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Abstract—The grand challenge of neuromorphic computation
is to develop a flexible brain-like architecture capable of a
wide array of real-time applications, while striving towards the
ultra-low power consumption and compact size of the human
brain—within the constraints of existing silicon and post-silicon
technologies. To this end, we fabricated a key building block of a
modular neuromorphic architecture, a neurosynaptic core, with
256 digital integrate-and-fire neurons and a 1024×256 bit SRAM
crossbar memory for synapses using IBM’s 45nm SOI process.
Our fully digital implementation is able to leverage favorable
CMOS scaling trends, while ensuring one-to-one correspondence
between hardware and software. In contrast to a conventional
von Neumann architecture, our core tightly integrates compu-
tation (neurons) alongside memory (synapses), which allows us
to implement efficient fan-out (communication) in a naturally
parallel and event-driven manner, leading to ultra-low active
power consumption of 45pJ/spike. The core is fully configurable
in terms of neuron parameters, axon types, and synapse states
and is thus amenable to a wide range of applications. As an
example, we trained a restricted Boltzmann machine offline to
perform a visual digit recognition task, and mapped the learned
weights to our chip.

I. INTRODUCTION

The human brain is capable of amazing feats of perception,
action, and cognition, and yet consumes less power and space
than a personal computer (20W in 2L). While it has become
possible to simulate large-scale brain-like networks using
modern day supercomputers [1], these simulations are many
orders of magnitude less efficient in power and space than
biological systems. The promise of neuromorphic computing
is to bridge this efficiency gap by vertically integrating across
technology (novel nano-devices as well as emerging CMOS
processes), design and engineering (scalable neuromorphic
architectures), software (hardware-implementable neural algo-
rithms), applications (virtual and real environments), while
using neuroscience as the guiding inspiration and mathematics
as grounding.

Traditionally, neuromorphic architectures have used analog
neurons to significantly reduce power consumption [2]. How-
ever, the approach has two main drawbacks. First, there is
limited correspondence between software (the neural algo-
rithm) and hardware (the analog implementation) due to the
sensitivity of dense analog circuits to process variations and
to ambient temperatures. In sharp contrast, our architecture is
completely deterministic by design, and hence, functionally
equivalent to software models. In particular, for any time step
in the software simulation, the software activity in terms of
spikes per neuron, neuron state, etc. is identical to the equiv-
alent property of the hardware. This is the first neuromorphic

architecture to exhibit this strong correspondence property,
breaking a key stalemate between hardware development and
software development. Second, our digital approach allevi-
ates some of the scaling challenges of analog neuromorphic
systems. In particular, the lack of high-density capacitors in
modern CMOS processes as well as increasing sub-threshold
currents makes it difficult to implement neural circuits with
biologically-relevant time constants.

Given that our digital hardware is equivalent to a software
model, one can ask: why not take the software model itself
and translate it into hardware directly? This would corre-
spond to an ASIC implementation of the software simulator.
Unfortunately this leads to a highly inefficient implemen-
tation, because the software has been written assuming a
von Neumann model of computation. Specifically, the von
Neumann architecture separates memory and computation, and
therefore requires high-bandwidth to communicate spikes to
off-chip routing tables, leading to high power consumption.
Furthermore, the parallel and event-driven computation of the
brain does not map well to the sequential processing model
of conventional computers. In sharp contrast, we implement
fanout by integrating crossbar memory with neurons to keep
data movement local, and use an asynchronous event-driven
design where each circuit evaluates in parallel and without any
clock, dissipating power only when absolutely necessary [3].
These architectural choices lead to dense integrated synapses
while delivering ultra-low active power and guaranteeing real-
time performance.

As our main contribution, we demonstrate a neurosynaptic
core that (i) incorporates central elements from neuroscience
(digital leaky integrate-and-fire neurons, axons which are
output lines of neurons, and synapses that are junctions
between neurons); (ii) is scalable with developments in CMOS
technology; (iii) implements a new architecture that integrates
computation, communication, and memory; and (iv) maintains
one-to-one correspondence with software. Our prototype chip
consists of a single core with 256 digital neurons, 1024 indi-
vidually addressable axons that can be excitatory or inhibitory,
and 1024×256 programmable binary synapses implemented
with a SRAM crossbar array. The entire core fits in a 4.2mm2

footprint in IBM’s 45nm SOI process and consumes 45pJ per
spike in active power.

