
Asynchronous Signalling Processes
Rajit Manohar∗
Yale University

New Haven, CT 06520, USA
rajit.manohar@yale.edu

Yoram Moses†
Technion-Israel Institute of Technology

Haifa 32000, Israel
moses@ee.technion.ac.il

Abstract—A model of processes that interact via asynchronous
wires carrying Boolean signals is presented. In this model,
modules, called processes, can be made arbitrarily complex, can
maintain local memory and can have an arbitrary number of
inputs and outputs. A variety of circuit models can be represented
by networks of signalling processes. It is shown that in a network
of signalling processes consisting solely of single-ouput processes
and forks, every module is an eventual C element. Consequently,
the computational power of such a network is severely limited.
This establishes that the celebrated C-element property of DI
circuits follows solely from the fact that single output modules
communicate over stable asynchronous wires. Conversely, it is
shown that any Boolean function can be implemented using four-
input/two-output processes where every process is either one gate
(single output) or a pair of gates (two output).

Index Terms—delay insensitive circuits

I. INTRODUCTION

Researchers have studied a variety of models for delay-
insensitive circuits as a way to decouple physical design con-
cerns from logical design concerns. These models consisted
of modules that were interconnected with delay-insensitive
wires. As early as in the 1960s, the macromodular com-
puter systems project aimed to develop modules so that “no
logically irrelevant problems such as ... signal propagation
delay” would have to be considered when assembling large-
scale systems [1]. Various sets of components for delay-
insensitive computation have been proposed, and they all
include primitives that have more than one output wire. For
example, Ebergen’s model included the toggle primitive (with
two outputs) as well as the RCEL primitive (with three
outputs) [2]. In an influential paper, Martin showed that every
delay-insensitive circuit composed of single output gates that
has only one computation consists entirely of C-elements [3].
More recent work extended the result to show that arbitrary
delay-insensitive circuits composed of single output gates are
also limited to eventually behave as C-elements [4].

There are two key assumptions underlying the C-element
results. First, modules have a single output wire. Second,
the modules are simple gates specified by production rules
that model pull-up and pull-down logic networks. Both these
assumptions are violated by the proposals in the literature for

† Yoram Moses is the Israel Pollak academic chair at the Technion, and
was supported in part by the BSF grant 2015820 which is coincident with
NSF-BSF grant CCF 1617945.
∗ Rajit Manohar was supported in part by NSF-BSF grant CCF 1617945,
DARPA IDEA grant FA8650-18-2-7850, and in part by DARPA POSH grant
HR001117S0054-FP-042.

delay-insensitive modules. This naturally raises two key ques-
tions: (Q1) can we build useful delay-insensitive computations
with complex modules, but that only have a single output?
(Q2) if more than one output is needed, how many outputs
are necessary and how complex do the modules have to be in
order to support implementing arbitrary Boolean functions? In
this paper we answer both these questions.

We propose asynchronous signalling processes, a general
model for circuit modules interacting through delay-insensitive
wires. In our model, modules can be made arbitrarily com-
plex, and can have an arbitrary number of outputs. However,
modules are connected by delay-insensitive wires that can
be used to communicate binary values. We establish two
main results. First, if modules are restricted to have single
outputs, then the circuits remain extremely limited in the sense
of [3], [4] despite the fact that modules can be arbitrarily
sophisticated. In other words, the answer to question (Q1)
is “no.” Second, we show that two outputs are sufficient to
make a fully general class of delay-insensitive circuits from
the standpoint of computational power. In fact, we can use
extremely simple modules to accomplish this so long as two
outputs are permitted. In other words, the answer to (Q2) is
that two outputs suffice, and the modules can be as simple
as a pair of gates. This establishes that the key source of the
limitations to delay-insensitivity shown in [3], [4] is the single
output restriction.

II. DEFINITIONS AND MODEL

A. Wires

The basic element used for communication between pro-
cesses is a wire. A wire w consists of a pair of variables
(ow, iw) in which ow is called the wire’s originating variable
and iw its destination variable. The variables ow and iw are
considered matching variables. The former serves as an output
of a process, and the latter is an input that the wire feeds
into another process. The possible values of a destination
variable are simply {0, 1}. The possible values of an originat-
ing variable are {0, 1,Z}. When the value of the originating
variable ow is 0 and that of iw is 1, we say that ow is enabled
to signal 0. Similarly, if ow is 1 and iw is 0, we say that ow is
enabled to signal 1. A signal is delivered over w in a transition
that starts with an output variable ow being enabled to signal,
and ends with the value of its matching destination variable iw
assigned to the value that ow had initially (while ow remains

unchanged). When ow has value Z it is disabled, and no change
in the destination variable can take place.1

Given a set of originating variables O, we denote by SO

the set of possible assignments σO : O → {0, 1,Z}. Similarly,
given a set of destination variables I , we denote by SI the set
of possible assignments σI : I → {0, 1}.

B. Processes

A process in our framework is associated with a set Q of in-
ternal states, a set O of originating variables called its outputs,
and a set I of destination variables called its inputs. A local
state of such a process consists of a triple ` = (q, σO, σI),
where q ∈ Q is the internal state, σO : O → {0, 1, Z} maps
output variables to their value, and σI : I → {0, 1} maps input
variables to their values.

Formally, a process in our framework is a tuple p =
(Q, δ̂, O, I) that describes a nondeterministic automaton where
Q, O, and I are as above, and δ̂ : Q×SO ×SI → (2Q×S

O \ ∅)
is its nondeterministic transition function. Intuitively, δ̂ sets
the next internal state and the next assignment to the output
variables of a process p, based on p’s current local state.2 A
step of the process changes its local state from (q, σO, σI)
to (q′, σ′O, σI) where (q′, σ′O) ∈ δ̂(q, σO, σI). In general,
different outputs of a process can have distinct values; i.e.,
each output of a process can depend on its inputs and its
internal state in a different way.

