
Precise Exceptions in Asynchronous Processors

Rajit Manohar, Mika Nyström, Alain J. Martin�

Proceedings of the 2001 Conference on Advanced Research in VLSI

Abstract

The presence of precise exceptions in a processor leads to complications in its design. Some re-
cent processor architectures have sacrificed this requirement for performance reasons at the cost of
software complexity. We present an implementation strategy for precise exceptions in asynchronous
processors that does not block the instruction fetch when exceptions do not occur; the cost of the
exception handling mechanism is only encountered when an exception occurs during execution—an
infrequent event.

�� ������	
����

Ordinarily, a processor executes a sequence of instructions without interruption. Conceptually
the instructions are executed one after another, with some instructions that modify the control flow.
However, this stream of execution can be interrupted in two different ways: by interrupts—external
asynchronous events that are typically generated by various I/O devices—and by exceptions.
Exceptions are used to handle uncommon events that can occur during the execution of otherwise

innocuous instructions. Exceptions are used when the events to be handled are so rare that the cost
of the exception mechanism is outweighed by the savings resulting from not having to implement
in hardware, for every instruction, the behavior when an exceptional condition does occur.
Exceptions are used by a number of software mechanisms. They are used to prevent an execut-

ing process from accessing memory that belongs to another process. They are used to prevent a
user program from executing certain special, privileged instructions. They are used to begin the
execution of special operating system subroutines (traps). They are used when some functional-
ity is implemented partly in hardware and partly in software: hardware page tables (TLB), partial
implementations of IEEE 754/854 floating-point arithmetic, etc.
When an exception or interrupt is encountered, a processor aborts the normal instruction se-

quence by jumping to a predetermined address (an operating-system or architecture-specific ad-
dress) in memory. This location in memory contains a software routine, the exception handler, that
services the exception or interrupt. The hardware is said to implement precise exceptions just when
the state of the processor seen by the exception handler is the same as the state of the processor
before execution was attempted of the instruction that caused the exception. As a result, after the
exception handler code has executed, the handler can restore the state of the executing program and
allow it to continue seamlessly from the point where the exception occurred (if appropriate).

�Mika Nyström and Alain J. Martin are with the Computer Science Department of the California Institute of Technol-
ogy, Pasadena, CA 91125, U.S.A. Rajit Manohar was with the Computer Science Department of the California Institute
of Technology, Pasadena, CA 91125; he is now with the Computer Systems Laboratory in the School of Electrical and
Computer Engineering at Cornell University, Ithaca NY 14853, U.S.A.

EX[n]

file

DE

MEM

IF

information
branch

instruction

program instruction
fetch

channels to/from
data memory

EX1

EXn

EX2

RF

. . .

register file

control

decoded
instructions

counter (PC)

(INS)

(BR)

(REG)

EX[1]

register

Figure 1. Information flow in a processor without exceptions.

The implementation of such an exception mechanism is complicated by the fact that a modern
processor is typically heavily pipelined, and therefore even if a particular instruction has raised an
exception, a number of instructions following it may have been partially executed. As a result,
some modern high-performance architectures such as the MIPS R8000, DEC Alpha, and Power-2
do not fully implement precise exceptions in hardware.
In this paper, we present a mechanism for the implementation of precise exceptions in asyn-

chronous processors. An important feature of this mechanism is that it permits the presence of a
data-dependent number of instructions in the main execution pipeline without the introduction of
complex hardware structures. The exception mechanism that we describe was designed as part of
the Caltech MiniMIPS asynchronous MIPS processor. The processor was designed between 1995
and 1998, and first silicon was received in early 1999 [5]. The processor was tested and found to be
functional.
The paper is organized as follows. In Section 2, we present an overview of a simple pipelined

asynchronous processor that does not implement an exception-handling mechanism. The descrip-
tion is based on the MiniMIPS design [5]. In Section 3, we discuss some issues that arise when
implementing an exception-handling mechanism in asynchronous architectures and describe the
mechanism that we used in the MiniMIPS. We also provide a novel circuit implementation of a par-
ticular part of the exception-handling hardware. In Section 4, we extend the design to incorporate
external interrupts. Section 5 presents other uses of the exception handling mechanism. Section 6
presents a technique that uses the same exception-handling hardware to implement other non-trivial
instructions that result in data hazards or additional design complexity in clocked designs. Section 7
presents related work in clocked and asynchronous design, and Section 8 presents concluding re-
marks.

