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Abstract—Although verification has widespread use in hard-
ware design, there is still a gap in verifying the functional
description of hardware against its detailed design. In this
paper, we present our effort to close that gap. Drawing an
analogy from test-driven development in software development,
we propose the idea of verification-driven design for hardware
design—the hardware design flow should be engineered in a
verification-friendly way. We showcase this idea by leveraging
a methodology in asynchronous circuit design that is similar to
software optimization—complicated, parallel microarchitectural
optimizations are derived from a simple, sequential functional
description through iterative rewriting. We propose a technique
to formally verify these transformations of hardware designs by
extending the state-of-the-art translation validation algorithm for
software verification. This approach is demonstrated by a super-
scalar processor example. We assert that our parallel superscalar
processor design is equivalent to a sequential non-superscalar
processor specification using the translation validation technique
presented in this paper.

Index Terms—formal verification, asynchronous circuits, trans-
lation validation

I. INTRODUCTION

A chip is designed by starting from an initial functional
description (sometimes called the golden model) that captures
its specification. The golden model is detailed in a software
programming language (typically C/C++), and the resulting
executable is used as the reference for detailed hardware
design. The manual chip design process creates a much more
detailed hardware model in a hardware description language,
and simulators are used to compare the behavior of the
hardware model against the golden model. Logic synthesis
tools translate the hardware model into gates implemented
with transistors and their interconnections. Finally, these gates
and connections are translated into physical geometry that
specifies the individual layers that implement the devices and
wires that implement the final physical realization of the
chip [1].

Unlike software bugs that are routinely corrected by dis-
tributing electronic patches, hardware bugs require a change
in the design of the chip and thus cannot be corrected so easily
(with the notable exception of field-programmable logic). Due
to the expensive nature of hardware bugs, significant effort is
devoted to making the design of hardware bug-free. Extensive
testing, at best, can only expose bugs but can never guarantee
the absence of them. As opposed to this, formal methods can
prove the absence of bugs in a hardware system.

However, even with formal methods widely applied in
the state-of-the-art synthesis flow, bugs are still common in
modern commercial hardware. This is because most formal
methods applied in mainstream VLSI design flows are either
at a low-level (such as equivalence checking of combinational
logic) or only check certain properties instead of the functional
correctness of the entire design. An executable golden model
is not integrated into the formal verification flow but rather
serves as a reference for the functionality. This is understand-
able because the traditional synchronous VLSI design flow
is fundamentally unfriendly to such verification due to the
disparity between the golden model and the detailed hardware
model.

In this paper, we propose a design philosophy of
verification-driven design—the hardware design flow should
have formal verification in mind. We argue that the design
flow itself should be designed in a formal-verification-friendly
way. We are inspired by the idea of stepwise refinement [2],
[3] in software, where the final program is derived through
iteratively rewriting a higher level program starting from a
program that serves as a specification for the high-level design.
Formal verification of stepwise refinement can be hard in soft-
ware development due to challenges in scaling up verification
techniques to the problem of verifying millions of lines of
code. However, it is a simpler problem for hardware design as
the programs that specifies and implements the hardware are
usually of a smaller scale and more constrained than a complex
piece of software. The idea of stepwise refinement in the
context of asynchronous design is sometimes referred to as the
formal synthesis approach, where a design is manually trans-
lated into its final concurrent implementation [4]. Verification-
driven design builds on this idea by incorporating automated
formal verification support with some user-assistance during
the design process.

The most prevalent method for designing digital chips is
the synchronous approach, where a global signal (the clock)
is used to sequence all operations on the chip, and the chip
is viewed as a large finite state machine with the clock tick
advancing the global state. This is reflected in detailed hard-
ware models specified in languages such as Verilog. However,
there is a disparity between the golden model described in
a software programming language (which does not include
an explicit clock) and the implementation in Verilog, which
contributes to the difficulty of formally connecting the two.
It also makes a stepwise refinement approach and its formal



verification hard due to the fact that we have to introduce the
global clock somewhere in the refinement and verify it, which
is likely a trade-off between the accuracy of the formal model
used in verification and the performance of the chip.

In this paper, we look at the asynchronous (a.k.a. self-timed)
approach in digital chip design which abandons a globally
synchronized clock. In this approach, the chip is modeled
as a concurrent system with components interacting through
explicit signaling, both in the high-level specification and in
the detailed hardware model. We use translation validation to
validate the correctness of each particular microarchitectural
optimization. Using these methods, we can formally verify
the correctness of a superscalar microprocessor design whose
final pipeline resembles those of state-of-the-art asynchronous
microprocessors [5].

We use the CSP- language for the golden model. CSP- is
an imperative version of a subset of Hoare’s Communicating
Sequential Processes (CSP) [6] and written using a syntax
borrowed from Dijkstra’s guarded commands language [7]. It
specifies a chip as a concurrent system with channels for com-
munication. In this paper, we show that it is possible to make
microarchitectural optimizations such as superscalar execution
at the CSP- level and formally validate the correctness of such
optimizations.

We view our design flow as consisting of a set of steps
of high-level microarchitectural optimizations, which enable
optimizations such as pipelining, superscalar execution, and
caches. Such optimizations are based on a set of transforma-
tions that are applied manually based on design requirements.
We start from a CSP- golden model and end up with an
optimized CSP- program.

We showcase our approach by formally verifying a su-
perscalar microprocessor. In our approach, we do not start
from a superscalar design as our golden model because such
a design is already too complicated to assert its correctness.
Instead, we use a simpler golden model—a sequential, general
processor that implements the same instruction set architecture
(ISA). We view superscalar execution as an optimization of
the golden model, and we formally verify it as such. This is
different from verifying the implementation of a superscalar
specification. To the best of our knowledge, such verification
of a superscalar design as an implementation has not been
done before. We remark that our approach is a general one
and not specific to the superscalar microprocessor.

