
An Operand-Optimized Asynchronous IEEE 754
Double-Precision Floating-Point Adder

Basit Riaz Sheikh and Rajit Manohar
Computer Systems Laboratory

School of Electrical and Computer Engineering
Cornell University

Ithaca, NY 14853, U.S.A.
{basit,rajit}@csl.cornell.edu

Abstract—We present the design and implementation of an
asynchronous high-performance IEEE 754 compliant double-
precision floating-point adder (FPA). We provide a detailed
breakdown of the power consumption of the FPA datapath,
and use it to motivate a number of different data-dependent
optimizations for energy-efficiency. Our baseline asynchronous
FPA has a throughput of 2.15 GHz while consuming 69.3 pJ per
operation in a 65nm bulk process. For the same set of nonzero
operands, our optimizations improve the FPA’s energy-efficiency
to 30.2 pJ per operation while preserving average throughput, a
56.7% reduction in energy relative to the baseline design. To our
knowledge, this is the first detailed design of a high-performance
asynchronous double-precision floating-point adder.

Keywords-Floating point arithmetic; asynchronous logic cir-
cuits; very-large-scale integration; pipeline processing

I. INTRODUCTION

Efficient floating-point computation is important for a wide
range of applications in science and engineering. Using com-
putational techniques for conducting both theoretical and ex-
perimental research has become ubiquitous, and there is an
insatiable demand for higher and higher performing VLSI
systems. Today, this performance is limited by power con-
straints. The Top 500 supercomputer ranking now includes the
energy-efficiency of the system as well as its performance. At
the other end of the spectrum, embedded systems that have
traditionally been considered low performance are demanding
higher and higher throughput for the same power budget.
Hence it is important that we develop energy-efficient floating-
point hardware, not simply high performance floating-point
hardware.

The IEEE 754 standard [1] for binary floating-point arith-
metic provides a precise specification of a floating-point adder
(FPA). This specification was determined after much debate,
and it took several years before hardware vendors developed
IEEE-compliant hardware. Part of the challenge was the belief
that: (i) implementing most of the standard was sufficient;
(ii) ignoring a few infrequently occuring cases led to more
efficient hardware (e.g. [2]). Unfortunately ignoring certain
aspects of the standard can lead to unexpected consequences
in the context of numerical algorithms. Today, most floating-
point hardware is IEEE-compliant or has an IEEE-compliant
mode.

The observation that there are infrequently occuring cases
that make the hardware difficult/slow leads to the natural ques-
tion: can we design an energy-efficient asynchronous floating-
point adder? An asynchronous circuit does not use a clock
signal, and is not constrained to a global timing constraint.
Perhaps we could design an IEEE-compliant floating-point
adder that was a bit slower when certain infrequent cases
occured. This could result in a significant energy reduction
during normal operation. Self-timing would enable this flex-
ibility at a very fine grain, allowing for operand-dependent
performance.

We begin with a baseline asynchronous FPA that corre-
sponds to a state-of-the-art high performance synchronous
FPA design. We provide energy-consumption breakdown of
a high-performance asynchronous FPA datapath, and use this
to guide our optimizations for energy-efficiency. We present
our operand-dependent optimization techniques to reduce the
energy per operation of asynchronous floating-point addition,
including some that result in poor throughput in pathological
cases. It is these optimizations that are challenging in the
synchronous context, because they increase the worst-case
critical path making the common case slower even though on
average they have negligible impact on throughput.

All our performance and energy evaluations use transistor-
level simulation with estimated wire loads. We have found that
our wire load estimates are conservative, and predicted energy
and delay numbers have been about 10% higher than post-
layout simulations (that include accurate parasitics) for a range
of previous designs. In a 65nm bulk CMOS process (TT, 25◦C,
1V), the baseline asynchronous FPA operates at a throughput
of 2.15 GHz while consuming 69.3 pJ/op. With the same
operand inputs, our optimized asynchronous FPA consumes
only 30.2 pJ/op—a 56.7% reduction in energy relative to
the baseline asynchronous FPA while preserving the average
throughput.

II. BACKGROUND AND RELATED WORK

A floating-point adder is used for the two most frequent
floating-point operations: addition and subtraction. It requires
much more circuitry to compute the correctly normalized
and rounded sum compared to a simple integer adder. All



the additional circuitry makes the FPA a complex, power-
consuming structure. The following summarizes the key oper-
ations required to implement an IEEE-compliant FPA:

• The first step in the FPA datapath is to unpack the
IEEE representation and analyze the sign, exponent, and
significands bits of each input to determine if the inputs
are standard normalized or are of one of the special types
(NaN, Infinity, Denormal).

• The absolute difference of the two exponents is used as
the shift amount for a variable right shifter which aligns
the smaller of the operands.

• In parallel with the right align shifter, the guard, round,
and sticky bits are computed to be used for rounding in
latter stages of the FPA datapath.

• The next step is the addition or subtraction of two
significands based on sign information.

• Most high-performance FPAs use a special-purpose cir-
cuit popularly known as a Leading-One-Predictor and
Decoder (LOP/LOD) to predict the position of the leading
one in parallel with the addition/subtraction step.

• The post addition steps include normalizing the signifi-
cands. This may require either a left shift by a variable
amount (using the predicted value from LOP), no shift (if
the output is already normalized), or a right shift by one
bit (in case of carry-out when the addition inputs have
the same sign).

• The exponent is adjusted based on the shift amount during
normalization. In parallel, the guard, round, and sticky
bits are updated and are used, along with the rounding
mode, to compute if any rounding is necessary. The sign
of the sum is also computed.