In circuits, a single signal often has multiple destinations.
To conveniently model this scenario, we define a special type
of process called a fork that has a single input variable and
multiple output variables. At every step, a fork simply copies
the value of its (single) input to all of its outputs.

Given a set of processes P , a configuration c of P assigns
a local state ` = (q, σO, σI) to every process p ∈ P .

C. Networks of Signalling Processes

An SP network is a triple S = (P,W,C0) consisting of
a set of processes P , a set W of the wires appearing in P ,
and a set C0 of initial configurations of P . To ensure that W
represents the input/output variables in P , we require:

1) Every input and output variable in a process p ∈ P
belongs to a wire in W , and

2) For every wire w = (ow, iw) ∈W there are two unique
processes p, p′ ∈ P such that ow ∈ Op and iw ∈ Ip

′
.

It is sometimes convenient to consider the communication
graph GS = (VS , ES) underlying an SP network S =
(P,W,C0). This is a directed graph with vertex set VS = P
consisting of the processes of S, and where there is a directed
edge (q, p) ∈ ES if there are matching output and input
variables ow ∈ Oq and iw ∈ Ip. The associated wire w is

1We have chosen not to have the originating variable value Z carry the
information of whether the last value “delivered” on the wire was 0 or 1.
If necessary, this information can be captured by the internal state in our
formalism.

2Since we allow the transition function to be nondeterministic, our pro-
cesses can correspond to a rich variety of devices, including synchronous and
asynchronous gates or sub-circuits.

considered an output wire of q and an input wire of p. Note
that while a process typically has external inputs and outputs,
an SP network has neither. In this sense, a process may be
open to external interaction, but an SP system is closed.

D. Computations

A computation of an SP network S is a sequence s =
c0, c1, c2, . . . of configurations of S, in which (i) c0 is an initial
configuration of S; and (ii) For k ≥ 0, configuration ck+1 is
obtained from ck by having every process p in S take a step,
and then having a (possibly empty) set of signals that are
enabled in ck delivered over their wires.

For a computation s = c0, c1, c2, . . ., we use s(t) to denote
the configuration ct, and we use sp(t) to denote the local state
(q, σO, σI) of process p in configuration ct. Let w be a wire
with output variable ow and (matching) input variable iw. A
signal is delivered over the wire w at a configuration s(t) of
a computation s if t > 0, the output variable ow is enabled
at time t − 1 (i.e., s(t − 1)(iw) 6= s(t − 1)(ow) 6= Z), and
s(t)(iw) = s(t)(ow) = s(t − 1)(ow). (Thus, a signal that is
delivered at time t is already reflected in the input variable of
the receiving process at time t; the step taken by the process at
time t can, in general depend on the signal’s updated value.)

E. Stability

In analogy to circuits, signalling networks must be designed
in such a way that their wires do not suffer from glitches and
short circuits. It is thus the responsibility of the designer of a
signalling network S to ensure that every computation s of S
satisfies the following condition:
• Stability. For every pair ow and iw of matching variables

in S and all times t ≥ 0, if s(t)(ow) 6= Z and
s(t+ 1)(ow) 6= s(t)(ow), then s(t+ 1)(iw) = s(t)(ow).

Stability ensures that once an output variable is set to 0 (or 1),
this value does not change before it propagates to the matching
input variable.

When using signalling networks to describe asynchronous
circuits, it is natural to assume that all wires are stable. For
the remainder of the paper, all signalling process networks that
we consider will be assumed to satisfy stability.

F. Asynchronous Circuits as SP Networks

There are many possible computations of a given SP net-
work that begin with an initial configuration c0. The assump-
tion that an arbitrary set of enabled signals can be delivered
at any step of a computation of an SP network makes inter-
process wires asynchronous.

SP systems can be used to model popular asynchronous
circuit models. The class of purely delay-insensitive (DI)
circuits can be directly captured by mapping gates to processes
with a single state each, where the function δ̂ for a gate
captures the behavior of the gate’s pull-up and pull-down
switching logic.

All other asynchronous circuit families introduce timing
assumptions either on wires, on gates, or both. In an SP
network, it is convenient to use the transition function δ̂ within

an individual process to capture any delay assumptions. For ex-
ample, quasi delay-insensitive (QDI) circuits have isochronic
fork constraints. If the output of a gate has an isochronic fork
to a set of target gates, those gates could be grouped into a
single process in an SP network so that the fork is encapsulated
within a individual SP process. Note that since QDI circuits are
typically decomposed into small modules that communicate
over delay-insensitive wires, this procedure of merging gates
would typically end at module boundaries. In the resulting SP
network, every process would correspond to a module.

More generally, large-scale self-timed circuits are typically
designed as a collection of cooperating modules that exchange
information via communication channels. Often channels be-
tween modules use delay-insensitive protocols. In this sce-
nario, each circuit module corresponds to an SP process,
and wires connecting modules correponds to wires in the SP
network. Each process’ transition function δ̂ can capture the
functional behavior of the corresponding module for any set
of underlying timing assumptions in the circuit implementa-
tion. Hence, SP networks can capture the behavior of any
asynchronous circuit family where modules are connected by
delay-insensitive wires.

Bundled-data communication includes a relative timing con-
straint between the control and data wires in the commu-
nication link. The asynchronous SP model does not capture
this in a useful way, since all the wires and control signals
would have to be encapsulated within a single process. We
discuss how a small circuit transformation can be used to
extend the asynchronous SP model to capture the behavior
of such circuits in Section VI.