In this paper, we make the following contributions:
1) An extension to the state-of-the-art translation validation

technique to support hardware programs that are possi-
bly reactive and parallel. In particular, we support CSP-,
an explicitly parallel, message-passing language.

2) A case study of deriving a superscalar processor design
from a functional specification of a general processor
through stepwise refinement, in a verification-driven
manner.

3) Automated formal verification of this verification-driven
superscalar processor design against a functional speci-
fication through translation validation.

Tape-out
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Design
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Fig. 1. A general VLSI flow and a relative position of our work. We focus
on the microarchitectural optimizations part of the flow. In particular, we use
stepwise refinement in deriving the detailed design, as a verification-driven
design methodology. The label synthesis refers to logic synthesis and physical
implementation.

II. ASYNCHRONOUS VLSI DESIGN FLOW

In this section, we briefly introduce the asynchronous VLSI
design flow, which is the target flow for our verification
framework.

A. Asynchronous Design

Fig. 1 shows the design flow for an asynchronous VLSI
(AVLSI) implementation of a chip. In this paper, we use the
term AVLSI flow to refer to Martin Synthesis [4], which is the
synthesis flow that our verification techniques target.

We divide the AVLSI flow into three phases: microarchitec-
tural optimizations, logic synthesis and physical implementa-
tion, and tape-out. In this paper, we focus on the microarchi-
tectural optimizations. An asynchronous VLSI designer can
use standard techniques in ALVSI, such as syntax-directed
translation [4], [8], to obtain a lower-level implementation of
the hardware.

Most formal verification works in hardware are focused
on the synthesis part, including logical- and physical- syn-
thesis, which will be discussed in Section V. The translation
validation technique we used for stepwise microarchitectural
optimizations is discussed in Section III.

B. CSP- Language

As we have mentioned in Section I, hardware designers start
from a golden model that describes the functionality of the
chip. To describe such models and high-level microarchitec-
tural optimizations, we use CSP- as our hardware description
language (HDL) at the highest level.

The CSP- language is a subset of Hoare’s CSP. Like CSP,
CSP- features explicit process-level concurrency, message-
passing via point-to-point channels and no shared variables.
Hence, in CSP-, processes can only communicate through
explicit channel actions. CSP- further restricts that no com-
munications can be used in selection guards. All guards are
therefore expressions. A brief summary of the syntax of a
CSP- process p is shown below, where v is a variable, C is a
channel name, and e corresponds to an expression.

p ::= v := e | C!e | C?v | p; p | ∗[p] | [e→ p[]..[]e→ p]

We use the syntax C!e and C?v for send and receive
respectively. Our communication is zero-slack, which means



that the channel cannot buffer any values (this is sometimes
called rendezvous synchronization). The communications in
CSP- are one-sender-one-receiver and blocking—every send
operation must be matched with a receive operation, finish
the communication and proceed. An example of usage can
be found in Fig. 2. The expression “∗[ p ]” stands for the
infinite repetition of p. We use “:=” for assignment, “;” for
sequencing, “f(..)” for function call, and “arr[i]” for array
indexing. The expression [e1 → p1[]..[]en → pn] is a guarded
selection: when ei is evaluated to be true, pi is selected. In
CSP-, we assume that the guards are syntactically mutually
exclusive; hence, selection statements are deterministic.

A CSP- program can contain multiple processes in parallel,
divided by ∥. For example, processes p1 and p2 run in parallel
in p1∥p2. In CSP-, ∥ is not used inside a process; thus, a single
process is always sequential. Note that all CSP- processes
do not share variables; thus, inter-process communication can
only be performed by message-passing via channels. All CSP-
variables and channels are declared prior to the programs and
are omitted for simplicity.

C. Microarchitectural Optimizations

By factoring out ISA details into black-box functions, we
specify the golden model of a processor using the following
CSP- program.
pc := init;
*[ instr := imem[pc]; δ := EXEC(instr,pc,σ);

pc := PCUPDATE(instr,pc,σ); σ := UPDATE(σ, δ) ]

In this description, σ captures the entire state of the processor,
and δ is used to capture the state update that must be
performed. imem is an array corresponding to the instruction
memory, pc is the value of the program counter, and instr
is the instruction to be executed.

The skeleton of a microprocessor can be specified in a
few lines as shown above: it simply loops forever, reading
an instruction from the program counter, executing the in-
struction and updating the program counter and the state of
the machine (such as memory and registers) accordingly. The
functions EXEC, PCUPDATE and UPDATE are ISA-specific.
These functions can remain black boxes when we apply certain
microarchitectural optimizations.

The program in Fig. 2 describes a two-way superscalar
microprocessor, with the assumption of PCUPDATE that the
length of an instruction is the constant WL Bytes. Recall that
in the guarded selection expression [e1 → p1[]..[]en → pn], an
entry pi is selected and proceeded with when ei holds.

As we can see from the example, a two-way superscalar
processor reads two instructions at a time and checks if it is
possible to run the two instructions in parallel (specifically
(i) the first instruction is not jumping or branching and (ii) the
two instructions have no data dependency). If it is possible to
run them in parallel, the processor issues both concurrently.
Otherwise, the processor falls back to the sequential version.

In general, a designer would perform a large number of
such re-writes to obtain the final concurrent CSP- description
of the micro-architecture of the hardware design.

D. Array Decomposition

We use the term dynamic array access to refer to an
array operation where the array index cannot be determined
statically during synthesis (or, to use a software analogy, at
compile time). These accesses are not automatically synthe-
sized in AVLSI flow, because dedicated, pre-verified circuit
implementations (memory macros) are much more efficient,
especially when the array size is large. In our processor case,
both the register file and the memory have dynamic array
accesses. To solve this problem, we apply a technique called
array decomposition (an example is shown in Section IV-D),
which turns all array indices into constants. After this step,
all array accesses will be factored out into separate “memory”
processes.

