTFn2rjut5NbWV1b38hvFra2d3b3ivulpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB6DLzW/dUaRbJOzOOqS/wQLKQEWwy6bpXLfSKZbfiToGWiTcn5Vr+86N09X5U7xW/uv2IJIJKQzjWuuO5sfFTrAwjnE4K3UTTGJMRHtCOpRILqv10eusEHVulj8JI2ZIGTdXfEykWWo9FYDsFNkO96GXif14nMeGFnzIZJ4ZKMlsUJhyZCGWPoz5TlBg+tgQTxeytiAyxwsTYeLIQvMWXl0mzWvHOKu6tTeMUZsjDIRzBCXhwDjW4gTo0gMAQHuAJnh3hPDovzuusNefMZw7gD5y3H+TrkGU=</latexit>

F2

<latexit sha1_base64="IhlVERlf17Vv5Heds4h+vkhQWQ4=">AAAB/nicbVDLSsNAFJ34bOsrKq7cDBahbkriQl0WBHFZ0T6gCWEymTRDJ5kwMxFrKPgrblwo4tZ/cOdC8G+ctF1o64ELh3Pu5d57/JRRqSzr21hYXFpeWS2VK2vrG5tb5vZOW/JMYNLCnHHR9ZEkjCakpahipJsKgmKfkY4/OC/8zi0RkvLkRg1T4saon9CQYqS05Jl7TuTzu9zxQxgRFIxqF559VPHMqlW3xoDzxJ6SaqN0//Vx3Sw3PfPTCTjOYpIozJCUPdtKlZsjoShmZFRxMklShAeoT3qaJigm0s3H54/goVYCGHKhK1FwrP6eyFEs5TD2dWeMVCRnvUL8z+tlKjxzc5qkmSIJniwKMwYVh0UWMKCCYMWGmiAsqL4V4ggJhJVOrAjBnn15nrSP6/ZJ3brSadTABCWwDw5ADdjgFDTAJWiCFsAgB4/gGbwYD8aT8Wq8TVoXjOnMLvgD4/0HocOXfw==</latexit>

head(F1)

<latexit sha1_base64="YVdoW6u7CTeGuGRT4GZ1jTzQgRI=">AAAB/nicbVDLSsNAFJ3UV1tfUXHlZrAIdVOSLtRlQRCXFe0DmhAmk0k7dJIJMxOxhoK/4saFIm79B3cuBP/GSduFth64cDjnXu69x08Ylcqyvo3C0vLK6lqxVF7f2NzaNnd225KnApMW5oyLro8kYTQmLUUVI91EEBT5jHT84Xnud26JkJTHN2qUEDdC/ZiGFCOlJc/cdwY+v8scP4QDgoJx9cKrH5c9s2LVrAngIrFnpNIo3n99XDdLTc/8dAKO04jECjMkZc+2EuVmSCiKGRmXnVSSBOEh6pOepjGKiHSzyfljeKSVAIZc6IoVnKi/JzIUSTmKfN0ZITWQ814u/uf1UhWeuRmNk1SRGE8XhSmDisM8CxhQQbBiI00QFlTfCvEACYSVTiwPwZ5/eZG06zX7pGZd6TSqYIoiOACHoApscAoa4BI0QQtgkIFH8AxejAfjyXg13qatBWM2swf+wHj/AaNJl4A=</latexit>

head(F2)

<latexit sha1_base64="DgEgHd8/79o6yvqsfnOBTbyCJ1c=">AAAB/nicbVDLSgMxFM3UV1tfo+LKTbAIdVNmulCXBUFcVrQP6Awlk2ba0EwyJBmxDgV/xY0LRdz6D+5cCP6NmbYLbT1w4XDOvdx7TxAzqrTjfFu5peWV1bV8obi+sbm1be/sNpVIJCYNLJiQ7QApwignDU01I+1YEhQFjLSC4Xnmt26JVFTwGz2KiR+hPqchxUgbqWvve4NA3KVeEEKNKBuXL7rV42LXLjkVZwK4SNwZKdXy918f1/VCvWt/ej2Bk4hwjRlSquM6sfZTJDXFjIyLXqJIjPAQ9UnHUI4iovx0cv4YHhmlB0MhTXENJ+rviRRFSo2iwHRGSA/UvJeJ/3mdRIdnfkp5nGjC8XRRmDCoBcyygD0qCdZsZAjCkppbIR4gibA2iWUhuPMvL5JmteKeVJwrk0YZTJEHB+AQlIELTkENXII6aAAMUvAInsGL9WA9Wa/W27Q1Z81m9sAfWO8/yHWXmA==</latexit>

tail(F2)