In summary, the SP model is applicable whenever an
asynchronous circuit implemented using any model can be
partitioned into components that communicate over delay-
insensitive wires.

III. ASYNCHRONOUS SIGNALLING PROCESSES

A. Potential Causality
The sequence defined by a computation is indexed by an

integer, which plays the role of an external notion of time.
(We use both t’s and m’s for these indexes.) But, in the
asynchronous setting that we are considering in this section,
the signalling processes in the system do not have access to the
current time, and it does not affect their operation. Reasoning
from the outside, we will be interested in distinguishing the
information available to a process at different times t, and in
particular how this information propagates through the input
and output variables. For this purpose, given a process p, a
pair 〈p, t〉 is called a node. We use such a node to refer to
process p at time t.

Let p and q be two processes connected by a wire w
where ow is an output variable of p and iw is its matching
input variable in q. If a signal from p is delivered to q
over w at time t in a given computation s, then we write
〈p, t〉 ↪→s 〈q, t+ 1〉 and call 〈q, t+ 1〉 a successor of 〈p, t〉
in s. Following [5], [6], given a computation s we define a

partial order ≺s over nodes called potential causality to be the
minimal relation satisfying the following three conditions:3
Locality: 〈p, t〉 ≺s 〈p, t′〉 if t < t′;

Successor: 〈p, t〉 ≺s 〈q, t+ 1〉 if 〈p, t〉 ↪→s 〈q, t+ 1〉;

Transitivity:〈p, t〉 ≺s 〈q, t′〉 if both 〈p, t〉 ≺s 〈r,m〉
and 〈r,m+ 1〉 ≺s 〈q, t′〉,
for some node 〈q,m〉.

When 〈p, t〉 ≺s 〈q, t′〉 where p 6= q, the definition of
potential causality implies that there must be a finite sequence
of sent signals that relate 〈p, t〉 to 〈q, t′〉. This is captured by
the notion of signalling chains.

Definition 1: We say that there is a signalling chain
from 〈p, t〉 to 〈q, t′〉 in the computation s if there is a
sequence of processes 〈x1, . . . , xk〉 with xk = q, and a
sequence of times 〈t1, . . . , tk〉 with t ≤ t1, tk < t′, and
ti−1 +2 ≤ ti for 2 ≤ i ≤ k, such that 〈p, t1〉 ↪→s 〈x1, t1 + 1〉
and 〈xi−1, ti〉 ↪→s 〈xi, ti + 1〉 for 2 ≤ i ≤ k.

The notion of a signalling chain is analogous to a message
chain in a distributed computation, and to a firing chain in
asynchronous circuits [3]. The fact that ‘≺s ’ is the minimal
relation satisfying the Locality, Successor and Transitivity
conditions means that 〈p, t〉 ≺s 〈q, t′〉 holds only if it can be
derived by a finite number of applications of these conditions.
Based on this, a rather straightforward consequence of the
definition of ≺s is the following lemma, whose proof is
delegated to the Appendix:

Lemma 1: For processes p 6= q, if 〈p, t〉 ≺s 〈q, t′〉 then
both t < t′ and there is a signalling chain from 〈p, t〉 to 〈q, t′〉
in s.

Lemma 1 immediately implies that if 〈p, t〉 ≺s 〈q, t′〉 then
there is a path from p to q in the SP network graph.

Recall that a node 〈p, t〉 refers to process p at time t.
Intuitively, the ‘≺s’ relation captures potential causality within
the computation s in the sense that information at a node 〈p, t〉
can affect the state of q at time t′ in s only if 〈p, t〉 ≺s 〈q, t′〉.
I.e., if 〈p, t〉 6≺s 〈q, t′〉 then the state of p at time t can not
influence the information and actions of q at time t′ in s. This
is made precise by the following result.

Theorem 1 (Past Theorem): Fix a system S of signalling
processes, times m < m′, a computation s of S and a node
〈q,m′〉. There is a computation s′ of S such that s′(t) = s(t)
for all times t ≤ m, and for all processes p and times t in the
range m < t ≤ m′, we have that

(a) s′q(m
′) = sq(m

′),
(b) if 〈p, t〉 ≺s 〈q,m′〉 then s′p(t) = sp(t), and
(c) if 〈p, t〉 6≺s 〈q,m′〉 then p receives no signal at time t.

3A fourth condition could be added, to account for the fact that a process
step transfers information from the input variables to the output variables of
the process. Instead, the transitivity condition allows for one step between
time m and time m+ 1 at the intermediate process r, in which this transfer
can occur. We note that the transitivity condition in the relation �s relation
defined in [6] would not faithfully apply to signalling processes. We choose
to have ≺s be a strict (non-reflexive) relation, whereas the corresponding
condition �s of [6] is reflexive, simply for ease of exposition.

Proof: We define the desired computation s′ based on s. For
times t ≤ m we simply define s′(t) = s(t) as desired. For
times t in the range m < t ≤ m′,
(i) if 〈p, t〉 ≺s 〈q,m′〉 or 〈p, t〉 = 〈q,m′〉 then s′p(t) = sp(t);

while
(ii) if 〈p, t〉 6≺s 〈q,m′〉 then at time t in the computation s′

process p receives no signal on any of its incoming wires,
and performs an arbitrary legal step (according to its local
state s′(t) and its transition function δ̂).

Finally, from time m′ + 1 on, the computation in s′ proceeds
in such a way that at every time t, each of the processes takes
an arbitrary legal step, and every enabled signal is delivered.