• In case of rounding, the exponent and significand bits are
updated appropriately.

• The final stage checks for a NaN, Infinity, or a Denormal
outcome before outputting the correct result.

A. Asynchronous Arithmetic

The use of asynchrony to improve the performance of
arithmetic circuits has been exploited by a number of different
researchers. As early as 1946, von Neumann proposed using an
asynchronous integer adder because the average-case delay for
a ripple-carry adder is O(log N) where N is the number of bits
in the input assuming that the input bits are independent, iden-
tically distributed (i.i.d.) random variables [7]. More recently it
was shown that it is possible to design an asynchronous integer
adder with an average-case latency of O(log log N) for i.i.d.
inputs [8] and that the design achieves the optimal asymptotic
average-case latency for any input distribution [9]. There have
been numerous papers on asynchronous adders with a variety
of topologies (e.g. [5,10–12]).

To our knowledge, the work of Joel Noche et al. [13] is
the only published work on FPA design using asynchronous
circuits. Their work claims a full working single-precision
floating-point unit (FPU). However, their FPU is completely
non-pipelined, doesn’t include any energy optimization tech-
niques, and does not implement rounding logic. Their test

vector included one addition of two arbitrary single-precision
floating-point inputs for which they claim a completion time
(latency) of 79 nanoseconds in a 0.35µm process at 3.3V.

B. Synchronous Floating-Point Adders

There is a large body of work on synchronous FPA design.
Ercegovac and Lang [6] contains an overview of the different
techniques used to optimize floating-point addition. Most of
the earlier work on the FPA design has focused on improving
FPA latency [17,19–21]. Oberman [21] proposes the use of two
align shifters to improve the latency of their single-precision
FPA with only one rounding mode. Seidel and Even [17]
propose a two-path FPA design to reduce overall latency. The
R-path in their design deals with cases of effective addition
(or subtraction with exponent difference greater than 1) and N-
path deals with effective subtraction with exponent difference
less than or equal to 1. Both paths are in operation at the same
time and use their own significand adders.

There is less work on low-power FPAs compared to low-
latency FPA design. Pillai et al. [23] propose the partitioning
of the floating-point datapath into three distinct, clock-gated
datapaths for activity reduction. Only one of the three paths
is active during any operational cycle in their FPA. In our
proposed transistor-level optimized asynchronous FPA, we
also use control-inhibited pipelines but instead of using clock-
gating to turn off the pipelines (which may worsen clock
skew especially for high performance FPAs in deep submicron
technologies) we use local asynchronous conditional split
pipelines which have no effect on overall throughput. Also,
our design goes beyond pipeline inhibitions as explained in
sections IV and V. The FPA design by Quinnell et al. [15] is
one of the rare fully-implemented designs (65nm SOI) from
academia. Although, they use standard-cell library as opposed
to our custom transistor-level construction, their work provides
us with a good baseline to analyze our throughput and power
results.

Recent years have seen a number of contributions in the
design of Fused-Multiply-Add (FMA) units [14–16,18]. In
[16], the authors propose techniques to reduce the latency
of a floating-point addition operation in an FMA. In terms
of performance and power-efficiency, the P6 Binary Floating-
Point Unit [14] represents the state-of-the-art. It supports an
extremely aggressive cycle time of 13FO4s. Power saving
is done by clock-gating pipeline stages not in use. Power
simulations at 1.1V, 4GHz, and 100% utilization in a 65nm
SOI process consumed 310mW .

III. A BASELINE ASYNCHRONOUS FPA

To our knowledge, our baseline unit is the first fully-
implemented (at the transistor-level) asynchronous double-
precision floating-point adder of its kind. It supports all four
rounding modes and is fully IEEE-754 compliant. Fig. 1 shows
the block diagram of our FPA datapath, which is loosely
based on recent high-performance FPA/FMAs. It uses standard
state-of-the-art techniques such as leading one prediction and
decoding, use of parallel prefix tree adder, and fast logarithmic
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Fig. 1. Asynchronous Baseline FPA Architecture

shifters to keep the throughput high. To reduce latency and
overall complexity, the post-addition normalization datapath is
separated in two paths. The Left path contains a variable left-
shifter, whereas the Right path includes a single-position right
or left shifter along with all rounding and increment logic.
We equally weighed performance and power trade-offs in the
choice of our circuits for various functional blocks of the FPA.
The following subsections explain our choice of asynchronous
pipelines, 56-bit significand adder and LOP/LOD functional
block.

A. Fine-grain Asynchronous Pipelining

We use quasi-delay-insensitive (QDI) asynchronous circuits
for our FPA design. Our baseline asynchronous FPA’s datap-
ath is highly pipelined (thirty pipeline stages) to maximize
throughput. Unlike the standard synchronous pipelines, the
forward latency of each asynchronous pipeline is only two
logic transitions (the pull-down stack followed by the inverter),
hence the thirty stage asynchronous pipeline depth results in
acceptable FPA latency. The fine-grain asynchronous pipelines
in our design contain only a small amount of logic (e.g.
a two-bit full-adder). The actual computation is combined
with data latching, which removes the overhead of explicit
output registers. This pipeline style has been used in previous
high-performance asynchronous designs, including a fully-
implemented and fabricated asynchronous microprocessor [5].