E. Verifying the Rest of the Design Flow

In the AVLSI flow, CSP- programs can be translated into
handshaking expansions (HSE), and those are further trans-
lated into production rules (PRS), which are a representation
of logic gates [4]. While this is not the focus of this paper,
we briefly summarize existing approaches for verifying those
parts of the AVLSI flow.

The correctness of an HSE program against a PRS program
can be model-checked by previous techniques [9]. The syntax-
directed decomposition approach mentioned above uses a fixed
set of building blocks; hence this final HSE/PRS verification is
independent of the CHP program and has to only be completed
once.

From PRS, automated layout tools can generate the physical
layout of circuits via gate-level technology mapping. Commer-
cial tools for layout-versus-schematic (LVS) and manufactur-
ing design rule checking (DRC) are used to verify that the
geometry meets the manufacturer’s guidelines, and matches
the gate-level PRS description, completing the verification
flow.

III. TRANSLATION VALIDATION FOR CSP-
OPTIMIZATIONS

In this section, we describe the validation of CSP- level
microarchitectural optimizations. At CSP- level, designers

pc := init;
*[ instr1 := imem[pc]; instr2 := imem[pc+WL];

[ can_issue_second(instr1, instr2) ->
A1 ! {instr1, pc, σ}; B1 ! {instr2, pc+WL, σ};
A2 ? δ1; B2 ? δ2;
pc := PCUPDATE(instr2,pc+WL,σ));
σ := UPDATE(UPDATE(σ, δ1), δ2)

[] else -> δ1 := EXEC(instr1,pc,σ);
pc := PCUPDATE(instr1,pc,σ); σ := UPDATE(σ, δ1)

]]
|| *[A1?{instr_a, pc_a, σa}; A2 ! EXEC(instr_a,pc_a,

σa) ]
|| *[B1?{instr_b, pc_b, σb}; B2 ! EXEC(instr_a,pc_a,

σb) ]

Fig. 2. A simple superscalar CPU in CSP- pseudocode. This is pseudocode
because σ is the unexpanded architectural state including arrays.



adopt a range of techniques to optimize the chip design.
They can be surprisingly similar to software optimizations,
such as pipelining, loop unrolling and loop distribution. Based
on this observation, we design a translation validation tool
to formally verify the correspondence between two CSP-
programs. We adopt an approach that is similar to state-of-the-
art translation validation tools [10], [11], [12]. In particular,
our tool extends the algorithm introduced in PEC [10]. The
goal is to automatically show a bisimulation relation between
two control flow graphs (CFGs) with a facilitating SMT solver.
We have two unique challenges that software validators do not
face:

1) Our target programs are typically reactive and non-
terminating. Due to their reactive nature, we need input
from the users to facilitate the verification process,
which corresponds to providing hints for matching loop
invariants between two programs.

2) Our target language is explicitly parallel with message-
passing on communication channels. Since we are deal-
ing with parallel programs, we parse each process in
the program into a CFG and merge all of them via
synchronization points defined by channels into a graph
that represents the whole program.

The original PEC algorithm (developed for software) cannot
handle non-terminating, reactive programs or concurrency.
Our extensions permit the use of translation validation in the
context of parallel CSP- programs.

A. Equivalence

We need an equivalence definition that accommodates the
fact that most programs that describe hardware are reactive.
The trivial “return value equivalence” used in terminating
software systems is not enough. Instead, we rely on trace
equivalence, which defines the equivalence of observable
behaviors in reactive programs [13]. Moreover, we define an
υ−state trace equivalence, where υ is the set of variables
whose state we observe. An υ−state trace t is defined as
a (possibly infinite) list where a new program state συ is
appended to the tail if it is not equal to the current head.
For example, the {x}−state trace of the program x := 1;x :=
y + 1;x := 2 with an initial program state {x 7→ 0, y 7→ 0}
is [{x 7→ 0}, {x 7→ 1}, {x 7→ 2}]—the state y is ignored as
it is not part of the observing variable set {x}, and the effect
of assignment statement x := y+1 is not recorded as it does
not change the value of x.

In Section IV, we will show that memory-trace
equivalence—i.e., υ-trace equivalence where the variable set
corresponds to the memory—can be used to compose a meta
correctness theorem about the processor in our superscalar
processor example.

B. Bisimulation

Our validator tries to establish a “matching” relation to
relate the original program and the transformed program. This
relation is called bisimulation. Before we give its rigorous

pc := init;
*[ instr := imem[pc];

[ is_jump(instr) -> a : pc := TGT(instr);
[] else -> σ := EXEC(instr,σ);
b : pc := pc+4; ]]

pc := init

instr := imem[pc]

a: pc:=TGT(instr) 𝛿:=EXEC(instr, 𝛿)
T F

b: pc:=pc+4

is_jump(instr)

Fig. 3. A CSP- process of a simple CPU which only has jump and ALU
instructions and its CFG following standard practice [15].

definition later in Definition 2, we need to introduce several
auxiliary definitions.

A control-flow graph (CFG) [14] is a standard compiler
technique [15] to abstract a sequential program’s logic from its
specific syntax. Each CSP- process can be translated trivially
into a control-flow graph (CFG), as they are sequential:
recall that concurrency does not exist inside a CSP- process
(however, CSP- programs do have inter-process concurrency,
whose verification is tackled by the technique introduced in
Section III-D2). An example of a CSP- process and its CFG
is shown in Fig. 3. We use π to refer to CFGs. In this section,
we use “program” and “CFG” interchangeably.

A location is a specific point that a program is at during its
execution. When a program begins, it is at its initial location,
which we refer to as ι. Further, we define anchor locations
to be locations that are used to “match” two programs in
verification: since CSP- programs can be non-terminating, we
need to pinpoint certain “matching” locations respectively in
two programs to prove their equivalence. Labels are the CSP-
syntax used to refer to locations. For example, in Fig. 3, the
colored “a” and “b” are labels. In CSP-, labels are used to
mark anchor locations.