�� � �������� �� � ���
�����

In this section, we provide a generic description of an asynchronous processor without interrupts
and exceptions. For simplicity, we assume that the processor has a “Harvard architecture,” i.e., the
instruction and data memories are not synchronized.
A processor is comprised of a number of “units” (which is the traditional terminology for “pro-

cess”) that communicate with each other. A processor conceptually has a unit that generates the
sequence of program counter values and fetches instructions from memory—the “IF” unit, a unit
that decodes the instruction stream—the “DE” unit, units that execute the decoded instructions—the
“EX” units, and a place on the processor that stores state—the “RF” unit.
The instruction fetch �� generates a program counter value that is sent to the memory. The

memory returns an instruction that is sent to the decode�� . �� decodes the instruction and sends
the appropriate control information to all the other units: the instruction to be executed is sent to
the appropriate execution unit ��� ; information about what state is needed and modified by the
instruction is sent to the register file �� ; information about control flow is sent to �� . The flow of
information is shown in Figure 1. The sequential CHP description of the processor is given below
(a brief description of the notation is provided in the appendix):

���	 �

�� �� �
� �� �����
����
��� � � �� ����
���
�� � �� �� ��������

���	 � ����� �
����� ���
������ ����������� ���
������ ������ ��

�

When this CHP program is decomposed using standard techniques [4], the different parts of the
processor shown in Figure 1 can execute concurrently [6]. In particular, the ���	 is decomposed
into a number of different execution units ��� and a register file �� . Once the control informa-
tion is dispatched to the execution units and the register file by �� , the instruction can execute and
asynchronously complete execution. Since multiple execution units are running concurrently, there
can be a data-dependent number of instructions executing at any given time. The number of in-
structions executing in parallel is limited by data-dependencies between instructions, the number of
communication channels between the register file and the execution units, the number of execution
units, and the instruction fetch bandwidth.

�� ������������ ���
��� ��
�������

The introduction of exceptions or external interrupts complicates the execution of instructions
in a number of ways. When an instruction raises an exception, the exception must be detected and
reported to the �� , since the processor must begin execution of the exception handler. In addition,
the �� and data memory interface must be notified of the exception so that subsequent instructions
do not modify the state of the processor until the exception handler begins execution.
The result of each instruction is modified so that it includes whether the instruction raised an

exception. This exception bit is computed by the execution units. The simplest modification to
���	 that includes a precise exception-handling mechanism is shown below:

����	� � �� false�
�� �� � �� ��
� �� �����
���

�� ��
� �� ����
����
���

��
��� � � �� ����
���
�� � �� �� ��������

���	 � ����� �
����� ��� ������ ����������� ���
 �� ����
���� ��������� ���

�� � �� �� ������ ������ ��

�� �� ���� ��
���� ����� ���
���

�

�

The variable indicates whether or not the executed instruction raised an exception. If is false and
remains false, the processor ����	� is the same as ���	 . If an instruction raises an exception,
 is set to true. When � is true, the result of the exception-causing instruction does not modify the
state of the processor and the instruction fetch �� switches
� to the exception program counter.
Instead of writing the results of the instruction in the usual way, the exception-causing instruction
sets flags or other status information as specified by the ISA. For the remainder of this section, we
take ����	� as our reference processor.
A problem with this scheme is that the value of computed by ���	 affects the next
� value,

since it is used by �� . As a result, pipelining this program would not introduce any concurrency
between �� and ���	 because �� would have to wait for ���	 to complete before computing
the next
�, and ���	 would have to wait for the next
� to be computed before it could receive
the decoded instruction.
Since the case � true is rare, we would like to optimize the program so that we break the

dependency between �� and ���	 when � false. To do so, we introduce a channel ��
that has a one-place buffer that is used to notify �� of the presence of an exception. When an
exception occurs,�� inserts a token into this buffer without blocking. The �� polls the state of
the buffer and if it finds a token in it, the token is removed and the �� sets the program counter to
the exception handler address thereby “detecting” the exception. In the CHP notation, �� uses the
probe of channel �� to check if there is a token in the buffer.
Since we do not make assumptions about the speed of buffers, the �� may not immediately notice