We use pre-charge enable half-buffer (PCEHB) pipeline
for all data computation [3]. It is a modified version of the

original PCHB pipeline [4]. Our SPICE simulations show
PCEHB pipelines to be faster and more energy-efficient than
PCHB pipelines in a modern 65nm process. For simple
buffers and copy tokens, we use a weak-conditioned half-
buffer (WCHB) [4] pipeline stage, which is much smaller
circuit than a PCEHB and hence is more energy-efficient for
simple data buffering and copy operations.

B. Hybrid Kogge-Stone Carry-Select Adder

The 56-bit significand adder is on the critical path of the
FPA and is the single largest functional block in the FPA datap-
ath. Improvements in the adder design usually have the largest
overall impact on the FPA, hence designers spend considerable
time in optimizing their adder circuits for performance and
power. Parallel prefix logic networks that use tree structures
to compute the carry are usually preferred for any adder with a
large number of input bits. Tree adders like Kogge-Stone [24],
Brent-Kung [30], and Sklansky [30] can compute any N-bit
sum with a worst-case latency of O(log N) stages. Many
commercial chips use some form of these tree adders in their
FPA implementations.

Our baseline asynchronous FPA uses a hybrid Kogge-
Stone/carry-select adder. The rationale for this choice is that
most high-performance floating-point adders use this topology.
The adder is partitioned into eight-bit Kogge-Stone blocks that
compute two speculative sum outputs (assuming the carry-in
is either zero or one). The sum output is selected by the final
stage based on the actual carry values. The choice of eight-
bit Kogge-Stone sub-blocks was made for energy-efficiency as
blocks with more bits would have resulted in higher energy
due to long wiring tracks that have to run across the total width
of the block. Most blocks in the adder use radix-4 arithmetic
and 1of4 codes (like the adder in [5]) to minimize energy and
latency.

Subtraction is done in the usual way by inverting the
inputs and using a carry-in of one for the entire adder. The
choice of significand to invert is important from the energy
perspective. Since IEEE floating-point uses a sign-magnitude
representation, a final negative result requires a second two’s
complement step. To avoid this, our asynchronous FPA always
chooses to invert the smaller of the two significands.

C. Leading One Prediction and Decoding

Most modern FPA implementations use LOP/LOD logic to
determine the shift amount for normalization in parallel with
the significand adder. This reduces the latency of the FPA,
because the shift amount is ready when the adder outputs are
available.

Our LOP logic is inspired from the LOP scheme proposed
by Bruguera et al. [22]. It subtracts the two significands
using a signed digit representation producing either a 0, 1,
or -1 for each bit location. The bit string of 0s, 1s, and
-1s can be used to find the location of the leading one,
except that it could be off by one in some cases. Instead
of using a correction scheme that operates in parallel with
the LOP hardware (requiring significant more energy), we use



the speculative shift amount and then optionally shift the final
outcome by one in case there was an error in the estimated shift
amount. This also requires an adjustment to the exponent. To
make this adjustment efficient, both values of the exponent are
computed concurrently by using a dual-carry chain topology
for the exponent adder.

D. Evaluation of Baseline Asynchronous FPA

We use a 65nm bulk CMOS process at the typical-typical
(TT) corner. The steady state throughput and energy per oper-
ation results for our baseline asynchronous FPA with highest-
precision HSIM/HSPICE simulation configuration are shown
in Fig. 2. The different data points correspond to different
supply voltages (0.6V and 1.1V). We added additional wire
load in the SPICE file for every gate in the circuit.

Fig. 2. Baseline FPA Energy vs Throughput

At a VDD of 1V, the FPA operates at a throughput of
2.15 GHz with an average power dissipation of 149mW ,
an energy/operation of 69.3 pJ/op. The power values include
the gate and sub-threshold leakage power. Compared to the
standard-cell library FPA in a 65nm SOI process by Quinnell
et al. [15] operating at a throughput of 666 MHz with an
average power-consumption of 118mW , our baseline FPA
design operating at 3.2 times higher throughput consumes
2.6 times less energy per operation even though we are using
a bulk process.

E. Power Breakdown and Analysis

The last decade witnessed a significant change in the
focus of arithmetic circuit designers from purely performance
oriented high-speed circuits to energy-efficient circuit imple-
mentations. To improve the efficiency of any VLSI system,
it is critical to first understand where energy and power
are dissipated. We have not found a detailed energy/power
breakdown of a state-of-the-art FPA datapath in the open
literature.

Fig. 3 shows a detailed energy/power breakdown of our FPA
datapath. Starting with 11% of Front-End and proceeding in
the clock-wise direction, the energy/power contributions are
in the same order as listed in the legend in the figure. Since
in asynchronous PCEHB and WCHB pipelines the actual

computation is folded and coupled into the pipelines, the
percentage power usage of any particular functional block
includes all pipeline overhead i.e. input validity, output valid-
ity and handshake acknowledge computation. Although, the
Hybrid Kogge-Stone Carry-Select Adder is the largest power-
consuming functional block in the pipeline, it is interesting to
note that there is no single dominant high-power component
in the FPA datapath. Hence, any effective power-saving opti-
mizations would require us to tackle more than one function
block.

Fig. 3. FPA Pipeline Power Breakdown

The Right-Align Shift block which comes second in terms
of power-consumption includes logic to compute the guard,
round, and sticky bits to be used in the rounding mode. In the
worst case, the sticky bit logic has to look at all 53 shifted
out bits. To do this fast and in parallel with the right-align
shifter, considerable extra circuitry is needed which consumes
more power. The post addition Right Pipeline block is the
third most power-consuming component of the FPA datapath.
It includes the single position left or right shifter as well as
complete rounding logic which includes significand increment
logic and exponent increment/decrement logic blocks.