A successor relation for anchor locations
path−−−→ is defined

to be: l
path−−−→ l′ holds iff l and l′ are both anchor locations

and there is a path in the CFG from l to l′ such that none
of the locations on the path except end points are anchor
locations. For example, in Fig. 3, the path from anchor
location a to a (i.e., a loop iteration) is “pc:=TGT(instr);
instr:=imem[pc];[is_jump(instr)=true]”. The ex-
pression [is_jump(instr)=true] is an assumption, which
is a predicate of the program state.

A correlation relation R of two programs π1 and π2 is
defined to be a set of triples (l1, l2, ψ), where l1 and l2 are
anchor locations in π1 and π2, and ψ is a formula over σ1 and
σ2, the states of π1 and π2 at l1 and l2 respectively.

Note that σ need not be the state of all variables present in
the program; otherwise, the optimizations that can be validated



are very limited. We use τ for the set of variables that are used
in σ. A simulation relation is dependent on τ . Recall that ι
stands for the initial location, and thus ι1 and ι2 are the initial
locations of π1 and π2 respectively.

Definition 1. (τ−Simulation). A correlation relation R is a
τ−simulation relation for π1, π2 iff it satisfies:

1) (ι1, ι2, σ1 = σ2) ∈ R.
2) For any (l1, l2, ψ) ∈ R, if l1

path1−−−→ l′1 then
there exists l′2, ψ

′, path2 such that (l′1, l
′
2, ψ

′) ∈ R
and l2

path2−−−→ l′2 and ∀σ1, σ2, ψ(σ1, σ2) =⇒
ψ′(step(σ1, path1), step(σ2, path2)) where step(σ, p)
is the new τ−state obtained by executing path p starting
from state σ.

3) For any (l1, l2, ψ) ∈ R, ψ =⇒ σ1 = σ2.

Definition 2. (τ−Bisimulation). A correlation relation R is
a τ−bisimulation relation for π1, π2 if R is a τ−simulation
relation for π1, π2 and R−1 is a τ−simulation relation for
π2, π1. We define (l2, l1, ψ) ∈ R−1 iff (l1, l2, ψ) ∈ R.

We establish the following theorem about υ−state trace
equivalence (defined in Section III-A), which states that a
τ−bisimulation (which can be validated by our tool) implies
state trace equivalence of any subset of τ . We define a write
to a variable as a statement that may change the value of the
variable (for example, in CSP-, a write is either an assignment
v := e or a receive C?v). A write to a set of variables τ is a
write to any variable in τ . We say a location l is in a relation
R if there exists a triple (l1, l2, ψ) ∈ R and l is either l1 or
l2.

Theorem 1. (τ−Bisimulation to υ−State Trace Equivalence).
If (i) there exists a τ−bisimulation relation R between π1
and π2, (ii) the locations of all writes to τ are in R used in
the bisimulation and (iii) υ ⊂ τ , then the two are υ−trace
equivalent.

Proof. Without loss of generality, we prove that any υ−trace
in π1 is a υ−trace in π2. It is obvious that the τ−bisimulation
is also a υ−bisimulation. For any υ−trace in π1, there must
exist a sequence of π2 locations in R that produces the same
trace (since R contains the locations of all writes to υ). We
use the υ−simulation hypothesis to find a simulating sequence
of locations in R, which is in π2’s υ−trace set.

C. Checker Algorithm

To check the equivalence of two CFGs, we adopt a sim-
plified version of PEC’s checker algorithm [10]. Our checker
algorithm is shown in Fig. 4.

1) Core PEC Checker Algorithm: The general idea of the
PEC checker algorithm [10] is to augment a given correlation
relation set R (by adjusting ψ in each triple (l1, l2, ψ) ∈ R) to
construct a bisimulation relation. The checker first computes
the set P that contains all the possible matching path pairs
(Line 2), based on the initial correlation relation set R. Once
R and P is computed, it tries to establish a bisimulation
relation (Line 4). The checker augments the condition of each

1 Check(R, π1, π2):
2 P := ComputePath(R, π1, π2);
3 if P = FAIL: return FAIL;
4 return SolveConstraints(P,R);
5
6 ComputePath(R, π1, π2):
7 P := ∅;
8 for each (l1, l2, ψ) ∈ R:

9 for each (path1, l′1)s.t.l1
path1−−−−→ l′1:

10 for each (path2, l′2)s.t.l2
path2−−−−→ l′2:

11 if Feasible(path1, path2, ψ):
12 if (l′1, l

′
2,_) /∈ R: return FAIL;

13 P := P ∪ {l1, l2, path1, path2, l′1, l′2};
14 return P;
15
16 Feasible(path1, path2, ψ):
17 return Solve(SP (path1, ψ) ∧ SP (path2, ψ)) != UNSAT;

18
19 SolveConstraints(P,R):
20 M : location ∗ location 7→ formula;
21 for each (l1, l2, ψ) ∈ R: M[(l1, l2)] := ψ;
22 worklist := P;
23 while !worklist.empty()):
24 {l1, l2, path1, path2, l′1, l′2} := worklist.pop();
25 F := M[(l1, l2)] =⇒ WP (path1∥path2,M[(l′1, l

′
2)]);

26 if Solve(!F) ̸= UNSAT:
27 if (l1, l2) = (ι1, ι2): return fail;
28 M[(l1, l2)] := M[(l1, l2)]∧

WP (path1∥path2,M[(l′1, l
′
2)]);

29 worklist := worklist ∪
{p ∈ P|p = (_,_,_,_, l1, l2)};

30 return SAT;

Fig. 4. The checker algorithm.

matching locations so that the condition at the end location
can be implied by that at the beginning (Line 25), i.e., clause
2 in Definition 1 is established for the specific (l1, l2, ψ) triple.
It repeats this procedure until either of the following happens:
(i) a closure is reached, in which case it exits the loop and
returns SAT; or (ii) it is trying to to augment the (ι1, ι2), i.e.,
the matching condition at the beginning is not strong enough
to imply a bisimulation relation, in which case it returns FAIL.