the presence of a token in the buffer. All we assume is that �� will eventually notice the token and
detect the exception. Therefore, ���	 might execute instructions that are invalid—instructions
not executed by ����	�—since the sequence of
� values could have changed. ���	 only
executes these invalid instructions after the exception token has been inserted into the �� buffer
by �� , and before the exception is detected by �� . We introduce variable �� that is set to true
when the exception is detected by �� (�� stands for valid-again; the variable signals the transition
from invalid to valid instructions), and variable ����� that is set to false when the exception token
is inserted into the buffer by�� . The processor is therefore executing invalid instructions when
����� is set to false and �� is also false.
To eliminate any state change that might occur when the processor executes invalid instructions,

we modify �� to a skip when ������ � ��� is true. This is the only modification necessary,
since all state changes are performed by�� . The resulting program is a correct implementation
of ����	�, and is shown below:

����	� � �������
�� �� � ���� �� ����
� �� �����
���

� �� �� ����
� �� ����
����
������ �
��

��� � � �� ����
���
�� � �� �� ��������

���	 � ����� �
����� ���
������ ����������� ���
 �� ����
���� ��������� ���

�� � ������ � �� �� �� �� ��������� ���� ������ ��

�� �� ��������� 	��� �� ��
���� ����� ���
���

�

�������� � ��� �� skip
�

�

The probe �� becomes true eventually, causing the �� to detect the presence of the exception
token in the buffer. The communication �� � removes the token from the buffer once an exception
is detected.�� inserts a token into the buffer by performing an �� 	 communication when a valid
exception is detected.
When exceptions do occur, the exception flags that need to be set are typically not stored in

the execution unit that raised the exception. To avoid synchronization across execution units, we
can transform ����	� so that the update of exception flags is performed by an instruction in
the execution pipeline. We call this the “fake exception instruction,” and it corresponds to the
instruction that has �� set to true. When an exception is detected, the program counter
� is set to
the address of the instruction before the exception handler. The instruction is fetched and decoded
as usual, but since �� is set to true the pre-exception instruction never executes. The net result is
that the exception flags and other status information are updated by the instruction that has �� set to
true. When �� executes next, the program counter is incremented in the usual way, resulting in the
correct
� value for the first instruction of the exception handler. The result of these transformations
is shown below.

����	� � �������
�� �� � ���� �� ����
� �� �����
���

� �� �� ����
� �� ��
� ��
����
������ �
��

��� � � �� ����
���
�� � �� �� ��������

���	 � ���� �� ����� �
����� ��� ������ ����������� ���
 �� ����
���� ��������� ���

���� �� �� ���������
����� �� ����� ���
���

��
�� � ������ �� �� �� ��������� ���� ������ ��

�� �� ��������� 	��� �� 	�����
���� ���� ���
��
�

�������� �� ����� �� ��

�

�

. . .

DE

MEM

IF

information
branch

instruction

program
counter

EX1

EX2

RF
register file

control

EXn

WB

permission
to write back

exception
information

pc queue

exception feedback

unit number queue

va
va

+
va

Figure 2. Information flow in a processor with exceptions. ��� and �� store state

information, and ��� cannot generate exceptions.

3.1: Process Decomposition

Next, ����	� is decomposed into concurrent processes. Each section of the CHP program
����	� is transformed into a pipeline stage that reads the data values it depends on and then
computes a result that is passed on to the next stage in the pipeline. For instance,��� is a process
that reads the program counter, fetches the instruction from memory, and sends the instruction to
�� , and ���	 is broken down into multiple execution units that execute in parallel with different
execution units corresponding to different types of instructions. The pipeline structure that results
from this transformation is shown in Figure 2.
Each execution unit computes the exception value when it executes an instruction. Since the

execution units are not synchronized in any way, they may produce their results out of program
order. In other words, there are a number of independently executing processes that communicate
their -values to the writeback �� . However, since we must implement precise exceptions, the
exception information must be processed in program order.
We introduce a queue that identifies which execution unit is executing the next instruction in

program order. This queue is read by�� to determine which execution unit -value is to be read
next. This queue is also a convenient place to store the �� bit. The queue is written by �� , since
it is responsible for decoding instructions in program order. The
� value used by the writeback
is also stored in a separate queue that is connected to �� (which is the process that computes
�
values) so that the appropriate information is communicated on the �� �� channel.
In the original CHP, all modifications to the visible state of the processor were performed in�� .