IV. COARSE GRAIN POWER REDUCTION

Most synchronous FPAs (limited by worst-case computation
delay) include complex circuitry to attain constant latency and
throughput for the best, average, and worst case input patterns,
although the best and average additions could have been done
much faster and more efficiently. The important question to
ask is how often the worst-case happens. If it happens very
frequently then it justifies burning extra power with complex
circuits to boost overall performance.

To answer this question, we used Intel’s PIN [25] toolkit
to profile input operands in a few floating-point intensive ap-
plications from SPEC2006 [26] and PARSEC [27] benchmark
suites using reference input sets. The set of ten applications
we chose for profiling came from very diverse fields such
as quantum chemistry, speech recognition, financial services,



molecular biology, 3D graphics, linear programming opti-
mizations etc. The input operands in actual benchmark runs
were saved to disk, and then used for statistical analysis. The
application profiling statistics in the following sections were
tabulated using ten billion input operands for each application.

A. Interleaved Asynchronous Adder

The delay of an N-bit adder primarily depends on how fast
the carry reaches each bit position. In the worst-case, the carry
may need to be propagated through all bits, hence synchronous
implementations resort to tree adder topologies. However, as
shown in Fig. 4, for most application benchmarks, almost 90%
of the time the maximum carry-chain length is limited to 7
radix-4 positions.

Fig. 4. Radix-4 Ripple-Adder Carry-Length

An N-bit ripple carry asynchronous adder has an average
case delay of O(log N), the same order as a more complex
synchronous parallel-prefix tree adder such as Kogge-Stone.
However, the use of ripple-carry asynchronous adders is
not feasible for high-performance FPA circuits because the
pipeline stage waiting for the carry input stalls the previous
pipeline stage until it computes the sum and the carry-out.
Even a delay of one carry-propagation (which is two gate
delays) stalls the preceding pipeline by a significant amount.

To circumvent the average throughput problem, we use an
interleaved asynchronous adder as shown in Fig. 5. It uses
two radix-4 ripple-carry adders: the left and right adders. Odd
operand pairs are summed by the right adder, and even operand
pairs are summed by the left adder. The notion of interleaving
blocks has been used for a number of different structures in
the past, including FIFOs [31] and high-speed communication
circuits [32].

In a standard PCEHB reshuffling, the interleave stage has
to wait for the acknowledge signal from ripple-stage before
it can enter neutral stage and accept new tokens. However,
this would cause the pipeline to stall in case of a longer
carry chain. Hence, we do not use PCEHB reshuffling in our
adder topology. Instead of waiting for the output acknowledge
signals from the right ripple-carry adder, the interleave stage
checks to see if the left ripple-carry adder is available. If it is,
the interleave stage asks for new tokens from the previous
pipeline stage and forwards the arriving tokens to the left
adder. The two ripple-carry adders could be in operation at
the same time on different input operands. Since our pipeline
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Fig. 5. Interleaved Asynchronous Adder

cycle time is approximately 18 logic transitions (gate delays),
the next data tokens for the right adder are scheduled to arrive
after 36 transitions of the first one. This gives ample time for
even very long carry-chains to ripple through without causing
any throughput stalls.

Table I shows the throughput results of our interleaved
asynchronous adder using SPICE simulations with different
input sets. Compared to the 56-bit Hybrid Kogge-Stone Carry-
Select Adder which gave a throughput of 2.17 GHz and
energy/operation of 13.6pJ when simulated by itself, the
interleaved adder operates at an average throughput of 2.2
GHz for input cases with carry-length of fourteen or less while
consuming only 2.9pJ per operation. Not only it reduces the
energy/operation by more than 4X, it also reduces the number
of transistors in the 56-bit adder by 35%.

TABLE I
THROUGHPUT ACROSS DIFFERENT CARRY LENGTHS

Input 0-3 4-7 8-14 15-20 27 Frequency
Deal 88% 9% 2.7% 0.3% 0% 2.2 GHz

I 0% 100% 0% 0% 0% 2.2 GHz
II 0% 0% 100% 0% 0% 2.2 GHz
III 0% 0% 0% 100% 0% 1.38 GHz
IV 0% 0% 0% 0% 100% 0.78 GHz

Deal corresponds to operand data from 447.deal
SPECFP 2006 application benchmark. Other applications
from the SPECFP suite had similar statistics, so we simply
picked one representative benchmark for comparison. The
synthetic input sets (I to IV) are designed to have specific
carry chain lengths, as can be seen from the statistics in
Table I. The synthetic input sets III and IV generate input
operands for the adder that yield fixed maximum carry-chain
lengths of 20 and 27 (maximum for radix-4 56-bit addition)
respectively. We did observe a dip in throughput for these two
input sets, but since our statistical analysis reported earlier
in the section show the probability of such high carry-chain
lengths to be quite rare, it is feasible to take a throughput
penalty for such rare occurrences (0.5% or less) in order to
save more than four times the energy per operation for the
99.5% of input patterns with maximum carry-chain length of



14 or less.

B. Left or Right Pipeline

In our baseline asynchronous FPA, the post-addition dat-
apath is divided into two separate pipelines: Right pipeline
and Left normalize pipeline as shown in Fig. 1. The two
pipelines handle disjoint cases that could occur during floating-
point addition. The Left normalize pipeline handles cases
when destructive cancellation can occur during floating-point
addition, requiring a large left shift for normalization. The
destructive cancellation scenario happens only when the ex-
ponent difference is less than two, and the FPA is subtracting
the two operands. The Right pipeline handles all other cases.