WP in Line 25 is the standard weakest-precondition [16]
predicate transformer, and SP in Line 17 is the strongest-
postcondition [16]. Predicates computed by these functions can
be solved using SMT solvers [17], [18].

When we call Solve, we ask an SMT solver to decide if
a formula is unsatisfiable. In Line 26, the checker asks the
solver to check the negation of formula F : an UNSAT result
means that F is valid, i.e., always true.

D. Our Contributions to the Checker Algorithm

As we have mentioned, the state-of-the-art equivalence
checking algorithms (designed for software programs) such
as PEC cannot handle reactive and parallel CSP- programs.

1) User-specified matchings: We ask the user to supply a
“specification” which contains a set of matching labels and
variables as hints. The user-provided specification describes
the variables from each program that must match at a selected
set of anchor locations. Note that the case of terminating



programs is simple—return values must match at program
exit points. Hence, in the case of PEC, this step can be
automated [10]. The reactive nature of CSP- programs requires
the user to provide this information. Moreover, as we have
mentioned in Section III-B, the matching relation often does
not cover all variables in the state—which allows for more
types of optimizations.

From the user-supplied specification, we derive the initial
relation R. The user needs to label anchor locations (defined in
Section III-B) in the program by adding explicit labels in our
system like in Fig. 3, and specify the matching location pairs
and variables (an example can be found later in Section IV-B
in our case study).

2) Extensions for parallelism: PEC is not designed for
parallel programs, as they cannot be converted into one single
CFG easily: recall that each sequential process corresponds
to a CFG and that a parallel program has multiple processes
(and there is no “standard practice” to turn a parallel program
into CFG(s), which we discuss in Section V). To handle
concurrency-introducing transformations, we introduce a new
technique called CFG merger that permits us to extend the
use of the checker to parallel programs with synchronization.

We extend our algorithm to support parallel programs by
implementing a merger of CFGs. Most works on concurrent
CFGs try to establish a new formalism as the software lan-
guages they target are more complicated, but since we are
targeting HDL programs and the relative simplicity of CSP-,
we can just merge multiple CFGs into one.

a) CFG Merger: We can merge CFGs of CSP- processes
into one for a subset of CSP- programs with an extension to the
validation framework we described so far. The subset condition
corresponds to processes that have a global synchronization
point. The framework is extended by replacing the notion of a
path between two labels with a directed acyclic graph (DAG)
between two labels that represent concurrent paths.

For parallel CSP- programs, we do not examine arbitrary
interleavings of paths—that would be too costly. Instead, we
structurally merge multiple CFGs into one with a concise
representation of parallel paths. Since (i) only channels are
used to communicate between processes, and (ii) all vari-
ables are local, assignments in different processes are non-
interfering, simplifying the state computation of merged paths.
We mark that this non-interfering property is not a restriction
or requirement of the merger but a result of CSP- language
disallowing shared variables (thus, all processes in a CSP-
program are data-independent).

The algorithm for merging two CFGs is shown in Fig. 6.
The function CollectSameChannels tries to collect the
paths in π2 from l2 the same collection of channels with the
same occurrences. The function also prunes all the infeasible
paths similarly as in Fig. 4. Fig. 5 shows an example of
MergePaths. Note here since we are always merging an
existing CFG π1 with that of a CSP- process π2, we can
assume that path2 is always a trivial DAG, i.e., a linear path.
Also, whenever MergePaths computes a cyclic graph, we
detect a deadlock in the CSP- program.

Q1!a1

Q2!a2

A1?v1

A2?v2

Q1?q1

A1!r1

r1:=!(q1)

D1

Q2?q2

A2!r2

r2:=!(q2)

D3

D2

q1:=a1

Q2!a2

v1:=r1

A2?v2

r1:=!(q1)

D1||D2

q1:=a1

q2:=a2

v1:=r1

v2:=r2

r1:=!(q1)

r2:=!(q2)

D1||D2||D3

Fig. 5. Merge CFG paths. Each path is a DAG. D1 and D2 are first merged
into D1∥D2. Then D1∥D2 and D3 are merged into D1∥D2∥D3. Note that
when two communication vertices are merged into one assignment vertex, the
new vertex inherits both communication vertices’ predecessors and successors.

1 MergeTwoCfg(π1, π2):
2 frontier := {(ι1, ι2)}
3 visited := ∅
4 π′ := {ι1#ι2}
5 while frontier ̸= ∅:
6 (l1, l2) := frontier.pop()

7 for each l1
path1−−−−→ l′1 ∈ π1:

8 for each (path2, l′2) ∈ CollectSameChannels(
path1, π2, l2):

9 dag := MergePaths(path1, path2)

10 π′.addEdge(l1#l2
dag−−→ l′1#l

′
2)

11 if (l′1, l
′
2) ̸∈ visited:

12 visited := visited ∪ {(l′1, l′2)}
13 frontier := frontier ∪ {(l′1, l′2)}
14 return π′

Fig. 6. The merger algorithm. The expression {l1#l2} is the new name
of a location by merging l1 and l2. The function MergePath is shown
empirically in Fig. 5.

We propose an extension of weakest-precondition (WP )
and strongest-postcondition (SP ) computation to handle paths
that are DAGs. In Fig. 4, the computation of WP or SP
of a path is well-defined when the path is a sequence of
instructions but not so when a path is a DAG. To solve this
problem, we pick one topological order of the DAG l (which
is a sequence of instructions) and define the WP or SP of
a DAG to be that of l. This practice is theoretically sound.
We know that all topological orders of the DAG have the
same WP and SP because they are the legal interleavings of
CSP- processes which are data-independent, i.e., assignments
in different processes are non-interfering. More formally, the
data dependencies of instructions are captured by the edges in
the DAG—any two instructions in the topological order that
can be swapped (i.e., without violating the partial order) are
data-independent (thus having the same WP and SP ), and a
finite number of these swaps can change a topological order
to any other, which means any two topological orders must
have the same WP and SP .

b) Global Synchronization Point: Any labels of a par-
allel CSP- program must be a global synchronization point.
Particularly, the label l1#l2 in Fig. 6 must be reachable in
all possible parallel executions of the program. This usually
means one label is on a pending communication which serves
as a barrier in the parallel execution. Not all CSP- programs
meet such requirements. However, in our experience, we



find that programs used to describe asynchronous circuits
typically meet this constraint. This is because we usually
derive a parallel version of a CSP- program from a sequential
one. Thus, the parallel processes usually follow a fork-join
paradigm which does not eliminate global synchronization
points.

IV. CASE STUDY: VERIFICATION OF A MICROPROCESSOR

In this section, we demonstrate the verification-driven de-
sign using the example of deriving a superscalar design
from a sequential golden model. We also formally verify
the refinements in this section using the validator discussed
in Section III. The memory-trace equivalence introduced in
Section III-A (using the memory as the variable in the equiv-
alence) allows us to reschedule reads of the memory in the
superscalar optimizations. We implement the validator in C++
with around 4.4K lines of code (LOC). We use Z3 [19] as the
external SMT solver.

A. Golden Model

We choose the user-level RISC-V 32-bit base integer
(RV32I) ISA [20] as our target ISA and implement a sequential
CSP- program for it. We implement all 40 instructions in
RV32I with only M-mode. Note that our design and verifi-
cation flow is mostly independent of the choice of ISA.

Our golden model is shown in Fig. 7. Note that all functions
have an implementation and are eventually expanded and
inlined before synthesis. But for validation, most can be treated
as abstract unless they are necessary for certain steps, such as
the step for register/memory access optimization where we
eliminate unnecessary reads to register and memory.

Our design for superscalar execution is to conditionally
issue the second instruction and unconditionally write back.
One could also imagine a design that unconditionally issues
and conditionally writes back, i.e., a speculative design.

We remark that our golden model is at a higher level than
the specification in most hardware verification, whose scale is
close to our final result through stepwise refinement. We will
discuss this in detail in Section V.

B. Microarchitectural Optimizations

Instead of checking the final result against the golden model,
we approach the verification in a stepwise fashion. In each
refinement step, we only introduce one type of optimizations so
that it is easier for the user to supply the auxiliary information
as we explained in Section III-C. An example of user-supplied
information is shown in the following.
"p1,p2":{"input": [ "pc_init", "dmem", "reg" ],

"matchings": { "l,l": [ "dmem", "reg", "pc" ]}}

Here p1 and p2 are the name of a CSP- program. The
two l are a label in p1 and p2, respectively. The names
such as dmem, pc are the matching variables. In all of our
transformations, the number of matching locations needed in
the specification does not exceed 3. We briefly introduce two
sets of optimizations next and show the runtime of different

1 pc := pc_init;
2 *[
3 instr := IMEM_READ(pc);
4 opcode := DECODE(instr);
5 upc := pc;
6 target := TGT(opcode, instr, reg[RS1(instr)])

, btaken := BTAKEN(opcode, instr);
7 [ branch(opcode) & btaken -> pc := pc +

target
8 [] jump(opcode) -> pc := target
9 [] system(opcode) ->

10 [ is_mret(instr) -> pc := mepc // MRET
11 [] else -> mepc := pc; pc := mtvec ] //

ECALL, EBREAK
12 [] else -> pc := pc + 4
13 ];
14 md := reg[RS1(instr)] + IMM(instr);
15 result := EXEC(instr, upc, reg[RS1(instr)],

reg[RS2(instr)], dmem[md]), reg_w :=
is_reg_write(opcode), mem_w :=
is_mem_write(opcode);

16 [ reg_w = true -> [ RZERO(RD(instr)) -> skip
[] else -> reg[RD(instr)] := result ]

17 [] else -> skip
18 ];
19 [ mem_w = true -> dmem[md] := result
20 [] else -> skip
21 ];
22 a: skip
23 ]

Fig. 7. The golden model of a processor. It is a sequential functional
specification but will be translated into a parallel, superscalar design through
our framework, whose correctness is formally verified against the golden
model. The label a at the end of the design is an anchor point discussed
in Section III-C. We do not include detailed definitions of functions such as
DECODE here, which are around 200 LOC in CSP- in total.

optimizations in Table I. Note that our approach is general for
any n-way superscalar execution optimization.

C. Introducing Superscalar

We use the validator introduced in Section III to verify
that the superscalar optimization is equivalent to the golden
model. We have shown a skeleton of superscalar design result
in Section II-C previously. Table I summarizes four stages
in introducing superscalar execution. We omit the detailed
CSP- of each refinement step due to page limitation and use
pseudocode to show the idea instead. Their LOCs are reported
in Table I, which does not include ISA-specific function
definitions around 200 LOC in CSP-.

1) Loop unrolling: We unroll the CPU loop once. Its
general idea is shown below.

pc := pc_init;
*[

LOOP_BODY1;
[issue_second -> LOOP_BODY2
[] else -> skip ]

]

Here the two loop bodies are identical except for the variable
issue_second is computed in LOOP BODY1.

Note that this is not a generic two-way loop unrolling where
the loop body is repeated twice. In our case, the second



loop body is conditional, which corresponds to the conditional
issuing of the superscalar design.

2) Instructions reordering: In this refinement step, we
move the FETCH and DECODE in the second loop body next
to the first ones and move two execution units next to each
other in the selection entry where we can issue second. This
refinement step allows us to isolate the execution units.