When we decompose the CHP into multiple processes, it is convenient to distribute the visible state
of the processor among multiple processes. Examples of this include special-purpose registers like
hi and lo in the MIPS ISA that are stored in the multiply/divide unit. Therefore, the writeback
�� needs information regarding where the next write is scheduled to take place; this information
is also computed by the decode�� and sent to�� by the queue. The parts of the processor where
writes occur are modified to read a channel from the writeback that informs them whether writes
are permitted to occur or not. Figure 2 shows the modifications to the processor architecture.

3.2: Two Optimizations

In most processors, a large number of instructions are guaranteed not to raise exceptions. When
all instructions being executed by one execution unit are guaranteed to terminate normally, we can
eliminate the communication between that execution unit and the writeback. This optimization
permits the writeback to process an instruction without waiting for any information from the cor-
responding execution unit. This optimization was used in the asynchronous MiniMIPS processor
where the function block and shifter never raise exceptions [5].
When we can quickly (relative to the time taken to execute the instruction completely) determine

that an instructionwill not raise an exception, reporting this value to the writeback early can improve
performance of the processor. This is especially important for instructions that have high execution
latency, such as those involved in floating-point arithmetic. The MiniMIPS executes a number
of different arithmetic instructions in the adder unit. This unit can raise exceptions in rare cases
(instruction traces show that the ratio of instructions that raise exceptions to those that do not is less
than
���). The unit was optimized so that the latency of exception reporting in the common cases
was 40% of the worst-case exception detection latency.

3.3: Evaluating a Probe

The CHP described in the preceding sections can be translated into an asynchronous VLSI im-
plementation using Martin’s synthesis method. The only non-standard construct described above is
the non-deterministic selection statement in �� . In this section we provide a circuit implementation
for a process that can be used to implement this part of the exception mechanism. We can replace
the program fragment �� by �� � by the introduction of a process that probes channel �� .

�� � � ��� �
��� �� ����
� �� �����
���

��� �� ����
� �� ��
� ��
����
���

�

The process that contains the arbitrated selection statement is shown below.

����� �� � 	true��� � ���� �� � 	false ��

We now provide a circuit implementation for this particular process. Assuming that channels ��
and � are both passive, we can write the following handshaking expansion:

��� ��� �� ���������� ���������������� �����������
� �� �� �!��� �������!��
��

We have eliminated the check for ���� in the handshaking expansion for the second guarded
command. The reason we can eliminate this check is that the CMOS implementation of a two-way
arbitrated selection statement is weakly fair. Therefore, if ��� is true, the first alternative in the
selection will execute eventually. We introduce variables � and � to model the arbitration that is
required by the above handshaking expansion.

��� ��� �� ��� ���� ���������� �����������
����� ������� ��� ���������

� �� �� ��� �����!��� ������ ��� ������!��
��

v

EXo EXo_

Ei

Eto_

u_

EXi u u_

Ei v

EtoEto_

EXo_

Ei

u

Efo_ Efo

EXo_

Figure 3. Evaluating the probe of a channel.

We apply process factorization to obtain:

��� ��� �� ��� ������� ��
� �� �� ��� ������ ��
��

	
��� � �� ���������� ���������������� ���������
�� � �� �!��� ������!��
��

The first process shown in the decomposition above is an arbiter between ��� and �� ; the compi-
lation of the second process results in the production rules shown below.

��� � � � ��� � ��
� ��� �
���� � ����
� ��� �

���
� ����
����
� ����

��� � ��� � �
� �!� �
���� � ��
� �!� �

�!�
� �!��
��!�
� �!��

�� � ���� � ���
� ����
� � ���
� ����

���
� ��� �
����
� ��� �

�
� � �
��
� � �

The CMOS implementation is shown in Figure 3. For clarity, the reset transistors and staticizers
are not shown.
This circuit uses a CMOS arbiter in a non-standard manner. If both �� and ��� are asserted, and

if ��� wins the arbitration, then the circuit completes a handshake on both �� and ��� without
raising the � output of the arbiter! In other words, the input �� is withdrawn from the arbiter
even though it loses the arbitration. A careful examination of the handshaking expansion shown
above reveals that if � is asserted (��� wins the arbitration), then the program waits for ��� to be
stable before allowing ��� to be deasserted. This property prevents the output of the arbiter from
misbehaving.