<latexit sha1_base64="k4a05+DvCXzVjH+5MTgymG05tfc=">AAAB/nicbVDLSsNAFJ34bOsrKq7cDBahbkriQl0WBHFZ0T6gCWEynbRDJzNhZiLWUPBX3LhQxK3/4M6F4N84abvQ1gMXDufcy733hAmjSjvOt7WwuLS8slooltbWNza37O2dphKpxKSBBROyHSJFGOWkoalmpJ1IguKQkVY4OM/91i2Rigp+o4cJ8WPU4zSiGGkjBfae1w/FXeaFEdSIslHlInCPSoFddqrOGHCeuFNSrhXuvz6u68V6YH96XYHTmHCNGVKq4zqJ9jMkNcWMjEpeqkiC8AD1SMdQjmKi/Gx8/ggeGqULIyFNcQ3H6u+JDMVKDePQdMZI99Wsl4v/eZ1UR2d+RnmSasLxZFGUMqgFzLOAXSoJ1mxoCMKSmlsh7iOJsDaJ5SG4sy/Pk+Zx1T2pOlcmjQqYoAD2wQGoABecghq4BHXQABhk4BE8gxfrwXqyXq23SeuCNZ3ZBX9gvf8Axu+Xlw==</latexit>

tail(F1)

Fig. 3. A zigzag pattern consisting of
two forks F1 and F2 that is sufficient
to provide a lower bound on the time
by which the arrival of the F2 signal
to B occurs after the arrival of the
F1 signal to C.

A natural question is the
following: do zigzag patterns
capture all of the information
about the time bound between
two nodes? In the rest of this
section, we show that zigzags
are not just sufficient to guar-
antee time bounds (shown
above), but also necessary.
In other words, the only
way to guarantee time bounds
among nodes is via a zigzag
pattern. Thus, in a precise
sense, zigzags capture all rel-
evant information about time
bounds between events.

B. The Bounds Graph

Consider the timing fork in Fig. 1, where the gray regions
correspond to the range of times when a signal from A’s node
ν could be delivered to B or C. Since processes in our model
cannot directly determine the current time, different timings of
signal arrival cannot be distinguished by a process. However,
changes in relative signal arrival order can be observed locally
by a process. To capture this, we introduce the notion of
locally equivalent computations—computations that cannot be
distinguished using local state information.

Definition 13 (locally equivalent computations): Computa-
tions c and d are said to be locally equivalent iff they have the
same set of nodes and the happens-before relations ≺c and
≺d are the same.

Two locally equivalent computations only differ in their
timing behavior. The timing behavior that they exhibit is
constrained by the process and wire delay bounds in the TSP
model. To capture this requirement, we introduce the notion
of a bounds graph for a computation. We begin by defining
the next non-absorbing node of a given node as follows:

Definition 14 (next non-absorbing node): Node ν′ is said
to be the next non-absorbing node of a node ν if ν′ is the
earliest node satisfying: (i) ν <c

ℓ ν′; and (ii) ν′ is obtained

from its predecessor by proc(ν′) following rules (act), (reset),
or (max-act).

Armed with this definition, we proceed to define the bounds
graph of a computation as follows:

Definition 15 (bounds graph): Let c be a valid computation
of a TSP system. The bounds graph of c is the weighted graph
(Vc, Ec,∆c), where Vc is the set of nodes that appear in c, Ec

is a set of edges, and ∆c maps each edge to an integer weight.
The edges and weights are defined as follows: (B:i) Given node
ν ∈ Vc and its next local node ν+, we add edge (ν, ν+) with
weight 1; (B:ii) if ν ↪→c ν′ due to a signal being delivered
over wire w, we add three edges. Let ν+ be the next local node
of ν in c. We add edge (ν+, ν′) with weight lb(w) and edge
(ν′, ν+) with weight −ub(w) to account for delay bounds on
wires. We also add edge (ν′, ν′′) with weight 1 where ν′′ is the
earliest proc(ν)-node such that ν+ ≤c