II. NEUROSYNAPTIC CORE SPECIFICATION

The basic building blocks of our neurosynaptic core are
axons, synapses, and neurons (Fig. 1). Within the core, infor-
mation flows from axons to neurons modulated by synapses.
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Fig. 1. The core consists of axons, represented as rows; dendrites, represented
as columns; synapses, represented as row–column junctions; and neurons that
receive inputs from dendrites. The parameters that describe the core have
integer ranges as indicated.

The structure of the core consists of K axons that connect via
K × N binary-valued synapses to N neurons. We denote the
connection between axon j and neuron i as Wji.

The dynamics of the core is driven by a discrete time step
that is used to implement a discrete-event simulation. Let t
denote the index that denotes the current time step. Typically,
t has units of milliseconds.

Each axon corresponds to a neuron’s output that could either
reside on the core or somewhere else in a large system with
many cores. At each time step t, each axon j is presented with
an activity bit Aj(t) that represents whether its corresponding
neuron fired in the previous time step. Axon j is statically
designated as one of three types Gj , which assumes a value
of 0, 1, or 2; these types are used to differentiate connec-
tions (e.g., excitatory or inhibitory) with different efficacies.
Correspondingly, neuron i weighs synaptic input from axon j
of type Gj ∈ {0, 1, 2} as S

Gj

i . Thus, neuron i receives the
following input from axon j:

Aj(t)×Wji × S
Gj

i .

For our neurons, we use a leaky integrate-and-fire model
(single compartment) parameterized by its membrane
potential V (t), leak L, threshold θ, and three synaptic values
S0, S1, S2 that correspond to the different axon types. The
membrane potential of neuron i is updated in each time step as

Vi(t+ 1) = Vi(t) + Li +

K∑
j=1

[
Aj(t)×Wji × S

Gj

i

]
.

When V (t) exceeds its threshold θ, the neuron produces a
spike and its potential is reset to 0. We also enforce that
negative membrane potentials are clipped back to 0 at the end
of each time step.

III. EVENT-DRIVEN IMPLEMENTATION

To implement the above specification in hardware, we are
presented with non-trivial tradeoffs between power, perfor-
mance, and density. For our current design, we chose to
minimize active power consumption, meet (or exceed) real-
time performance, but did not aggressively pursue density
optimizations. First, our strategy to reduce active power is to

perform neural updates in an event-driven manner. Specifically,
we followed an asynchronous design style, where every block
performs request-acknowledge handshakes to perform quasi-
delay insensitive communication (no clock). Next, our strategy
to meet and exceed real-time performance is to implement all
neurons using dedicated circuits (non-multiplexed), allowing
all the neural updates to happen in parallel. The cost of this
extreme parallelism, however, is relative density inefficiency,
which is in part mitigated by use of a dense technology.
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Fig. 2. Internal blocks of the core include axons (A), crossbar synapses
implemented with SRAM, axon types (G), and neurons (N). An incoming
address event activates axon 3, which reads out that axon’s connections, and
results in updates for neurons 1, 3 and M.

Based on these considerations, we arrived at a block-level
implementation of our neurosynaptic core that consists of
an input decoder with 1024 axon circuits, a 1024 × 256
SRAM crossbar, 256 neurons, and an output encoder (Fig. 2).
Communication at the input and output of the core follows
an address-event representation (AER), which encodes binary
activity, such as A(t), by sending the locations of active
elements via a multiplexed channel [4]. For each time step,
the detailed operation of the core commences in two phases:
the first phase implements the axon-driven component, and the
second phase implements a time step synchronization.

In the first phase, address-events are sent to the core one
at a time, and these events are sequentially decoded to the
appropriate axon block (e.g., axon 3 from Fig. 2). On receiving
an event, the axon activates the SRAM’S row, which reads
out all of the axon’s connections as well as its type. All
the connections that exist (all the 1’s) are then sent to their
respective neurons, which perform the appropriate membrane
potential updates; the 0’s are ignored. After the completion
of all the neuron updates, the axon block de-asserts its read,
and is ready to process the next incoming address event; this
continues until all address events for the current time step are
serviced.