�� ������������ ������	���

The mechanism presented in the previous section can be used to handle interrupts as well. The
only difference between interrupts and exceptions is that interrupts are external events whereas
exceptions are associated with specific instructions. In addition, a processor can disable and en-
able interrupts by means of kernel mode instructions. In particular, interrupts are disabled by the
hardware when the exception handler begins execution to reduce the complexity of the exception
handling software.
The simplest modification to the processor that uses precise exceptions is to augment the write-

back part of the processor to detect interrupts. Instructions that enable and disable interrupts must
communicate with the writeback to enable and disable interrupt checking. Note that the writeback
already receives information from various execution units via the exception channel. We use the
same communication mechanism to inform the writeback when interrupts are enabled and disabled.
The modified writeback contains a process that repeatedly samples the external interrupt line(s)

for the processor. The writeback has a local interrupt enable bit that is used to mask interrupts. This
bit is set or cleared by kernel mode instructions. The masked result is used to detect whether an in-
terrupt occurred. The presence of an interrupt is reported using the normal exception mechanism—
by performing a communication on the �� channel as before. If the restart address for interrupts
differs from that for exceptions, then the �� channel can be augmented to carry information that
reports whether the event was an interrupt or exception.

�� ����� ���!"���
� �����
����

The exception mechanism that we have presented provides a convenient way to cancel the results
of instructions and restart processor execution from a specific address. While we have applied it to
the problem that is immediately evident in a pipelined single-scalar asynchronous design, namely
exceptions, the mechanism is general. As we have described it, the mechanism is a simple and
efficient scheme for the “speculative execution” of possibly exception-raising instructions. The
mechanism can be used to do speculative execution for any reason.

5.1: Branch Latency

A vexing problem in the design of a highly pipelined microprocessor is the “branch latency.”
The high throughput of such a processor makes it impossible to evaluate the branch condition in a
branch instruction quickly enough to be able to have the next program counter value ready in time to
fetch the next instruction. Indeed, once a program counter value has been generated, the instruction
fetch (I-cache) latency may prevent decoding that the corresponding instruction is not a branch in
the time available. This can cause program counter generation to become a throughput bottleneck.
The amount of time available to decode that the referenced instruction is a branch is, ideally, the
time it takes to increment the program counter less the amount of time it takes to distribute the
control to select the incremented value or a branch target. In a highly pipelined design, this amount
could even be negative!

5.2: Branch Shadow

The “simplest” solution to the branch latency problem is to generate ascending
� values until it
has been established that a branch has been fetched. If this is done without any additional thought,

a “branch shadow” or “branch delay slot” results. This solution was chosen by the designers of
the MIPS ISA, and measurements on compiled code show that the branch shadow is filled with
effective instructions about 50% of the time; the rest of the time, the compiler is forced to insert a
no-op instruction. This reduces code density and wastes energy, but it simplifies the hardware in a
clocked implementation.

5.3: The New Mechanism

We propose to use the exception mechanism to handle the branch latency problem in simple,
highly pipelined processors. We introduce a branch prediction mechanism that predicts the next
program counter value. The simplest such mechanism is to predict that the branch is not taken; this
in effect results in the same fetching behavior as the simple MIPS branch delay slot. However, in
this case, because of the writeback cancellation of mis-predicted branches, the depth of the branch
delay slot is now invisible to the programmer. Also, the depth of the branch delay slot is now,
in effect, data-dependent. Code density is clearly better, and energy consumption may be better,
depending on the quality of the branch predictor. The drawback when using this mechanism is that
in the cases when a delay slot was filled with a useful instruction and the branch was not correctly
predicted, an additional instruction has to be cancelled.
Clearly, any branch prediction scheme could be used together with the mechanism we have

described. However, the fact that an instruction is a branch may still not be available in time to
make the decision for the very next
� value without introducing the additional complexity of a
branch target buffer. In this case, we can predict that the next instruction is always fetched and use
the information that the instruction is a branch as it becomes available to predict a later
� value.
The ultimate goal is to generate program counter values that are the most likely, given all in-

formation that is available at the time the values are computed. To some extent, the mechanism
by which the “most likely”
� values are selected is independent of the mechanism used to fetch
the corresponding instructions and execute them. The scheme presented in this paper addresses
the fetching and execution of the predicted instructions. True to the nature of its asynchronous,
communicating-process design, our scheme allows the
�-prediction and instruction-fetching and
-execution problems largely to be decoupled. Yet, the scheme is efficient and simple to realize at
the circuit level.