By construction of s′ we clearly have that s′(t) = s(t) for
all times t ≤ m. Moreover, conditions (i) and (ii) immediately
imply that claims (a), (b) and (c) hold. To complete the proof,
we need to show that s′ is a legal computation of the SP
system S. Since s′(0) = s(0) the new computation s′ starts in
a legal initial configuration of S. The next property we need
to show is that every configuration in s′ is obtained from its
predecessor by having every process p taking a legal step,
and a possibly empty set of enabled signals delivered over
their wires. By definition of s′, this immediately holds for all
configurations s′(t) for 0 < t ≤ m′, and for all t > m′. To
establish the claim for t in the range m < t ≤ m′, it suffices to
show that for every p such that 〈p, t〉 ≺s 〈q,m′〉 we have that
every signal that is delivered to p at time t of s is enabled to be
delivered to p at time t in s′ as well. Recall s′p(t) = sp(t) for
such p and t, by definition of s′. If the delivered signals in s
are enabled in s′ as stated, then the same transition performed
by δ̂p at sp(t− 1) can be applied at s′p(t− 1), and all signals
delivered to p at time t in s can be delivered in s′. It follows
that the transition from s′p(t− 1) to s′p(t) = sp(t) is legal.

We now prove for all t in the range m < t ≤ m′, that if
〈p, t+ 1〉 ≺s 〈q,m′〉 or 〈p, t〉 = 〈q,m′〉 then every signal that
is delivered to p at time t of s is enabled at s′(t − 1) to be
delivered to p.
Case t = m+ 1: In this case, t − 1 = m. By construction
of s′ we have that s′(m) = s(m) and so, the same signals are
enabled at s′(t−1) and at s(t−1), ensuring that the condition
holds.
Case m′ ≥ t > m+ 1: Assume that a signal is delivered on
w from p′ to p at time t in s. Thus, 〈p′, t− 1〉 ↪→s 〈p, t〉, and
so by Successor we have that 〈p′, t− 1〉 ≺s 〈p, t〉. In case
〈p, t〉 = 〈q,m′〉 we clearly have that 〈p′, t− 1〉 ≺s 〈q,m′〉.
Otherwise, since 〈p, t+ 1〉 ≺s 〈q,m′〉 it follows by Tran-
sitivity that 〈p′ − 1, t〉 ≺s 〈q,m′〉. Thus, by definition
of s′, we have that s′p′(t − 1) = sp′(t − 1). By Locality
we have that 〈p, t− 1〉≺s〈p, t〉, and it similarly follows that
s′p(t−1) = sp(t−1). Thus, the variables ow of p′ and iw of p
have the same values at time t− 1 in s′ as they do in s, and
since ow is enabled in s(t − 1) it is enabled in s′(t − 1) as
well, and the claim follows.

�
We note that the Past Theorem is a direct generalization

of the corresponding Theorem 1 in [4], from DI circuits to

signalling processes. The statement is slightly modified, but
the proof in our case needed to be modified to account for the
fact that processes need not be asynchronous. In both cases, the
theorem does not depend on the stability property. Combining
the stability property with the Past Theorem, we can obtain
the following analogue of [4]’s Theorem 2:

Theorem 2 (feedback): Let s be a computation of an SP
system S, and let q be a process in S with output variable
ow ∈ Oq driving the wire w. Moreover, let m′ > m. Finally,
assume that ow is enabled to signal a value v 6= Z at s(m),
and that s(m′)(ow) 6= s(m)(ow). Then there is a signalling
chain from 〈q,m〉 to 〈q,m′〉 in s whose first signal is sent
over w.
Proof: Assume that s, q, ow, m and m′ satisfy the conditions
of the theorem. Moreover, let iw ∈ Ip be the input variable
matching ow in S. Let s′ be the computation of S that is
guaranteed by Theorem 1 with respect to the computation s,
times m < m′, and the node 〈q,m′〉. We start by showing
that the value v is delivered over w to p at some time
t′ ∈ [m + 1,m′]. By Theorem 1 the computation s′ satisfies
that s′(m) = s(m) and that s′p(t) = sp(t) for all t ≤ m′.
Since ow is enabled to signal v at s(m), the same is clearly
true at s′(m). Moreover, since s′(m′) = s(m′) we have
that s′(m′)(ow) 6= s′(m)(ow). Thus, s′(m)(iw) 6= s′(m)(ow).
Moreover, for some t ∈ [m,m′− 1] we have that s′(t)(ow) =
s′(m)(ow) 6= Z and s′(t + 1)(ow) 6= s′(t)(ow). Without
loss of generality, suppose that t is the earliest such time.
Since ow is assumed to be stable, we have by stability that
s′(t + 1)(iw) = s′(t)(ow) = s′(m)(ow) = v. Since iw is a
binary variable, s′(m)(iw) = 1 − v and s′(t + 1)(iw) = v,
it follows that there is some t′ ∈ [m + 1,m′] at which the
signal v is delivered to p in s′ over w, as claimed.

By definition of s′, a signal can be delivered to p over w
at time t′ ∈ [m + 1,m′] in s′ only if it is delivered to p
over w at time t′ in s, and 〈p, t′〉 ≺s 〈q,m′〉. Hence,
〈q, t′ − 1〉 ↪→s 〈p, t′〉, and by Lemma 1, there is a signalling
chain from 〈p, t′〉 to 〈q,m′〉 in s. Since t′ > m, it follows that
there is a signalling chain from 〈q,m〉 to 〈q,m′〉 in s whose
first signal is sent over w. �

Theorem 2 shows that, in any SP network, if an output
variable in process q is enabled to signal a change at a
certain time and the output variable changes at a later time,
there must be a sequence of signals—a signalling chain—that
begins with this signal from q and continues in a loop back
to q. Intuitively, q’s output can only change its state once it
is informed (through an input to q) that its output change
has been received. What is interesting is that the processes
in the SP network might be implemented with asynchronous
circuits that make arbitrary internal timing assumptions within
processes. What matters is that the global communication
between processes uses delay-insensitive wires that are stable;
nothing else is required to ensure that the feedback loop exists.