Instead of activating both pipelines and selecting the result,
we compute the selection condition early (prior to activating
the LOP/LOD stage) and then only conditionally activate
the appropriate path through the floating-point adder. The
LOP/LOD function blocks determine the shift value for the
left normalization shifter. The shift amount determined by
LOP/LOD is only needed in cases which could potentially
result in destructive cancellation. Hence, in the case of Right
pipeline utilization, we also save energy associated with the
LOP/LOD stage, because the results of the LOP/LOD are only
used by the Left normalize pipeline. Compared to the baseline
FPA, we get power savings of 13% for operands using the Left
pipeline and power savings of up to 18% (11% Left pipe &
7% LOP/LOD) for operands using the Right pipeline which
is the more frequent case as shown in Fig. 6.

Fig. 6. Left/Right Pipeline Frequency

V. OPERAND-BASED OPTIMIZATIONS

This section further improves the energy-efficiency of the
FPA by examining other properties of the input operand
distribution. We optimize four additional aspects of the FPA
pipeline: (i) initial right align shifter; (ii) leading one predic-
tion; (iii) post-addition increment; (iv) zero input operands.

A. Two-Way Right-Align Shift

The Right-Align Shift block is the second-most power con-
suming structure in the baseline FPA. It includes the right
shifter logic as well as the logic to compute the guard, round,
and sticky bits used for rounding. The sticky bit is set to one
if any of the shifted out bits from the alignment shift stage is
one; otherwise it is set to zero. In the worst case, the sticky bit

logic has to examine all 53 shifted bits. To do this fast and in
parallel with the right-align shifter, considerable extra circuitry
is needed which consumes more power. For high throughput,
the other (non-shifted) significand is slack-matched to the
right-align shift logic using a number of WCHB pipeline
stages. The Right-Align Shift block also compares the two
significands to determine which of the two significands should
be inverted in case of subtraction. The exponent difference and
sign bit is used to generate enable control for the LOP. Each
control bit is shared for two (one for each operand) radix-
4 significand entries. Overall, this comparison of significands
and generation of large number of control bits is not cheap in
terms of power consumption.

The shifter comprises of three pipeline stages. The first stage
shifts the significand between 0 to 3 bit positions based on the
shift-control input. The second pipeline shifts by 0, 4, 8, or
12 bit positions and the third stage shifts by 0, 16, 32, or
48 bit positions using the shift-control input signals for the
respective stages. Each radix-4 significand entry shift pipeline
resembles a PCEHB template with a 4-to-1 multiplexor as the
pull-down logic. Each stage produces multiple output copies
to feed into 4 different PCEHB multiplexor blocks of the
following pipeline stage. All this circuitry makes the shifter a
costly structure in our FPA datapath.

The key advantage of the shifter topology is its fixed
latency for any shift value ranging between 0 and 55 (the
maximum align shift in a double-precion addition/subtraction).
This advantage is also one of its drawbacks as it consumes the
same power to do a shift by zero and a shift by a large value.
Fig. 7 shows the right align shift patterns across 10 different
benchmarks using operands gathered through PIN application
profiling. Although, these benchmark applications are from
totally unrelated disciplines, they exhibit a common property: a
significant proportion of right align shift values range between
0 to 3 inclusive. For one benchmark, the proportion of right
align shifts of 0 to 3 is almost 81%.

Fig. 7. Right Align Shifter Statistics

In our baseline right-align shift topology, shifts by 0 to 3 are
done in the first pipeline stage. However, in spite of that the
significand still needlessly goes through the other two shift
stages and in doing so wastes considerable power. It would
have been an acceptable trade-off if most operations required
align shifts by a large value, but the shift patterns shown in
Fig. 7 make it evident that our baseline align shifter topology



is highly non-optimum from an energy perspective.
To improve the energy-efficiency of the align shifter, we

split it into two paths. The first stage dealing with a right
shift of 0 to 3 is shared between two paths. In case of a shift
greater than 3 bit positions, the significand is forwarded to
the second shift pipeline stage as in the original topology.
However, for shifts of 0 to 3 bit positions, the significand
output is bypassed to the post align-shifter pipeline stage as
shown in Fig. 8. The post align-shift stage consists of a merge
pipeline which receives inputs from both the regular shift path
and the short bypass shift path. It selects the correct input using
the buffered control signal which was earlier used to direct the
significand to one of the two paths.The short shift path has
multiple features which lead to significant power savings:

Fig. 8. Two-Path Right-Align Shift

• The shifted significand skips the remaining two shift
pipelines.

• In contrast to the baseline topology which produces mul-
tiple significand outputs to be consumed in the following
shift stages, the bypass shift path needs only one output
for each significand.

• The guard, round, and sticky computation becomes quite
simple and requires minimal energy as only a maximum
of 3 bits are shifted out.

• The other (non-shifted) significand also bypasses the
WCHB slack-matching buffers.

• No shift select signals need to be generated and copied
for the second and third shift pipeline stages.

The new shifter topology poses a design choice of slack-
matching the control to either the long-shift path with two
pipeline stages or the short-bypass path with no pipeline
buffering at all. If control is slack-matched to the short path,
the shifts requiring long path may suffer from stalls and
degrade the FPA throughput. Slack-matching the control to
the long path increases the short path latency. The worst-case
scenario is when the pipeline alternates between the two paths.
However, our application profiling analysis in Fig. 9 reveal that

across all application benchmarks, the proportion of times a
short path shift follows another shift along the same path is
considerably high. We saw similar results for the long path
shifts. A detailed throughput and latency analysis, based on the
profiled shift patterns, favored a control path which is slack-
matched to none of the two shift paths. In our implementation,
the merge control input has only one WCHB pipeline and has
a throughput within 1.3% of the baseline FPA in the worst-
case scenario.