In the second phase, which occurs once every millisecond,
a synchronization event (Sync) is sent to all the neurons. On
receiving this synchronization, each neuron checks to see if its

To appear, IEEE CICC 2011--do not distribute



3

membrane potential is above threshold, and if so, it produces a
spike and resets the membrane potential to 0; these spikes are
encoded and sent off as address events in a sequential fashion.
After checking for a spike, the leak is applied.

The purpose of breaking neural updates into two phases
is to ensure that the hardware and software are always in
lock step at the end of each time step. Specifically, the order
in which address events arrive to the core or exit the core
can vary from chip to chip due to resource arbitration—
especially when events are sent through a non-deterministic
routing network. To remain one-to-one, the different orderings
must not influence the spiking dynamics. We achieve one-to-
one equivalence by first accounting for all the axon inputs,
and then checking for spikes after these inputs have been
processed. This also gives us a precise bound for operating in
real time: all address events must be accounted for before the
synchronization event, which we trigger once per millisecond.

IV. TEST RESULTS
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Fig. 3. (left) Neurosynaptic die measures 2mm × 3mm including the I–O
pads. (right) Test board that interfaces with the chip via a USB 2.0 link. Spike
events are sent to a PC for data collection, and are also routed back to the
chip to implement recurrent connectivity.

We have designed, fabricated, and tested our neurosynaptic
core using IBM’s 45nm SOI process. Our core has 3.8 million
transistors in 4.2mm2 of silicon (Fig. 3, left), and all transistors
are ultra-high threshold (UVT) to reduce leakage.

The core’s 256 neurons are organized into a 16 × 16 array,
where each neuron occupies 35µm × 95µm. For crossbar
synapses, we use a custom SRAM array with 1024× 256 bits
implementing over 256K binary synapses. The bitcell occupies
1.3µm2 (plus another 1.9µm2 associated with conservatively-
designed periphery). Because our bitcell was custom, its area
is approximately 4× larger than the commercially available
bitcells in the same technology.

To test our design, we built a custom printed circuit board
that interfaces with a PC through a USB link (Fig. 3, right).
Through this link, we can interface our chip to virtual and
real environments via address event communication, as well
as configure neuron–synapse parameters via a shift-register
scanner (not shown).

For testing, we focused on active power1 and one-to-one
equivalence with software. We also demonstrate that our chip
can implement a well-known neural algorithm, a restricted
Boltzmann machine (RBM), which acts as a front end to an
off chip linear classifier for recognizing digits.

1Active power is our primary focus because passive power depends on the
fabrication options, and can be addressed by process selection and availability.

A. Active Power

In our chip, active power scales linearly with spike activity
since the design is purely event driven. To measure active
power, we measure the increase in current beyond the baseline
during high activity (averaged), where all neurons and axons
are active in each time step (1kHz rate).2 Our measurements
are repeated over a range of supply voltages (Fig. 4); at Vdd =
0.85V, the core consumes just 45pJ/spike.
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Fig. 4. Active energy per spike (red) decreases approximately linearly with
lower Vdd, whereas the core’s total passive power (blue, inset) decreases
exponentially, shown on a log scale.

B. One-to-One Equivalence

To test that the chip satisfied one-to-one equivalence, we
configured the synaptic strength and leak values of each
neuron to +1, and the thresholds to +100. Then, we generated
a pseudorandom connectivity where each synapse had a 20%
probability of being 1. Lastly, the CPLD was set to route all
neuron spikes back into the core (neuron 0,1,2 drove axon
0,1,2, respectively), creating a complex recurrent network.

Running the chip we observe that after 100 time steps, all
the neurons spike in unison due to their identical positive
leaks. This first barrage of spikes is routed back around to the
axonal inputs, activating a pseudorandom pattern of excitatory
recurrent connections; these inputs cause neurons to spike
earlier in the next cycle, thereby having a de-synchronizing
effect. Within a few cycles, the recurrently-driven activity
dominates the dynamics leading to a complex spatiotemporal
pattern. We simulated a software network with an identical
configuration, and confirmed that the software and hardware
have identical behavior (Fig. 5).