IV. SINGLE-OUTPUT SP SYSTEMS

A single-output SP system is one in which every process
is either a fork, or has a single output wire. This is a natural

generalization of DI circuits with single-output gates. Except,
of course, that the processes in a DI circuit are gates that have
no memory, whereas those in an SP system can be arbitrarily
complex finite-state machines. Our purpose in this section is to
show that despite the added computational power of processes
in SP systems compared to gates in DI circuits, the single-
output assumption makes them as limited as circuits composed
of single-output gates are. In essence, the analysis in [4] can
be performed in the more general setting, showing that every
process in a single-output SP system behaves like an eventual
C-element.

Definition 2 (Successor property): An SP system S exhibits
the successor property iff for every computation s of S and
process p, if p receives signals on an (input) wire w at times t
and t† > t in s, then a signal is sent on p’s (single) output
wire at some time t′ ∈ [t+ 1, t† − 1].

We can use Theorem 2 to show the following.
Lemma 2: Every single-output signalling system exhibits

the successor property.
Proof: Let S be a single-output signalling system, and let p
be a process in S. Moreover, let s be a computation of S
in which p receives signals on an (input) wire w at times t
and t† > t. Denote by iw process p’s input variable on w,
and by q the process whose output variable ow matches iw.
Since p receives signals on w at t and at t†, we have that ow
is enabled to signal at s(t − 1) and at s(t† − 1). It follows
that s(m′)(ow) 6= s(t − 1)(ow), for some time m′ ≤ t† − 1.
By Theorem 2 there is a signalling chain from 〈q, t− 1〉 to
〈q, t† − 1〉 in s whose first signalling occurs over ow. Since
p 6= q, this chain contains at least two signals. The first signal
in this chain reaches p at a time m ≥ t, and the second signal is
sent on p’s (single) output wire at some time t′ ∈ [t+1, t†−1].
It follows that S satisfies the successor property, as claimed.
�

Suppose that p is a single-output process, with input wire w
whose output variable belongs to process q in an SP net-
work S. We call the wire w a feedback input wire of p if,
in some computation s of S, process p receives signals more
than once over w. An immediate consequence of Theorem 1
is that if w is a feedback input wire of p, then there is a
(simple) cycle containing p in the SP network graph GS ,
whose last edge is (q, p). Moreover, if p’s output wire is w′,
then Lemma 2 implies that between every two signals that are
delivered over w, at least one signal is delivered over w′.

Given Lemma 2, we can modify the argument in [4] and
show that the single-output property implies that processes
behave in a manner resembling C elements. The following
definitions formalizes the condition that processes satisfy in
such circumstances.

Definition 3 (Eventual C-element): A process p in an
SP system S is called an eventual C-element if for every
computation s of S there exists a time T = T (s) such that
the following holds for every output wire w of p: If signals
are delivered over w both at a time t ≥ T and at a time t† > t
in s, then for every feedback input wire w′ of p there is a

time t′ in the range t < t′ < t† at which p receives a signal
on w′ in s.

Theorem 3: In a single-output SP system, every process is
an eventual C-element.
Proof: Fix a single-output SP network S, a computation s
of S, and a non-fork process p with output wire w. Moreover,
fix a feedback input wire w′ of p, originating from process p′.
To prove the claim, it suffices to show that there is a time ts,w′

after which signals are received by p over w′ and are sent by p
over w in alternating order. The time t = T (s) required by the
definition of an eventual C-element process would just be the
maximum ts,w′ over all of p’s feedback wires w′. By Lemma 2
we have that between any two signals that p receives over w′

in s, at least one signal is delivered over its output wire w.
It remains to show that the converse is true from some point
on: Between every pair of signals delivered over the output
wire w, one is received over the input wire w′. The remainder
of the proof follows the argument in the proof of Lemma 6
from [4].

Since w′ is a feedback input wire of p, there is a simple
cycle 〈p, p1, . . . , pd, p′, p〉 in GS , for some finite d ≥ 0. De-
note Q = {p, p1, . . . , pd, p′}. For every q ∈ Q, we denote by
q+ the successor of q in the cycle, and by q− its predecessor.
In the remainder of the proof, whenever we say that a process
q ∈ Q receives a signal this is shorthand for a signal being
delivered on the wire from q− to q. Fix a computation s of S.
The successor property captured by Lemma 2 implies that a
necessary condition for q ∈ Q to receive a signal at s(m)
is that q+ received a signal since the last time m′ < m at
which q received a signal in s (provided that such an earlier
time m′ exists).

For every time m ≥ 0, define

W (m) =
{
q ∈ Q : for every m′ < m, if q received a

signal at s(m′), then q+ received a signal at
least once between m′ + 1 and m− 1 in s.

}
Thus, W (m) is the set of processes in the cycle that are

allowed to receive a signal at time m, as far as the successor
property is concerned. Clearly, W (0) = Q. If q ∈ Q receives a
signal at a given time m, then its predecessor in the cycle will
be added to W , unless it is in W (m) already. Let received(m)
be the set of processes in Q that receive a signal at s(m). The
rule by which W is updated is:

W (m+1) =
(
W (m)∪{q− : q ∈ received(m)}

)
\received(m).