We start from the unrolling result of the previous step,
and we expand each LOOP BODY into four stages for
demonstration purposes.
pc := pc_init;
*[

FETCH1; DECODE1; EXEC1; WRITE_BACK1;
[issue_second ->

FETCH2; DECODE2; EXEC2; WRITE_BACK2;
[] else -> skip ]

]

This program is refined into the following.
pc := pc_init;
*[

FETCH1; FETCH2; DECODE1; DECODE2;
[issue_second ->

EXEC1; EXEC2; WRITE_BACK1;
WRITE_BACK2

[] else -> EXEC1; WRITE_BACK1]
]

The correctness of this refinement step depends on the con-
dition issue_second, since we swapped EXEC2 and
WRITE BACK1 in the superscalar path. It is the designer’s
responsibility to design this optimization, i.e., to choose
issue_second to be a value under which EXEC2 and
WRITE BACK1 are non-interfering.

3) Register/memory access optimization: In this step, un-
necessary register and memory reads are eliminated. For
example, a RISC-V immediate add instruction addi does not
read rs2. In the golden model, the processor reads the rs2
unconditionally. In this refinement step, the read is dropped.
We do not choose to implement this optimization in the golden
model because the golden model should contain minimum
code that is sufficient for describing functionality.

This refinement step, unlike others, is ISA-dependent: we
need to supply the implementation of the RISC-V execution
unit and its ISA encoding so that the validator can verify
that the elimination of redundant operations does not affect
functional correctness.

4) Projection: Projection [21] is a well-known design tech-
nique in asynchronous VLSI. Using this technique, we project
the two execution units to two separate processes so that they
run in parallel.
pc := pc_init;
*[

FETCH1; FETCH2; DECODE1; DECODE2;
[issue_second ->

EXEC1; EXEC2; WRITE_BACK′

[] else -> EXEC1; WRITE_BACK1]
]

The program above is refined into the following, where
EXEC1 and EXEC2 runs in parallel. The correctness of

this refinement step depends on the non-interference of two
execution units.

pc := pc_init;
*[

FETCH1; FETCH2; DECODE1; DECODE2;
[issue_second ->

E1!args1; E2!args2; R1?δ1; R2?δ2;
WRITE_BACK′

[] else -> E1!args1; R1?δ1; WRITE_BACK1]
] || *[ E1?args1; δ1 := EXEC1; R1!δ1 ]
|| *[ E2?args2; δ2 := EXEC2; R2!δ2 ]

Note that CSP- program does not allow shared variables, so
even one identical name may occur in multiple processes, they
are all local. The validation of this refinement step requires the
merger extension we introduced in Section III-D2. A similar
but simplified example was demonstrated in Fig. 5.

In general, projection can be done on two sets of disjoint
variables and introduce concurrency to a CSP- program. To
the best of our knowledge, the correctness of this technique
has been proved on paper [21] but has not been formally
verified. We use our extended translation validation approach
to formally verify projection transformations. While we do
not detail this here, projection can also be used to reason
about other micro-architectural transformations (e.g., FETCH-
DECODE-EXEC-WRITE BACK pipelining [5], [21]).

5) Summary: Our tool allows both interpreted and uninter-
preted functions and provides the flexibility to switch between
them. While the register/memory access optimization step is
ISA-dependent, other parts where we can just omit the details
of execution and use uninterpreted functions are not.

We remark that design choices are made through step-
wise refinements. For example, an alternative speculative
design that unconditionally issues both instructions would
need to introduce a commit_second variable to guard
WRITE BACK2. This speculative idea is applicable to
optimizations like branch prediction.

D. Array Decomposition

We decompose instructions that involve dynamic array
accesses (Section II-D) into separate modules, which include
the register file and the memory, to make our final design
synthesizable in AVLSI flow. Using the register file as an
example, we first delegate all reads and writes to a separate
process shown below and then replace the original occur-
rences with the corresponding sequence of communications
(for example, reg[n] := d is replaced with REG_NUM!n;
REG_WR!true; REG_W_DATA!d; REG_W_ACK?).

*[ REG_NUM?num; REG_WR?is_write; REG_W_DATA?wdata;
[ is_write -> reg[num] := wdata; REG_W_ACK!
[] else -> REG_R_DATA!reg[num] ]]

Then we use a macro script to expand the array to eliminate
dynamic access. For example, a register file of size 2 will be
expanded to the following.



TABLE I
VALIDATOR RUN TIME FOR DIFFERENT TRANSFORMATIONS. WE ALSO
ATTACHED THE NUMBER OF RE-WRITING STEPS INVOLVED FOR EACH

OPTIMIZATION AND THE LOC AFTER THE OPTIMIZATION IS APPLIED. THE
LOC OF THE ARRAY DECOMPOSITION RESULT IS BEFORE MACRO

EXPANSION.

Optimization Name Time(s) Step # Final LOC

Initial program N/A N/A 23
Loop unrolling 0.5 1 48
Reordering 6.5 7 62
Reg./Mem. Optimization 3.6 1 75
Projection 3.2 1 115
Array Decomposition 25.4 1 141

*[ REG_NUM?num; REG_WR?is_write;
REG_W_DATA?wdata;
[ num=0 -> [ is_write -> reg[0] := wdata;

REG_W_ACK!
[] else -> REG_R_DATA!reg[0] ]

[] num=1 -> [ is_write -> reg[1] := wdata;
REG_W_ACK!

[] else -> REG_R_DATA!reg[1]]]]

Our final CSP- program contains the following modules
after the microarchitectural optimizations.

MAIN ∥EXEC 1∥EXEC 2∥REG FILE∥MEMORY

E. Meta Theorem

We establish following meta theorem.

Theorem 2. The golden model is memory-trace equivalent to
the final implementation.