#� ����������� ��� ���
�����

The exception mechanism we have presented provides a convenient way to cancel the results
of instructions and restart processor execution from a specific address. However, there are some
limitations to the use of this mechanism. In this section, we identify these limitations and provide a
minor modification of the mechanism that addresses these issues.
Observe that when the instruction that has the valid-again bit set to true is being executed, the

instructions in the exception handler could have been fetched and decoded by �� , �� , and��� .
However, it is possible that the state changes introduced by the valid-again instruction modify the
operation of the��� and�� units. For instance, the exception handler typically begins execution
in kernel mode. The valid-again instruction would modify the mode to kernel mode; however, this
affects the accessible address space and the instructions that are allowed to be executed. If the
address space check is early in the instruction fetch pipeline, this could lead to erroneous execution.
In this particular example, we can avoid the problem by postponing the address space check.

Consider a processor that has a translation lookaside buffer (TLB) for address translation. This
translation lookaside buffer is accessed when the statement “� �� ����
��” is executed. When the
TLB is modified by special instructions, this modification would interfere with the instruction fetch.
A clocked processor typically solves this problem by introducing data hazards around instructions
that modify the TLB. We could use a similar approach and introduce an arbiter to enforce mutual
exclusion between reads and writes to the TLB. However, this introduces additional circuitry on the
commonly used instruction fetch path.
A minor modification to the exception mechanism presented earlier can be used to solve this

problem. Suppose we were to implement the TLB write instruction using the exception mechanism.
This ensures that the instructions following the TLB write instruction will be discarded (“flushed”)
by the processor until the exception handler begins execution. However, instead of jumping to the
exception handler address, the processor must jump back to the TLB write instruction to resume
execution (since this is not a normal, but a “fake” exception). Thus, the exception mechanism
flushes the instructions following the TLB write and re-executes the TLB write instruction as the
“fake exception instruction” from Section 3; the re-fetched TLB write instruction is marked by the
special �� bit.
Finally, we introduce a special synchronization channel �� � that is used to block the instruction

fetch �� until the re-fetched TLB write instruction is executed. This avoids the mutual exclusion
problem, since ��� is waiting for a program counter from �� . Once the TLB write instruction
completes, the �� � channel is used to release the instruction fetch and allow it to continue issuing
program counter values. The CHP description of these transformations can be found in [3].
To summarize, the mechanism works as follows:

� The TLB write instruction is executed by raising a fake exception;

� The writeback reports this exception to the instruction fetch;

� The instruction fetch detects the exception, and re-issues the fake TLB write instruction and
blocks on the �� � channel;

� The fake TLB write instruction executes in an empty pipeline and modifies the TLB;

� The completion of the TLB write is reported to the writeback;

� The writeback wakes up the fetch by completing the �� � communication.

This mechanism can be used to implement any infrequent state modification in an empty pipeline,
thereby avoiding any additional circuitry on the common execution path.

$� %������ &��'

In synchronous processors, the clock globally synchronizes all actions, and therefore exception
detection is implicitly synchronized with fetching instructions from memory. As a result, syn-
chronous processors implement precise exceptions by allowing a deterministic number of instruc-
tions to execute before the exception status of an instruction is checked. The absence of a global
clock allows us to break this synchronization. Modern clocked out-of-order processors like the
R10000 use a similar mechanism to the one we have just described. The queue between the decode
and writeback is similar to the active list in the R10000 [8]. Execution units can directly modify the
active list, whereas in our mechanism execution units report their results to the writeback that reads
the results in program order. However, the hardware complexity of the R10000 is much higher
than the MiniMIPS because of the overhead of implementing out-of-order execution in a clocked

processor.
The AMULET is a self-timed clone of the ARM processor [1]. However, it does not have mul-

tiple execution units which simplifies the design of an exception handling mechanism. “Fred” is
an asynchronous processor with multiple execution units [7]. This processor does not have pre-
cise exceptions; it implements a weaker form of exception handling known as functionally precise
exceptions. In their implementation, instructions following the one that raised the exception can
complete; therefore, the processor keeps track of the instructions that completed so that the excep-
tion handler can use this information to recover after an exception. In addition, each instruction
saves its inputs so that it can be re-dispatched in the event of an exception [7]. This complicates
the exception handling mechanism and increases the software overhead in the exception handler.
In addition, the dispatch unit in Fred (which loosely corresponds to �� in our description) receives
feedback even when an instruction does not raise an exception, since it keeps track of the status
of each instruction. The mechanism proposed here is simpler, more distributed, and implements
precise exceptions without synchronizing the �� and the execution units when instructions do not
raise exceptions. In addition, the mechanism shown in this paper exercises the arbiter only when
an exception does occur. Contrast this with the mechanism in Fred, which requires arbitration even
when exceptions do not occur.