Fig. 9. Right Align Shift Short Path Pattern

B. Minimizing LOP Logic

For subtraction, the bits of the shifted significand are
inverted except when the exponent difference is zero which
then requires input from the significand comparison block to
determine which one of the two significands is smaller. Since
the case of exponent difference of zero corresponds to the
bypass shift path, the significand comparison logic requiring
multiple pipeline stages cannot be done in parallel with the
bypass path without incurring a throughput penalty. Hence,
the significand comparison is moved to earlier pipeline stages
in the optimized FPA datapath.

With the result of significand comparison available early, the
LOP logic stack can be simplified. As Bruguera et al. point
out in [22], the logic to predict leading one when the sign-
digit difference of two operands is positive is different from
the case when the sign-digit difference of two operands is
negative. In our optimized FPA, using the significand compar-
ison result early in the FPA enables the LOP computation to
assume that its first operand always corresponds to the larger
significand. This information enables us to significantly reduce
the circuitry required for LOP computation.

In the baseline FPA, there is a separate pipeline stage to
conditionally invert bits in case of subtraction. The baseline
FPA generates control signals for each radix-4 position speci-
fying which of the two significands if any need to be inverted.
Since the LOP control bits in our optimized FPA already
contain information about the larger significand, we merged
the conditional invert stage with pre-LOP selection pipeline
which determines the larger of the two significands as LOP’s
first operand. This eliminates the need of separate control
signals for inverting bits and including savings from cutting a
full pipeline stage leads to energy reduction of over 3%.



C. Post-Add Right Pipeline

The Right Pipeline block is the third most power-consuming
structure in the baseline FPA. It includes a single-position right
or left shifter, a 53-bit significand incrementer, rounding logic,
and final exponent computation block for operands utilizing
the Right Pipeline. As shown earlier in Fig. 6, on average
more than 80% of the FPA operations use this block. Hence,
power-optimization techniques for the circuits in this block
have a notable impact on average FPA power savings.

The baseline carry-select incrementer comprises of four-bit
blocks with each computing the output for the carry input
of one into that block. In parallel, there is a fast carry-logic
which computes the correct carry-input for each four-bit block.
Lastly, there is a mux pipeline stage which selects either the
incremented output or the buffered non-incremented bits for
each four-bit block using the carry select input. In case of a
carry-out of one, the significand is right shifted by one bit
position.

The key advantage of our baseline incrementer topology is
its fixed latency for the best (no carry propagation) and worst-
case (carry propagates through all the bits) alike. However,
as seen in Fig. 10, for over 90% of the operations using the
increment logic, the carry propagation length is less than four
radix-4 bit positions. Also, the case of a final carry-out occurs
no more than 0.5% of the time.

The carry-select incrementer targeted for worst-case scenar-
ios is a non-optimum choice for the average-case incrementer
carry-length patterns. To improve energy-efficiency, we instead
use an interleaved incrementer similar to earlier described
interleaved adder. Instead of using two ripple-carry adders,
it uses much simpler two radix-4 ripple-carry incrementers.
The odd data token is forwarded to the right incrementer. For
the next arriving data token, the interleave stage checks to
see if the left incrementer is available. If it is, the interleave
stage forwards the arriving tokens to it. The interleave merge
stage receives the inputs from both incrementers and forwards
those to the next pipeline stage in the same interleaved order in
which they were scheduled. This allows the two incrementers
to be in operation at the same time on different input operands.

The incrementer is used to adjust the result due to rounding.
Our new incrementer topology computes either the correct
incremented or non-incremented output (not both) using the
round-up bit as the carry-in, hence alleviating the need to
have a separate mux stage to choose between two possible
outputs. Our simulation results for the new topology show no
throughput penalty for average-case inputs. Also, there is no
need for a separate post-increment right shift pipeline stage.
The case where the final result must be right shifted by one
only occurs when all significand bits are one, and the result
must be rounded up. In that scenario, the incrementer output
is all zero and hence both shifted and unshifted versions of
the incrementer result are identical. Hence, for correct output,
only the most significant bit needs to be set to one.

In the baseline FPA, until the incrementer carry-out is
computed the correct exponent value cannot be computed.

Fig. 10. Radix-4 Incrementer Carry Length

Since the carry-out is not available until the fourth pipeline
stage in the Right Pipeline block, to prevent latency penalty
the exponent values of exponent+C are always computed
for C = 0,±1,+2, with a mux stage choosing the correct
output. To circumvent the problem of latency penalty, we
replace the exponent computation block with an interleaved
incrementer/decrementer which mitigates any latency degra-
dation with its average-case behavior. It uses a two bit carry-
in (first bit is set to 1 for increment, second bit is 1 for
decrement, and both bits are 0 for a simple pass through)
to compute exponent. Using dual-carry chain, exponent + 1 is
also computed simultaneously to be selected in case of a carry
out. Overall, this computation of two exponent values is far
more energy-efficient than the baseline.

D. Zero-input Operands

Fig. 11 shows that a few application benchmarks have a
significant proportion of zero input operands. For the appli-
cations involving sparse-matrix manipulations such as Deal
and Soplex, in spite of the use of specialized sparse-matrix
computation libraries, the percentage of zero inputs can be as
high as 36%. For other benchmarks, the zero-input percentage
varies widely. In our baseline FPA and almost all synchronous
FPA designs, operations involving zero-input operands use
the full FPA datapath. Although, if one or both of the FPA
operands are zero, the final FPA output could be computed
without needing power-consuming computational blocks such
as right-align shifter, significand adder, LOP/LOD, post-add
normalization, and rounding.