Proof. A successful validation run establishes memory-trace
equivalence relation if we always include dmem as a matching
variable. All the transformations used in our microarchitectural
optimizations satisfy this condition.

F. Discussion

Our approach uses memory decomposition and an explicit
CSP- memory description. Memory is usually designed as a
separate module apart from the microprocessor. Nonetheless,
we decompose the memory (Section IV-D) since our meta
theorem is stated on memory contents. One can imagine
an alternative approach where we separate the memory and
verify the microprocessor based on an equivalence defined by
channel communications to the memory module. Note that
if memory access patterns are re-ordered by the superscalar
transformation, then this would require significantly more
complex formalisms to state a meta theorem about the golden
model and detailed design (for example, one needs to specify
a memory consistency model to begin with).

We also note that while our work is focused on asyn-
chronous design, the techniques we have introduced can also
be used for clocked circuits that use ready/valid signals and
use latency-insensitive interfaces throughout.

V. RELATED WORKS

a) Model Checking: Model checking is a popular tech-
nique used in formal verification of hardware. Often this

approach is applied to specific circuits instead of parameter-
ized ones, for example, verification of processors using model
checking [22], [23]. An abstract model of the circuit is hand-
created, and temporal logic specifications are written to verify
that the abstract model meets certain requirements [24]. These
works are analogous to the HSE/PRS model checking [25] in
AVLSI flow. We adopt translation validation [26] on a much
higher level.

CSP-derived languages have been cooperated into automatic
checkers, most notably CSPM used in FDR [27]. FDR checks
refinement based on concrete models. It can be extended to be
general if the CSP program is data independent [28] (which a
CPU is not). Our checker adopts the validation technique that
depends on an SMT solver, which allows abstract data/function
and enables parameterized validation inherently.

b) Hardware Verification Through Theorem Proving:
In this section, we identify a series of works on hardware
verification through theorem proving. We make two general
remarks on the differences between these works and ours:
(i) our work targets microarchitectural optimizations, which
is at a higher-level than these works; (ii) we use translation
validation rather than theorem proving, allowing us to verify
user-specified transformations, not just pre-defined ones.

Recent works on modular verification of hardware are
described in the Bluespec language [29], [30] and in a subset
of Verilog [31]. These approaches focus on the verification of
synchronous circuits, while our work is focused on a different,
asynchronous VLSI methodology.

FM9001 [32] and VAMP [33] are two formally verified
processors through theorem proving, both of which leverage
synchronous design methodology. While our work also has
a processor example, we focus on a general method for
compilations. We are also at a higher level than these works:
they start from a “detailed design” which is what we target.

Recently, theorem-proving was also used in asynchronous
circuits verification. Longfield et al. verified that CHP descrip-
tions of chips satisfied certain basic safety properties [25].
This is different from our work and other works discussed
in this section, all of which focus on functional correctness.
Chau et al. have done a series of works on the formal
verification of asynchronous circuits through theorem proving
using ACL2 [34], [35]. While these works also focus on
functional correctness, they use the DE system to describe
asynchronous circuits and target a lower-level phase in the
design flow.

c) High-Level Synthesis: High-level synthesis (HLS)
adopts a seemingly similar methodology to the microarchi-
tectural optimizations procedure in our flow. A series of
works is done on formal verification of HLS [36], [37], [38],
[39]. However, HLS and microarchitectural optimizations in
our flow are fundamentally different. First, the high-level
languages used in HLS are software languages such as C
and C++, whereas our approach starts from CSP-, which is
a hardware description language that is a better model for
the physical implementation. Second, the HLS tools generate
the hardware implementations automatically, whereas our ap-



proach verifies the designer-specified detailed hardware model.
Therefore, our approach enables the designer to make manual
microarchitectural level optimizations and verify them, which
HLS tools do not.

d) Compiler Verification: One could also draw a similar-
ity between our work and any software compilation/optimiza-
tion verification works using translation validation [26], from
which we took inspiration. But since we are dealing with a
different set of languages that are hardware-oriented, we have
major differences with the software compilation verification
work. Most notably, we are more interested in reactive and
parallel behaviors. We also focus on message-passing protocol,
which is different from the shared-memory-based concurrency
model that is commonly explored in software compilation
verification.

We are also inspired by the method of stepwise refine-
ment [2], [3], which we combine with formal verification
method for what we call verification-driven design. A work
on using refinement for hardware design has been done on
communication protocol [40]. They target a very specific
example in synchronous circuits. We target a more complicated
example and demonstrate the generality of this method in
asynchronous design.

e) Concurrent CFGs: Most works on concurrent CFGs
focus on developing a new formalism for a set of CFGs instead
of merging them into one, such as threaded CFG [41] and
Parallel Program Graphs [42]. Moreover, works on data-flow
analysis [43], [44] also adopt the idea of using a DAG to
represent information from a CFG. However, these works are
on languages where processes communicate through shared
variables. Thus, they use more complicated techniques to
solve the problem. We are able to approach the concurrent
CFG problem by simply merging CFGs because our model
is simpler: CSP- has no shared variables, and processes
communicate through channels. Thus, for example, we can
simply merge two vertices of matching communications in-
stead of introducing extra mechanisms such as synchronization
edges [42].

VI. CONCLUSION

In this paper, we presented our work on the verification
framework for asynchronous VLSI and demonstrated it by
formally verifying a processor. Due to the difference between
high-level microarchitectural optimizations, which involves a
large set of stepwise transformations, we adopt translation
validation for its formal verification. Specifically, we propose
verification-driven design for hardware design through step-
wise refinement and its verification. We designed and im-
plemented a validator and validated the superscalar execution
optimization of a processor.

We plan to use our framework to verify more complicated
hardware designs, such as a state-of-the-art processor with
interrupts and exceptions support. We also plan to use our
validator to verify more microarchitectural optimizations, such
as virtual memory and cache.
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