C. Implementing a Restricted Boltzmann Machine (RBM)

Our neurosynaptic core is capable of implementing a
wide range of neural network algorithms, where weights are
first learned offline, and then transformed into a hardware-
compatible format. We present one example that implements
a RBM, which is a well-known algorithm for classification and
inference tasks. Specifically, we trained a two-layer RBM with
484 visible units and 256 hidden units on handwritten digits
from the MNIST dataset. Our learning procedure followed
directly from [5]; briefly, we use contrastive divergence to
learn 484× 256 real-valued weights to capture the probability

2Note that an axon event contributes less active power than a spike.
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Fig. 5. The spiking dynamics of the chip exactly match a software simulation
when configured with the same parameters and recurrent connectivity. Spikes
are plotted as dots for measured chip data and circles for simulation.

distribution of pixel correlations in the digits (60,000 images).
After learning these weights, we trained 10 linear classifiers
on the outputs of the hidden units using supervised learning.
Finally, we test how well the network classifies digits on out-
of-sample data (10,000 images), and achieved 94% accuracy.

To map the RBM onto our neurosynaptic core, we make
the following choices: First, we represent the 256 hidden units
with our integrate-and-fire neurons. Next, we represent each
visible unit using two axons, one for positive (excitatory) con-
nections and the other for negative (inhibitory) connections,
accounting for 968 of 1024 axons. Then, we cast the 484×256
real-valued weight matrix into two 484×256 binary matrices,
one representing the positive connections (taking the highest
15% of the positive weights), and the other representing the
negative connections (taking the lowest 15% of the weights).
Finally, the synaptic values and thresholds of each neuron are
adjusted to normalize the sum total input in the real-valued
case with the sum total input of the binary case.

Following the example from [6], we are able to imple-
ment the RBM using spiking neurons by imposing a global
inhibitory rhythm that clocks network dynamics. In the first
phase of the rhythm (no inhibition), hidden units accumulate
synaptic inputs driven by the pixels, and spike when they
detect a relevant feature; these spikes correspond to binary
activity of a conventional (non-spiking) RBM in a single
update. In the second phase of the rhythm, the strong inhibition
resets all membrane potentials to 0. By sending the outputs
of the hidden units to the same linear classifier as before
(implemented off-chip) we achieve 89% accuracy for out-of-
sample data (see Fig. 6 for one trial).

Our simple mapping from real-valued to binary weights
shows that the performance of the RBM does not decrease
significantly, and suggests that more sophisticated algorithms,
such as deep Boltzmann machines, will also perform well in
hardware despite binary weights.

V. DISCUSSION

A long standing goal in the neuromorphic community is to
create a compact, modular block that combines neurons, large
synaptic fanout, and addressable inputs. Our breakthrough
neurosynaptic core, with digital neurons, crossbar synapses,
and address-events for communication, is the first of its kind
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Fig. 6. (left) Pixels represent visible units, which drive spike activity on
excitatory (+) and inhibitory (-) axons. (middle) 16 × 16 grid of neurons
spike in response to the digit stimulus. Spikes are indicated as black squares,
and encode the digit as a set of features. (right) An off-chip linear classifier
trained on the features, and the resulting activation. Here, the classifier predicts
that 3 is the most likely digit, whereas 6 is the least likely.

to achieve this long standing goal in working silicon. The
key new component of our design is the embedded crossbar
array, which allows us to implement synaptic fanout without
resorting to off-chip memory that can create an I–O bottleneck.
By bypassing this critical bottleneck, it is now possible to build
a large on-chip network of neurosynaptic cores, creating an
ultra-low power neural fabric that can support a wide array of
real-time applications that are one-to-one with software.

Looking forward, to build a human-scale system with 1014

synapses (distributed across many chips), our next focus is
to tackle the formidable but tractable challenges of density,
passive power, and active power for inter-core communication.
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