(�)��
�	����

In this paper, we have described an algorithm for implementing an exception mechanism in
pipelined asynchronous processors. Our proposed mechanism is flexible (it allows any number of
instructions to be in progress when an exception occurs) and efficient (it incurs a significant per-
formance penalty only when exceptions actually do occur). The mechanism is not restricted to the
implementation of “software exceptions”—it can also be used for interrupts and other uncommon
events that affect control flow, e.g., branch mispredicts.

'������������

The research described in this paper was supported in part by the Defense Advanced Research
Projects Agency (DARPA) and monitored by the Office of Army Research. Mika Nyström was
supported in part by an Okawa Foundation Fellowship and an IBM Research fellowship. We thank
the members of the asynchronous VLSI group at Caltech who participated in the design of the
MiniMIPS processor for lively and animated discussions.

� *�������

The notation we use is based on Hoare’s CSP [2]. A full description of the notation and its
semantics can be found in [4]. What follows is a short and informal description of the notation we
use.

� Assignment: � �� ". This statement means “assign the value of " to � .” We also write ��
for � �� ��� , and �� for � �� !��� .

� Selection: �#
 � $
 �� ��� ��#� � $��, where #� ’s are boolean expressions (guards) and
$� ’s are program parts. The execution of this command corresponds to waiting until one of
the guards is �	
�, and then executing one of the statements with a �	
� guard. The notation

�#� is short-hand for �# � �%�
�, and denotes waiting for the predicate � to become true.
If the guards are not mutually exclusive, we use the vertical bar “�” instead of “��.”

� Repetition: ��#
 � $
 �� ��� ��#� � $��. The execution of this command corresponds
to choosing one of the �	
� guards and executing the corresponding statement, repeating this
until all guards evaluate to !��� . The notation ��$� is short-hand for ����� � $�.

� Send: � 	 means send the value of over channel � .

� Receive: & �� means receive a value over channel & and store it in variable � .

� Probe: The boolean expression � is ��� iff a communication over channel � can complete
without suspending.

� Sequential Composition: $ �'

� Parallel Composition: $ 	 ' or $ �' .

%������
��

[1] S.B. Furber, P. Day, J.D. Garside, N.C. Paver, and J.V. Woods. A micropipelined ARM. Proceedings of the VII
Banff Workshop: Asynchronous Hardware Design, August 1993.

[2] C.A.R. Hoare. Communicating Sequential Processes. Communications of the ACM, 21(8):666–677, 1978

[3] Rajit Manohar. The Impact of Asynchrony on Computer Architecture. Ph.D. thesis, CS-TR-98-12, California In-
stitute of Technology, July 1998.

[4] Alain J. Martin. Compiling Communicating Processes into Delay-insensitive VLSI circuits.Distributed Computing,
1(4), 1986.

[5] A.J. Martin, A. Lines, R. Manohar, M. Nyström, P. Penzes, R. Southworth, U. Cummings, and T.K. Lee. The
Design of an Asynchronous MIPS R3000 Processor. Proceedings of the 17th Conference on Advanced Research in
VLSI. Los Alamitos, Calif.: IEEE Computer Society Press, 1997.

[6] Alain J. Martin, Steven M. Burns, Tak-Kwan Lee, Drazen Borkovic, and Pieter J. Hazewindus. The design of an
asynchronous microprocessor. In Charles L. Seitz, editor, Advanced Research in VLSI: Proceedings of the Decen-
nial Caltech Conference on VLSI, pp. 351–373, MIT Press, 1991.

[7] William F. Richardson. Architectural Considerations in a Self-Timed Processor Design. Ph.D. thesis, Department
of Computer Science, University of Utah, 1996.

[8] Ken Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, 16(2):28–40, April 1996.