(1)
The processes q that receive signals are removed from W ,
and their predecessors q− are added to W . (Except that if the
predecessor q− also receives a signal at m, then q− will not
be added to W .) Equation (1) implies that W cannot grow in
size: |W (m + 1)| ≤ |W (m)| for all m ≥ 0. Indeed, |W (·)|
remains the same only if none of the predecessors q− are
in W (m). Moreover, if W (m) is a singleton, then W (m′)
is a singleton for all m′ > m, since q can receive a signal
only if W (m) = {q}, but then W (m + 1) = {q−}, since
q− /∈W (m).

So suppose that some q ∈ Q receives signals at s(m) and at
s(m′) with m < m′, and its predecessor q− does receive a sig-
nal in the interim. We will show that |W (m′ + 1)| < |W (m)|.
If its predecessor q− also receives a signal at s(m), then both q
and q− are removed from W (m) and at best (q−)− is added
on their account, so |W (m+ 1)| ≤ |W (m)| − 1 < |W (m)|.
By monotonicity of |W (·)| we have that |W (m′ + 1)| ≤
|W (m+1)| < |W (m)|, as claimed, since m′ > m. Otherwise
q− does not receive a signal at s(m), and by Equation (1)
we have that q− ∈ W (m+ 1) because q received a signal at
s(m). Moreover, q− ∈ W (m′) since q− does not receive a
signal between m + 1 and m′. Indeed, both q−, q ∈ W (m′)
since q ∈ received(m′). Equation (1) now implies that
|W (m′ + 1)| < |W (m′)|, and by monotonicity of |W (·)| we
have that |W (m′ + 1)| < |W (m′)| ≤ |W (m)|, establishing
the claim.

It follows that the total number of times at which a process
in Q receives two signals in s without its predecessor receiving
a signal in the interim is no greater than d = |Q|−2, and is thus
finite. Given Lemma 2, we obtain that there is a time ts,y after
which signals over w′ and over w are delivered in alternating
order, and we are done. �

The main takeaway from this result is that the limitations on
circuits imposed by delay-insensitivity are a consequence of
the single-output constraint combined with the fact that wires
are assumed to be asynchronous. The complexity of the gate
does not play a role, since our processes can model arbitrarily
complex finite state machines.

V. SIMPLE TWO-OUTPUT SYSTEMS ARE UNIVERSAL

A two-output SP system is one in which every process is
either a fork, or has at most two outputs. In this section, we
show that adding a second output is sufficient to implement
any Boolean function. Furthermore, our construction uses SP
processses without any internal memory (i.e., a single state),
and with at most four inputs. This shows that extremely simple
SP processes with two outputs are sufficient to implement
arbitrary computation.

Relaxing the delay-insensitivity requirement on wires by in-
troducing the isochronic fork assumption (as suggested in [3])
is one way to circumvent the limitations introduced by the
single output assumption [7]. Intuitively, an isochronic fork
is a fork where one branch of the fork is assumed to be at
least as fast as the other. Isochronic forks can be used in a
wide range of contexts, including scenarios where a branch
of the fork might have a large wire delay. Our construction
below introduces only a local isochronic fork between a pair of
gates that are embedded within an SP process; all other wires
are delay insensitive. This also shows that the isochronic fork
requirement can be kept contained within a very small local
(two gate) region without impacting the possible computations.

Note that a CMOS gate, or a CMOS gate combined with
an inverter on its output (where we assume the inverter +
gate combination can be viewed as a monolithic gate) can be
described as a single SP process that has one internal state (i.e.,
no memory), and whose transition function δ̂ only depends on

zt
xt xf

ytyf

xf

xt

xf

yf

yt

xt

yt

zf
xt

yt

Fig. 1. A four-input two-output NAND2 process, with an internal isochronic
fork between the two gates (signals xt, yt are inputs to both gates). The two
inputs are (xt,xf) and (yt,yf), and the output is (zt,zf). Staticizers
are not shown for clarity.

the values of its input variables. A collection of such gates
with no internal connectivity (i.e., the output of each gate is
an output of the SP process, and no output is used as an input
to any of the gates) is also a simple SP process that has one
internal state. These are the simplest SP processes because
they do not have any local memory and only use their input
variables to compute their output variables. We refer to such
processes as SP-gates.

We begin by showing how arbitrary n-bit input, m-bit
output functions can be implemented using a collection of
two-output SP-gates. We do so by following the function block
compilation strategy from [8].

Suppose the n input bits are x0, . . ., xn−1, and the m output
bits to be computed are y0, . . ., ym−1.
• We can write m Boolean expressions f0, . . ., fm−1 such

that yi = fi(x0, . . . , xn−1).
• Each input and output bit is encoded using a dual-rail

code, with two wires per bit.
• We introduce m SP processes, each of which has 2n

inputs corresponding to the dual-rail encoded xi values,
and produces a particular output yj encoded as a dual-rail
output. When the process receives a valid encoded input
on all its inputs (n bits encoded using a dual-rail code
on 2n wires), it computes its single encoded output bit
and produces that on its output. If the process receives an
all-zero input, it sets its two outputs to zero as well. This
can be implemented with a single internal state, since the
action taken by the SP process is completely determined
by the value of its input variables.

• Since each dual-rail encoded input is needed by each of
the m processes, a collection of fork processes are used
to replicate the inputs.