Fig. 11. Zero-input Operands

Since the Unpack pipeline stage already checks to see if
any operand is zero, our optimized FPA utilizes the zero flag



to inhibit the flow of tokens into the regular datapath. The
zero flag is used as a control in the conditional split pipeline
just prior to Swap stage to bypass the final sign, exponent, and
significand bits to the last pipeline stage in case of a zero input.
The last stage is replaced with a conditional merge pipeline
which uses the buffered control signal to choose the input
from either the zero bypass path or the regular FPA datapath.
The huge slack disparity between two split pipelines makes
the choice of control slack a critical one.

Fig. 12. Zero-input Pattern

Fig. 12 shows that for benchmark applications with sig-
nificant proportion of zero inputs, the percentage of a zero-
input followed by another zero-input operation is quite high
except for the Swaptions benchmark. To choose the optimum
level of control buffering, we simulated the optimized FPA
with a number of synthetic input-patterns over a wide-range of
control slack possibilities as seen in Fig. 13. Mix-flip refers to
input sequence with alternating zero-input and nonzero-input
operands. Mix-pattern sequence closely resembles the zero-
input pattern seen in most benchmark applications. Based on
these results, we chose to buffer the control with eight WCHB
pipeline stages.

Fig. 13. Zero-Path Control Slack Analysis

Some zero-input patterns take a significant throughput hit
even with eight WCHB pipeline stages for the control. To
circumvent this problem, we explored the effect of adding
some slack on the bypass path. Fig. 14 shows that the addition
of two WCHB stages on the bypass path for sign, exponent,
and significand bits greatly alleviates the throughput penalty
albeit at a small cost in energy. Overall, the best throughput
results are again attained with a slack of eight WCHB stages
on the control. For Mix-pattern sequence, the throughput

increases by 7.5% to 2 GHz. For the worst-case input set,
Mix-flip, throughput increases by 49.8% to 1.95 GHz. The
improvement in throughput comes at a cost of extra WCHB
logic and hence more power. Our simulations using only
one WCHB stage didn’t show such profound throughput
improvement and for cases beyond two WCHB pipeline stages,
the small increases in throughput are overshadowed by power
consumed in additional buffer stages.

Fig. 14. 2-WCHB Zero-Path Control Slack

VI. EVALUATION OF OPERAND-OPTIMIZED FPA

The functional correctness of our asynchronous operand-
optimized FPA was verified using prsim, our in-house asyn-
chronous gate-level simulation tool. Ten billion randomly
generated inputs were sourced into the FPA and the outputs
were verified against the expected values from a standard
processor. The random input set included verification tests
for all four IEEE rounding modes as well as denormal, NaN,
and infinity data inputs. The FPA was further tested with one
billion stored inputs from actual application benchmarks. In
the past, many of the designs have opted to handle denormal
numbers using software traps [28] which can lead to long
execution times [29]. Our design includes hardware support
for denormal numbers.

Our improved asynchronous FPA combines all optimization
techniques discussed in sections IV and V. On top of the
energy savings associated with the these techniques, we were
able to compact more logic together and in doing so eliminated
a full pipeline stage. The transistors in our baseline FPA
were sized using standard transistor sizing techniques [30].
To meet high performance targets, the pull-down stack was
restricted to a maximum of six transistors in series (including
the enable). The slow and power-consuming state-holding
completion-elements were restricted to a maximum of three
inputs at a time. Keepers and weak feedback inverters were
added for each state-holding gate to ensure that charge would
not drift even if the pipeline were stalled in an arbitrary state.

Since HSIM/HSPICE simulations do not account for wire
capacitances, we included additional wire load in the SPICE
file for every gate in the circuit. Based on prior experience with
fabricated chips and post-layout simulation, we have found
that our wire load estimates are conservative, and predicted
energy and delay numbers are typically 10% higher than those



from post-layout simulations. Our simulations use a 65nm bulk
CMOS process at the typical-typical (TT) corner. Test vectors
are injected into the SPICE simulation using a combined
VCS/HSIM simulation, with Verilog models that implement
the asynchronous handshake in the test environment. All
simulations were carried out at the highest-precision setting.

As seen in Fig. 15, the energy per operation of the opti-
mized FPA is approximately 2.3X (56.7%) less than that of
baseline FPA across a wide range of throughput values for the
same non-zero operands. In terms of overall throughput, our
optimized FPA is within ±1.5% of the baseline FPA across a
range of voltages (0.6V to 1.1V). As noted earlier, it is pos-
sible to create pathological input operands that could degrade
the throughput, for example long carry-chain lengths in the
interleaved adder/incrementer or the case of alternating zero
and non-zero operands; however, in practice, such inputs are
rare. Even if they do occur, our FPA still operates correctly and
produces IEEE-compliant output albeit at lower throughput.

Fig. 15. Optimized vs. Baseline

The baseline FPA gives an energy-per-operation of 69.3pJ
at an average throughput of 2.15 GHz for all input operands
alike. The optimized FPA’s energy-per-operation and through-
put vary considerably based on the input operands as seen in
Table II. These results, for SPICE simulations at a VDD of
1V with no slack on the zero operand bypass path, show our
improved FPA design to be far superior in energy-efficiency
than our baseline FPA.

TABLE II
OPTIMIZED FPA ENERGY & THROUGHPUT

Input Set Energy/FLOP Throughput
Nonzero (Align Shift 0-3) 30.2 pJ 2.15 GHz
Nonzero (Align Shift 4-55) 35.1 pJ 2.10 GHz
Nonzero (Align Shift Mix) 32.4 pJ 2.12 GHz

Zero Only 13.1 pJ 1.51 GHz
Zero-Nonzero Alternate 25.1 pJ 1.31 GHz

Zero 30% 27.4 pJ 1.85 GHz
Zero 8% 31.0 pJ 1.96 GHz

The energy-efficiency and throughput results for the FPA
implementation with two WCHB pipeline stages on the zero

bypass path are shown in Table III. The results for non-
zero operands remain the same as before and hence are not
repeated. The improvement in throughput for all zero-input
patterns comes with additional power consumption. This offers
a design choice to be made based on throughput and energy
targets.

TABLE III
OPTIMIZED FPA 2-WCHB ZERO BYPASS

Input Set Energy/FLOP Throughput
Zero Only 14.2 pJ 2.1 GHz

Zero-Nonzero Alternate 26.1 pJ 1.95 GHz
Zero 30% 28.4 pJ 2.0 GHz
Zero 8% 32.1 pJ 2.1 GHz

In terms of actual application benchmarks, Zero 8% input
mix corresponds to 416.gamess, whereas Zero 30% corre-
sponds to an average mix of operands from three applications:
447.deal, 450.soplex, and 437.leslie3d.

The latency of our optimized FPA is also highly operand
dependent. Table IV shows that compared to the baseline FPA’s
average latency of approximately 1098ps, the optimized FPA
has an average latency of 737ps for zero operand cases (same
for both two WCHB slack matching and no slack match-
ing zero bypass implementations) and 1060ps for nonzero
operands with align shifts of 0 to 3; a latency reduction of
32.8% and 3.5% respectively. The increase in latency, seen for
rare some cases, could be attributed to the use of a variable-
latency interleaved adder instead of fixed latency parallel-
prefix tree adder.

TABLE IV
OPTIMIZED FPA LATENCY

Input Set Latency
Nonzero (Align Shift 0-3) 1050-1070 ps

Nonzero (Align Shift 4-55) 1080-1120 ps
Zero 737 ps

Since leakage power has become an important design con-
straint, our simulations model sub-threshold and gate leakage
effects in detail. Table V compares the total leakage power of
our baseline and optimized FPAs at a VDD of 1V. Although,
our optimized FPA includes extra control circuitry for multiple
split-merge pipelines, there is a 19% reduction in leakage
power.

TABLE V
LEAKAGE POWER

Leakage Power
Baseline FPA 0.72 mW

Optimized FPA 0.58 mW

The decrease in leakage power could be attributed to the
use of the interleaved adder and incrementer which use far
fewer transistors compared to the Hybrid Kogge-Stone Carry-
Select Adder and Carry-Select Incrementer. Also, compacting



of logic stages eliminated a full pipeline stage and helped
to reduce the total leakage power further. In terms of the
total number of transistors, our optimized FPA uses 12% less
transistors than the baseline.

Table VI compares the performance, power, and energy of
our optimized FPA against both our own baseline and some
of the latest FPAs and FMAs from industry and academia.
The computer arithmetic literature has a large body of work
on FPA and FMA designs, but few contain a detailed imple-
mentation that provides a reasonable point of comparison in a
modern process. This guided our choice of other FPA/FMAs
in Table VI. Our baseline and optimized FPA results are for
simulations with an input-set comprising non-zero operands
with right align shifts of 0 to 3.

We caution that the FMA numbers are not meant to be a
direct comparison with our proposed FPA since an FMA con-
tains additional circuitry. The FMA performance and power
numbers were only included to show what is the best out there
in industry and academia and that in spite of using a bulk
process, our proposed FPAs are competitive both in terms of
performance and energy-efficiency. Quinnell [15] has a lower
overall latency for nonzero operands than our optimized FPA
as well as our baseline FPA. However, this lower latency
comes at the cost of 3.2X lower throughput and 5.9X higher
energy per operation, as well as a higher VDD.

All of our transistor-level simulation results quoted so
far were for HSIM/HSPICE simulations done at a default
temperature of 25◦C. A set of simulations at 85◦C showed
a similar trend between the baseline and optimized FPAs but
with an expected small performance degradation (10%) at
higher temperature.

The high GFLOPS/Watt ratio of our optimized asyn-
chronous FPA (26 GFLOPS/Watt at 2.5 GHz 1.1V) make
a case for adopting asynchronous circuit solutions, simi-
lar to ours, in future high performance computing systems.
Since asynchronous chips have been shown to work at
fairly low voltages and are quite robust [34–36], getting
85.4 GFLOPS/Watt at a decent throughput of 450 MHz (at
0.6V) also shows the potential of our solution for embedded
systems that require floating-point computation.

VII. SUMMARY

We presented the detailed design of an asynchronous high-
performance energy-efficient IEEE 754 compliant double-
precision floating-point adder. Using QDI asynchronous
pipelines, we created a high-performance design based on
state-of-the-art FPA architectures. We analyzed the power
consumption of the FPA datapath, identifying opportunities
for energy reduction. By using asynchronous techniques that
exploit average-case behavior, we reduced the energy of the
FPA operation with nonzero operands by 56.7% compared
to our baseline implementation while preserving the average
throughput. In future, we plan to extend this work to develop
asynchronous FMA architectures guided by similar principles
to those outlined in this paper.
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