ℓ ν′′ and in which the
value of ow at ν′′ differs from its value at ν+. We call this a
positive acknowledgment edge.5 (iii) Let ν be a non-quiescient
p-node with kp = 0. There are two scenarios for the next
non-absorbing node ν′ following ν: (B:iii-a) ν′ is obtained by
p taking the pending action enabled in ν, or (B:iii-b) ν′ is
obtained by p taking action (reset) due to the arrival of a new
input signal. In (B:iii-a), we add the edge (ν, ν′) with weight
lb(p), and the edge (ν′, ν) with weight −ub(p). In (B:iii-b),
we add the edge (ν′, ν) with weight −(ub(p)− 1).6 (B:iv) If
(a) a pending signal delivery on w from process p to q initiated
at ν′p is cancelled by process p at time t, (b) νp/νq is the p/q-
node in configuration ct, and (c) ν+q is the next local node for
q after time t in c, then we add “negative acknowledgment”
edges: (νp, ν+q) of weight 1, (νp, ν′p) of weight −(ub(w)−1),
(νq, νp) of weight 0, and (νp, νq) of weight 0 if timec(νq) = t.

These edges each capture constraints introduced by the
definition of a valid computation in Section II-D.

Lemma 2: Let c be a valid computation with bounds
graph (Vc, Ec,∆c). Then timec(ν′) ≥ timec(ν) + ∆c(ν, ν

′)
whenever (ν, ν′) ∈ Ec.
Proof: We show this by case analysis on the edges introduced
in Definition 15. Time bound requirements introduced by
edges due to clause (B:i) in Definition 15 are always satisfied,
since distinct nodes for the same process that are ordered by
“≺c” have times that are at least one apart. Those introduced
by clause (B:ii) are satisfied because of the time bounds on
wires. Those introduced by (B:iii-a) edges are satisfied because
of the time bounds on process steps. Finally, (B:iii-b) edges
are satisfied because a (reset) action can occur only before the
process timer reaches its upper bound. □

The key idea behind the bounds graph is to capture the
constraints on possible timings of a valid computation. The
next lemma shows that this is the case. As a reminder, we have
defined a computation as simply a sequence of configurations

5This ensures that the signal is delivered over w. If the value of ow changes
before the signal is delivered, then the signal delivery would be cancelled—
case (B:iv). The introduction of this edge in the bounds graph captures the
fact that the change in ow occurs after the signal is delivered over w. The
node ν′′ may not exist in c, in which case this edge is not added.

6This edge captures the constraint that a reset step can only occur before
kp reaches the upper bound on the local action delay in p.

(Section II-D); only valid computations satisfy the process
firing rules and timing constraints.

Lemma 3 (equivalence): Let c be a valid computation of a
TSP system S. Let d be any computation that has the same
set of nodes, and whose timing is consistent with c’s bounds
graph. Then: (i) d is a valid computation of S; and (ii) c and
d are locally equivalent.
Proof: For any p node ν in c (and hence also in d), the next
local node ν+ in c must be the same as the next local node
ν+ in d because of the bounds graph edges introduced in case
(B:i) of Definition 15. We call this property local consistency.
In particular, this implies that both c and d have the same
earliest p-node for any process p.

Part (i)—d is a valid computation: Assume toward a con-
tradiction that d is not a valid computation of S. If we examine
the sequence of configurations d0, d1, . . ., then there is some
earliest dj where the computation transitions from valid to
being invalid. We must have j > 0 since every process has
the same node in c and d in the initial configuration becase
they have the same earliest p-node for any process p. For dj−1

to be valid, but dj to be invalid, there must be some process p
that has a local state in dj that cannot be obtained from dj−1

applying the rules in Section II-D. Let ν be the p-node in dj−1,
and ν′ be the p-node in dj that cannot be obtained by applying
the rules in Section II-D. We examine each possibility for both
process and wire rule violations in dj given that d0, . . . , dj−1

is a valid computation prefix.
Suppose ν ̸= ν′. Then ν′ is the next local node for proc(ν)

in c by local consistency. We first show that any changes in
the controllable state in proc(ν) must be valid in dj . Any
such change must conform to the process rules (because c
is a valid computation), and be caused by either (act) or
(max-act) process rules. Since the bounds graph constrains
the delay between nodes in d (cases (B:i) and (B:iii-a)), any
controllable state change in ν′ remains valid in dj . The other
option is that ν′ has an input change that was valid in c but
not in d. For an input to change, it means that a signal was
delivered on a wire in c to proc(ν′), from another process
q, or a signal delivery was cancelled causing the input to be
“?.” The q-node in d must appear before time j, because of
the bounds graph constraint (case (B:ii) and (B:iv)) on signals
delivered in c, and hence, it appears in d prior to time j as part
of the valid computation prefix. The bounds graph constraint
on wires implies that the same signal can be delivered or is
cancelled over the same wire in dj—showing that ν′ is a valid
computation node in dj . Now suppose ν′ = ν. If ν′ = ν is not
valid, then it is because some forced state change did not occur
in dj . The only forced changes are (a) (max-act) for proc(ν),
which is again ruled out because of the bounds graph (case
(B:iii-a)); (b) (max-act) for wires, which is also ruled out by
the bounds graph (case (B:ii, B:iv)); (c) An action in another
process canceled a signal delivery that should have occurred—
which is ruled out as well by the acknowledgment edges (case
(B:ii) and (B:iv)). Hence, we arrive at a contradiction, and
conclude that d is a valid computation of S.

Part (ii)—local equivalence: Given local consistency, we
only need to show that ν ↪→c ν

′ iff ν ↪→d ν′. By the argument

we completed for Part (i), the same set of signals are delivered
or cancelled in d as they are in c, and they have the same
source and target nodes in both c and d. □

Lemma 3 shows that the bounds graph captures all possible
timing assignments for locally equivalent computations.

C. Zigzag Necessity
Definition 16 (timed coordination): We say Late⟨θ x−→ θ′⟩

holds in a given a TSP network S iff every computation c
of S where both θ and θ′ appear satisfies θ

x−→ θ′.
Theorem 1 (Zigzag necessity): Let S be a TSP network

where Late⟨θ x−→ θ′⟩ holds, and let c be a valid computation
of S where nodes θ and θ′ appear. Then either there must be
a zigzag pattern with weight at least x in S, or a process that
can enter the erroneous state is involved in ordering θ and θ′.
Proof: Consider any valid computation c where both θ and θ′

appear. We know that any computation d that has the same
set of nodes as in c and respects c’s bounds graph is a valid
computation by Lemma 3. We select d such that θ′ occurs as
early as possible, and given the earliest possible time for θ′,
θ occurs as late as possible. The reason θ = θ0 cannot be
moved to a later time must be because it is constrained by the
bounds graph—in particular, by an edge to another node θ1.
If the edge has positive weight, then θ1 occurs after θ0; if the
edge has negative weight, then θ1 occurs before θ0. We then
consider why θ1 cannot be moved forward in time, and repeat
this argument until we eventually reach node θn = θ′. Note
that if we don’t reach θ′ that is fixed in time, we can translate
θ = θ0, θ1, . . ., etc. forward in time until we violate θ

x−→ θ′

in d—a contradiction.
Examining the sequence of bounds graph edges constraining

θ, either (a) none of them are of type (B:iii-b) or an acknowl-
edgment edge in (B:ii), and no node along the path is the
result of a (reset) step. In this case, these edges form a zigzag
pattern; or (b) at least one of the edges is of type (B:iii-b) or
an acknowledgment edge in (B:ii, B:iv). In this case, we can
make a process/wire enter the ⊥/? state, as these edges were
introduced in the bounds graph construction but do not arise
due to any constraints on a valid computation. □

V. DISCUSSION

We have shown that timing forks are the essential construct
needed to reason about timing information among signal tran-
sitions in the timed asynchronous setting. A commonly used
way to express timing requirements in circuit design is via a
point-of-divergence (pod) constraint. A pod constraint has a
root signal transition and two targets, where each path from
the root to one of the targets is always supposed to be faster
than every path to the other target. In our framework, a point-
of-divergence constraint is captured directly by a timing fork
(a pod-timing fork). In this particular context, it is convenient
to refer to the two signal delay chains of the timing fork as
two tines: a slow tine, and a fast tine, where the slow tine
must always be slower than the fast tine.

A special case of the timed asynchronous setting is syn-
chronous logic, where a single global timing signal is used
to orchestrate the computation. Standard edge-triggered syn-
chronous logic has two constraints for correctness: (i) the

setup time constraint, which states that the delay from the
outputs of flip-flops through the combinational logic to the
inputs of flip-flops must be smaller than the clock period;
and (ii) hold time constraints, where the minimum delay
through the combinational logic is larger than the relative
arrival times of the clock pins. Figure 4 shows that both these
constraints are in fact pod-timing forks. The roots of both
forks correspond to the zero-to-one transition of the clock. In
traditional synchronous design, these are viewed as distinct
types of timing constraints (hence the two different names).
Our framework shows that they are in fact two instances of
the more general notion of a timing fork.

combinational
logic

clock

min delay path

clock path setup

D

CK

Q

CK

max delay path

clock path hold

Fig. 4. The setup time constraint for
clocked logic is a timing fork depicted by
solid arrows where the clock path setup
(slow tine) must be slower than the max
delay path (fast tine) with a weight that
corresponds to roughly the clock period.
The hold time constraint is also a timing
fork depicted by dashed arrows where the
min delay path (slow tine) must be slower
than the clock path hold (fast tine) with a
weight that is roughly zero.

It is interesting to note
that a violation of a pod-
timing fork constraint
can be viewed in two
ways: we can either say
that the slow tine is too
fast, or that the fast tine
is too slow. For the setup
pod-timing fork, the for-
mer corresponds to the
clock period being too
small, and the latter cor-
responds to the worst-
case logic delay being
too large. For the hold
pod-timing fork, the for-
mer corresponds to the minimum delay through the logic being
too small, while the latter corresponds to too much relative
clock skew between the two flip-flops.

1 Bundled-data constraint
Data capture constraint2

fast tine

slow tine

request

acknowledge

data

Fig. 5. The timing forks required for
correct operation of a MOUSETRAP
pipeline. The green arrow is the fast
tine, the red arrow is the slow tine.
Each fork shown corresponds to two
timing forks: one for the zero-to-one
transition and one for the one-to-zero
transition.

We can illustrate pod-
timing forks in high-speed
asynchronous pipelines us-
ing the MOUSETRAP transi-
tion signalling asynchronous
pipeline template. Figure 5
shows two adjacent MOUSE-
TRAP FIFO stages. Initially,
the latches are transparent.
When a new input arrives,
indicated by the request tog-
gling, two signal transition
paths are activated: (i) the
path through the local XNOR
gate that causes the capturing
latch to close (the green dashed line in Figure 5), and the
acknowledge wire on the red dashed line in Figure 5. The
timing constraint required for correct operation is that the
local XNOR path must close the capturing latch before the
acknowledge path has a chance to send the next request. The
corresponding pod-timing fork is shown in Figure 5. The sec-
ond consraint is the data bundling constraint, which is another
pod-timing fork in Figure 5. Other work has used pod-timing
forks to specify timing constraints for many asynchronous cir-
cuit families including standard bundled-data micropipelines,
relaxed QDI circuits, scalable delay-insensitive circuits, GasP

circuits, and single-track full buffers [11].
There is a gap between Theorem 1 and the sufficiency of

zigzag patterns in reasoning about signal transition ordering.
The path constructed in Theorem 1 could include edges in the
bounds graph that correspond to delay bounds in processes
and edges, but can also include acknowledgment edges from
case (B:ii)/(B:iv) or reset edges from case (B:iii-b) that show
that the computation can enter a ⊥ state. Recall that such
computations involve glitches/erroneous behavior. When such
edges are present, we call the resulting structure a generalized
zigzag pattern. As the behavior of such erroneous scenarios is
challenging to reason about even with a detailed description of
the underlying implementation, a common practice in circuit
design is to rely on timing constraints between signals that
hazard-free. In this scenario, a zigzag pattern is a necessary
condition by Theorem 1.

A second use of timing information is when one tine of
a pod-timing fork is hazard-free, but the other tine can have
switching hazards. This occurs, for example, in bundled-data
protocols. In this case, there are mutiple forks corresponding
to all the possible nodes that appear in a computation cor-
responding to all the different hazard scenarios. The timing
constraints to be satisfied are a function of the set of nodes
that appear in the computation. The slowest path through the
hazardous logic in fact does not have switching hazards, as it
coresponds to the last input signal change for each gate along
the path; hence, even in this scenario, Theorem 1 shows that
the only way to guarantee the constraint is via a zigzag pattern.

While a circuit might rely on a generalized zigzag pattern
for ordering transitions, such a circuit is subject to unstable
behavior—and is likely to be erroneous for other reasons.
Related work: In the untimed setting, the closest work to
the TSP model is the asynchronous signalling processes (SP)
model [6]. In the SP model, delays are finite but unbounded,
and signal transitions can only be ordered in time via explicit
signalling chains. The TSP model can be viewed as an
extension of the SP model where timing information is used.

In the timed setting, there are a number of efforts that model
asynchronous circuits using upper and lower bounds on the
delays of gates and wires in the literature. Broadly speaking,
these efforts provide methods to compute the reachable state-
space and next-state functions of an asynchronous circuit using
timing information to potentially prune the set of reachable
logical states. This timed state space is used for either circuit
synthesis [5], or for verification of properties of asynchronous
circuits [12]. The underlying models used include timed event
structures, timed traces, or timed Petri nets [5], [12], [13].

Relative timing constraints are assertions that say that two
signal transitions are ordered [14]. Such constraints have
been shown to be useful in developing optimized versions of
asynchronous circuits, and have also been incorporated into
recent versions of circuit synthesis tools like Petrify [15].

The TSP model also uses upper and lower bounds to model
the realized timing behavior of an asynchronous circuit. Our
key contribution is showing that zigzag patterns are both
sufficient as well as necessary conditions for ordering signal
transitions in the timed asynchronous setting via theoretical

analysis, which provides an insight into how relative timing
constraints must be realized in practice.

Our work is closely related to the distributed systems
setting where communicating processes interact via message-
passing channels, and where there are known time bounds for
message propagation on channels [7]. Dan et. al’s work [7]
introduces zigzag patterns in the message-passing context
under a flooding full-information protocol assumption. They
show that message zigzags are necessary and sufficient for
ordering process actions. In the TSP model, processes inter-
act via wires and are not constrained by the flooding full-
information protocol. Nonetheless, our work shows that signal
delay chains play the same role as message chains do in the
distributed systems setting, and signal zigzags are necessary
and sufficient to order signal transitions. This provides another
illustration of the deep connection between distributed systems
and asynchronous circuits in the timed setting.

VI. SUMMARY

We introduced the timed signalling processes (TSP) model
that captures the behavior of a large class of digital systems
including clocked circuits as well as asynchronous circuits that
may exploit delay information for their operation. We defined
two communication structures: the timing fork, and a zigzag
pattern (a collection of timing forks in a specific configura-
tion). We illustrated how these structures capture commonly
used timing requirements in different digital circuit families.
Most importantly, we proved that zigzag patterns capture all
the usable timing information among signal transitions in the
TSP model.

REFERENCES

[1] A. J. Martin, “The limitations to delay-insensitivity in asynchronous
circuits,” in Proc. ARVLSI, pp. 263–278, MIT Press, 1990.

[2] I. Sutherland, “Micropipelines,” CACM, vol. 32, no. 6, pp. 720–738,
1989.

[3] M. Singh and S. M. Nowick, “Mousetrap: Ultra-high-speed transition-
signaling asynchronous pipelines,” in Proc. ICCD, pp. 9–17, 2001.

[4] I. Sutherland and S. Fairbanks, “Gasp: A minimal fifo control,” in Proc.
ASYNC, pp. 46–53, 2001.

[5] C. J. Myers and T. Y. Meng, “Synthesis of timed asynchronous circuits,”
IEEE TVLSI, 1993.

[6] R. Manohar and Y. Moses, “Asynchronous signalling processes,” in
Proc. ASYNC, 2019.

[7] A. Dan, R. Manohar, and Y. Moses, “On using time without clocks via
zigzag causality,” in ACM PODC, pp. 241–250, ACM, 2017.

[8] Y. Moses and B. Bloom, “Knowledge, timed precedence and clocks
(preliminary report),” in Proceedings of the thirteenth annual ACM
symposium on Principles of distributed computing, pp. 294–303, 1994.

[9] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[10] R. Manohar and Y. Moses, “Analyzing isochronic forks with potential
causality,” in Proc. ASYNC, pp. 69–76, IEEE, 2015.

[11] R. Dashkin and R. Manohar, “General approach to asynchronous circuits
simulation using synchronous fpgas,” IEEE TCAD, vol. 41, no. 10,
pp. 3452–3465, 2022.

[12] T. G. Rokicki and C. J. Myers, “Automatic verification of timed circuits,”
in Proc. CAV, pp. 468–480, Springer, 1994.

[13] P. Merlin and D. Farber, “Recoverability of communication protocols-
implications of a theoretical study,” IEEE transactions on Communica-
tions, vol. 24, no. 9, pp. 1036–1043, 1976.

[14] K. S. Stevens, R. Ginosar, and S. Rotem, “Relative timing,” IEEE TVLSI,
vol. 11, no. 1, pp. 129–140, 2003.

[15] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,” IEICE Transactions on
information and Systems, vol. 80, no. 3, pp. 315–325, 1997.