This strategy can be used to implement any function with
processes that have at most two outputs. Also, because two
input NAND gates are universal primitives, we can also im-
plement each fi using a collection of processes, each of which
have at most four inputs and two outputs where the collection
simply implements the Boolean function using SP-gates that

v0

v1

vm-1Rack

C
v0

vm-1

Lack

C

C

C

C

C

C

Lt0

Lf0

Rt0

Rf0

Lt1

Lf1

Rt1

Rf1

Ltm-1

Lfm-1

Rtm-1

Rfm-1

Rack

Rack

Fig. 2. Converting a collection of 2m dual-rail wires into a pipeline stage.
The Rack signal is the right acknowledge for the data output Rt0, Rf0, . . .,
Rfm−1, and the Lack signal is the left acknowledge signal. The input dual-
rail wires for bits Lt0, Lf0, . . ., Lfm−1 pass through a C-element to produce
the output dual-rail wires. The large m-way C-element that generates Lack is
decomposed into a completion tree of two-input C-elements. The highlighted
C-elements are grouped into processes.

implement the NAND function (the inputs are encoded using
dual-rail codes, doubling the number of inputs). This means
any function can be implemented by a collection of NAND
processes—processes that have at most four inputs and two
outputs, and where each process has a single state (i.e. zero
bits of internal memory). The circuit implementation of the
NAND process is shown in Figure 1.

Next, we can convert this into a pipeline stage. To do so,
we need to introduce left and right acknowledge signals. A
simple weak-conditioned pipeline stage can be designed by
simply adding C-elements to each of the 2m output wires in
the usual way, and then combining the 2m outputs using a
completion tree to generate the acknowledge for the pipeline
stage (see Figure 2). Each per-bit group of two C-elements that
take three inputs (a dual-rail code and the right acknowledge
Rack signal) and produce two outputs (the dual rail output) are
also grouped into a single signalling process; this process has
the Rack variable as an internal isochronic fork. The m copies
of the Rack signal needed by each of the m bits are generated
using a standard fork process. All of the newly introduced
processes are SP-gates that have at most three inputs and at
most two outputs.

Since we can build a pipeline stage that can implement
any function, it should be clear that we can build arbitrary
computations using the construction described above. Hence,
it is possible to implement any computation using forks and
SP-gates with at most four inputs and at most two outputs.

Thus, we conclude:
Theorem 4: A pipeline stage that computes any Boolean

function can be implemented with a collection of SP-gates,
each of which have at most four inputs and at most two
outputs.

In particular, Theorem 4 means that limiting isochronic
forks to be local to a pair of gates is sufficient to implement
arbitrary computation.

VI. DISCUSSION

We presented asynchronous signalling processes, a model
for circuits in which modules are connected by delay-
insensitive wires. Several models in the literature can be
expressed within this framework. We studied the limitations of
the computational power of signalling processes as a function
of the number of outputs of processes.

We showed that processes with arbitrarily complex internal
logic but single outputs are still extremely limited in terms
of the input/output computations they can perform. We fur-
ther showed that allowing processes to have two outputs is
sufficient to enable arbitrary computations. In fact, Theorem 4
shows that two-output processes that are simply a pair of gates
(that we call SP-gates) are enough to permit the design of
pipelines that can implement arbitrary functions. Hence, only
very simple two-output SP processes are necessary to enable
general computation.

Our technical analysis offers an interesting insight as to why
single-output asynchronous processes are extremely limited.
Lemma 2 guarantees that between any two sets of inputs
to the process, the output must signal at least once, while
Theorem 3 implies that for all but a finite number of times in
a computation, inputs rounds and the out signal must alternate.
Since a wire can only signal by flipping its value, we obtain
that, intuitively, the output signal can’t provide nontrivial
information about a value computed by the process. For a
two-output process, this is no longer the case. The outputs can
serve both for acknowledging that input signals have arrived,
and to provide information about computed values.

There have been many proposals in the literature for a
collection of modules that can be composed to build delay-
insensitive circuits. All the proposals include multiple output
components. Our results show that this is not a coincidence,
because single-output asynchronous signalling processes are
very limited—no matter how complex the module might be
internally.

Keller proposed a set of modules that can be used to im-
plement delay-insensitive computation. His proposal includes
components with internal state as well as multiple outputs,
such as the select primitive with three inputs, four outputs,
and two internal states [9]. Ebergen developed a set of delay-
insensitive components that were computationally general [2].
All his modules had at most three outputs. Ebergen also
showed that eliminating the three-output module (the RCEL)
from his components limits the generality of delay-insensitive
traces that can be generated by the resulting circuits.

Other proposals for standard libraries of delay-insensitive
components also included modules with multiple output wires.
Another proposal includes components with five outputs and
three inputs (the D-call primitive) [10]. Recent work proposed
an optimized set of primitives for delay-insentive circuits that
include modules that have three outputs such as the Mem
primitive [11].

The asynchronous signalling processes framework that we
introduced permits general processes, but the wires between
processes are delay-insensitive. Thus, a limitation of asyn-
chronous signalling processes is that they cannot model timing
constraints on wires between modules. One common scenario
where this occurs is in bundled-data communication protocols,
where a bundle of data wires is assumed to have a lower delay
than the corresponding request wire. We can “convert” such a
circuit into one that is amenable to analysis by introducing a
converter from/to the bundled-data protocol to/from a delay-
insensitive communication protocol in the usual way—the
sender would generate a dual-rail code from the single rail
data wire combined with an inverter, two AND gates, and the
request wire; the receiver would check that the dual-rail input
is valid and generate a request signal using a completion tree.
This modified circuit would be amenable to analysis using our
framework.

In future work, we plan to investigate more general models
of signalling processes. In particular, we plan to consider
bounded delays in which an upper and lower delay bound
is associated with each wire. With this extension, we will be
able to directly model bundled data protocols. Furthermore,
including this extension also enables the analysis of general
timed asynchronous circuit families at the granularity of gates
rather than processes. We believe that such an extension
will lead to further insights into the properties of general
asynchronous circuits.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for comments that
improved the presentation of this paper.

REFERENCES

[1] W. A. Clark, “Macromodular computer systems,” in Proceedings of the
April 18-20, 1967, Spring Joint Computer Conference, pp. 335–336,
ACM, 1967.

[2] J. C. Ebergen, “A formal approach to designing delay-insensitive cir-
cuits.,” Distributed Computing, vol. 5, pp. 107–119, 12 1991.

[3] A. J. Martin, “The limitations to delay-insensitivity in asynchronous
circuits,” in Proceedings of the 6th MIT conference on VLSI (W. J.
Dally, ed.), pp. 263–278, MIT Press, 1990.

[4] R. Manohar and Y. Moses, “The eventual C-element theorem for delay-
insensitive asynchronous circuits,” in Asynchronous Circuits and Systems
(ASYNC), 2017 23rd IEEE International Symposium on, pp. 102–109,
IEEE, 2017.

[5] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[6] R. Manohar and Y. Moses, “Analyzing isochronic forks with potential
causality,” in Asynchronous Circuits and Systems (ASYNC), 2015 21st
IEEE International Symposium on, pp. 69–76, IEEE, 2015.

[7] R. Manohar and A. J. Martin, “Quasi delay-insensitive circuits are
Turing-complete,” in Proceedings of the 2nd IEEE International Sym-
posium on Asynchronous Circuits & Systems (ASYNC), 1996.

[8] A. J. Martin, “Asynchronous datapaths and the design of an asyn-
chronous adder,” Formal Methods in System Design, vol. 1, no. 1,
pp. 117–137, 1992.

[9] R. M. Keller, “Towards a theory of universal speed-independent mod-
ules,” IEEE Transactions on Computers, vol. 100, no. 1, pp. 21–33,
1974.

[10] P. Antognetti, P. Danielli, A. De Gloria, P. Faraboschi, and M. Oliveri, “A
standard cell set for delay insensitive vlsi design,” in ASIC Conference
and Exhibit, 1992., Proceedings of Fifth Annual IEEE International,
pp. 123–126, IEEE, 1992.

[11] P. Patra and D. S. Fussell, “Efficient building blocks for delay insensi-
tive circuits,” in Proceedings of the First International Symposium on
Advanced Research in Asynchronous Circuits and Systems (ASYNC),
pp. 196–205, IEEE, 1994.

APPENDIX

We now present the proof of Lemma 1:
Proof: Suppose that 〈p, t〉 ≺s 〈q, t′〉. We first show that t < t′,
by structural induction on the derivation of 〈p, t〉 ≺s 〈q, t′〉.
If 〈p, t〉 ≺s 〈q, t′〉 is an instance of the Locality condition,
then t < t′ by assumption. If it is obtained by the Successor
condition, then 〈p, t〉 ↪→s 〈q, t′〉, and hence t = t′ − 1 < t′.
Otherwise, 〈p, t〉 ≺s 〈q, t′〉 is derived via the Transitivity
condition, i.e., for some computation r and time m, both
〈p, t〉 ≺s 〈r,m〉 and 〈r,m+ 1〉 ≺s 〈q, t′〉. By the inductive
hypothesis we have that t < m and m + 1 < t′, and thus
t < t′ as claimed.

Now suppose that p 6= q. We prove by induction on the
derivation of 〈p, t〉 ≺s 〈q, t′〉 that if 〈p, t〉 ≺s 〈q, t′〉
then there is a signalling chain in s from 〈p, t〉 to 〈q, t′〉.
Clearly, 〈p, t〉 ≺s 〈q, t′〉 cannot be derived by the Locality
condition, because p 6= q. If it is obtained via the Successor
condition, then t′ = t + 1 and 〈p, t〉 ↪→s 〈q, t′〉. In this case
the signalling chain consists of the process singleton 〈q〉 (i.e.,
k = 1 and x1 = q) and the singleton time sequence 〈t〉.
Otherwise, 〈p, t〉 ≺s 〈q, t′〉 is derived via the Transitivity
condition, i.e., for some computation r and time m, both
〈p, t〉 ≺s 〈r,m〉 and 〈r,m+ 1〉 ≺s 〈q, t′〉. If r = p then by
the inductive hypothesis there is a signalling chain between
〈r,m+ 1〉 and 〈q, t′〉. Since t < m, the same chain is also a
signalling chain from 〈p, t〉 to 〈q, t′〉. Similarly, if r = q then
m + 1 < t′ and the signalling chain from 〈p, t〉 to 〈r,m〉
is also a signalling chain from 〈p, t〉 to 〈q, t′〉. Finally, if
p 6= r 6= q, then there is a signalling chain from 〈p, t〉 to 〈r,m〉
with with process sequence σ = 〈x1, . . . , xk〉 and times
〈t1, . . . , tk〉, and a chain from 〈r,m+ 1〉 to 〈q, t′〉 with process
chain σ′ = 〈y1, . . . , y`〉 and time sequence 〈t′1, . . . , t′`〉. Notice
that xk = r by definition of signalling chains. Moreover,
tk < m < m + 1 ≤ t′1, and so tk ≤ t′1 − 2. It follows
that the concatenation σ · σ′ = 〈x1, . . . , xk, y1, . . . , y`〉 of the
two process sequences, together with the corresponding time
sequence 〈t1, . . . , tk, t′1, . . . , t′`〉 define a signalling chain from
〈p, t〉 to 〈q, t′〉. The claim follows. �

