
A Digital Neurosynaptic Core Using Event-Driven
QDI Circuits

Nabil Imam1,2,3, Filipp Akopyan2, John Arthur2, Paul Merolla2, Rajit Manohar1, Dharmendra S Modha2
1Cornell University, Ithaca, NY

2IBM Research - Almaden, San Jose, CA
3ni49@cornell.edu

Abstract—We design and implement a key building block

of a scalable neuromorphic architecture capable of running

spiking neural networks in compact and low-power hardware.

Our innovation is a configurable neurosynaptic core that

combines 256 integrate-and-fire neurons, 1024 input axons,

and 1024x256 synapses in 4.2mm
2

of silicon using a 45nm SOI

process. We are able to achieve ultra-low energy consumption

1) at the circuit-level by using an asynchronous design where

circuits only switch while performing neural updates; 2) at

the core-level by implementing a 256 neural fanout in a single

operation using a crossbar memory; and 3) at the architecture-

level by restricting core-to-core communication to spike events,

which occur relatively sparsely in time. Our implementation is

purely digital, resulting in reliable and deterministic operation

that achieves for the first time one-to-one correspondence with

a software simulator. At 45pJ per spike, our core is readily

scalable and provides a platform for implementing a wide array

of real-time computations. As an example, we demonstrate a

sound localization system using coincidence-detecting neurons.

I. INTRODUCTION

Neural systems in biology [1] are capable of an incredible
range of real-time computations with metabolic constraints
that require them to maintain strict energy efficiency. Tasks
such as pattern recognition, sensory reconstruction and mo-
tor pattern generation are carried out by these dense, low-
power neural circuits much more efficiently than traditional
computers. In these systems nerve cells called neurons are
the basic computational units. Neurons communicate with
one another through the generation and modulation of spike
trains where an individual spike is an all-or-nothing pulse.
The junction between the output of one neuron and the input
of another is called a synapse. The human brain consists of
a staggering number of neurons and synapses—over a 100
billion neurons and over 1 trillion synapses.

While the simulation of large-scale brain-like networks
has become feasible with modern supercomputers [2], the
power and space they require prevent them from being useful
in mobile systems for real-world tasks. On the other hand,
VLSI implementations of these networks—referred to as
neuromorphic chips [3]—can approach the area and power
efficiency of their biological counterparts and can therefore
be used for a wide range of real-time applications involving
machine perception and learning.

Traditionally, neuromorphic designs used continuous-time
analog circuits to model biological components, and digital
asynchronous circuits for spike communication [4]. Analog
circuits have been popular in the past, since they are
compact, and reduce power consumption by directly using
the I-V relationship of transistors to mimic the dynamics
of neurons. Dense analog circuits however are sensitive
to fabrication process variations, ambient temperatures and
noisy environments, making it difficult to configure cir-
cuits that operate reliably under a wide range of external
parameters. This limited correspondence between what the
software (the neural algorithm) has been configured to do
and how the hardware (the analog implementation) functions
is an obstacle to algorithm development and deployment and
therefore limits the usefulness of these chips. In addition the
lack of high-density capacitors and increasing sub-threshold
currents in the latest fabrication technologies make analog
implementations even more difficult and unreliable.

In contrast to the continuous-time operation of analog
circuits, the discrete-time operation of digital circuits can
also be used to replicate neural activity. In fact, discrete-
event simulations are the primary method of study in compu-
tational neuroscience research [5]. In this paper we introduce
a purely digital implementation of a neuromorphic system.
Using low-power event-driven circuits and the latest process
nodes we overcome the problems of analog neuromorphic
circuits without sacrificing area and power budgets. The
operation of the digital implementation is completely de-
terministic, producing one-to-one correspondence with soft-
ware neural simulators, thereby ensuring that any algorithm
developed in software will work in hardware despite process
variability.

Deterministic operation of brain-like networks can also
be achieved on digital commodity chips, namely a DSP,
a GPU or a FPGA. However the parallel and event-driven
nature of these networks is not a natural fit to the sequential
processing model of conventional computer architectures.
A large bandwidth is necessary to communicate spikes
between the physically separated processor and memory
in these architectures, leading to high power consumption
and limited scaling. In contrast, we integrate a crossbar
synapse array with our neurons resulting in a tight locality

between memory (the synapses) and computation (the neu-
rons). The asynchronous design methodology that we use
fits naturally to the distributed processing of neurons and
ensures that power dissipation of inactive parts of the system
are kept at a minimum. Our quasi-delay-insensitive (QDI)
[6] implementation leads to extremely robust circuits that
remain operational under a wide range of process, voltage
and temperature variations, making them ideally suited to
mobile, embedded applications.

As our main contribution, we present the design and
implementation of a scalable asynchronous neurosynaptic
core. In this paper we discuss: (i) the asynchronous circuits
that mimic central elements of biological neural systems;
(ii) an architecture that integrates computation, communi-
cation and memory; (iii) the asynchronous communication
infrastructure required to accomodate the architecture; and
(iv) the synchronization mechanisms required to maintain
a one-to-one correspondence with software (this is the
first neuromorphic system to demonstrate such an equiva-
lence). Our prototype chip consists of a single core with
256 digital leaky-integrate-and-fire neurons, 1024 inputs,
and 1024×256 programmable binary synapses implemented
with a SRAM crossbar array. The entire core fits in a
4.2mm2 footprint in IBM’s 45 nm SOI process and con-
sumes 45pJ per spike in active power.

II. ARCHITECTURE AND OPERATION

A. Neurons and Synapses
The computational power of brain-like networks comes

from the electrophysiological properties of individual neu-
rons as well as their synaptic connections that form a
neural network. Neurons may be modeled at various levels
of biophysical detail. The leaky integrate-and-fire model
is a standard approximation widely used in computational
studies since it captures the behavior of real neurons in a
range of situations and offers an efficient implementation.
We use this neuron model as the basic computational unit
of our core.

The neurons in the chip are interconnected through axons
and synapses. Each axon may correspond to the output of
a neuron in the same core or somewhere else in a large
system of many cores. Some axons may also be driven by
embedded sensors or some external driver. The connection
between axon j and neuron i is represented as Sji. Each
axon is parameterized by a type Gj that can take one of three
different values indicating the type of synapse (e.g. strong
excitatory, weak excitatory or inhibitory) that the axon forms
with neurons it connects to. Each neuron is parameterized
by a leakage current L, a spike threshold θ and three synapse
weights W 0, W 1, W 2 that correspond to the different axon
types. All these parameters are configurable during start-up.

The core implements a discrete-event simulation where
the neuron states are updated at each timestep according to
external input and interconnectivity. The state of neuron i

 NAME DESCRIPTION SIZE AND TYPE

Vi Voltage of Neuron i 10 bit signed variable

Wi
0..2 3 Synaptic Weights of Neuron i 9 bit signed constant

Li Leak of Neuron i 9 bit signed constant

!i Threshold of Neuron i 8 bit unsigned constant

Sji Connection between axon j and neuron i Binary constant

Gj Type of Axon j 3 distinct constants

Aj State of Axon j Binary Variable

!"#$%!&'()('*%

Fig. 1. Top: Architecture of the neurosynaptic core with K axons and
N neurons. Each junction in the crossbar representes a synapse between
an axon (row) and dendrite (column). Each neuron has a dedicated column
in the crossbar. Active synapses are represented by an open circle in the
diagram. An example sequence of events in the core is illustrated. The
scheduler accepts an incoming address event and communicates with the
axon token-ring. The token-ring activates axon 3 (A3) by asserting the third
wordline of the SRAM crossbar array. As a result, a synaptic event of type
G3 is delivered to neurons N1, N3, and NM . The AER transmitter sends
out the addresses of these neurons if they consequently spike. Bottom:
State variables and parameters of the system. All values are represented as
integers, and all constants are configurable at start-up.

at some time t, is represeted by its voltage Vi[t], while the
state of axon j is represented by its activity bit Aj [t].

The parameters and state variables of the system are
tabulated in Fig. 1(bottom). Neuron i receives the following
input from axon j:

Aj [t]× Sji ×W
Gj

i .

The neuron’s voltage is updated at each time step by
subtracting a leakage from its voltage and integrating the
synaptic input from all the axons:

Vi[t+ 1] = Vi[t]− Li +
1024�

j=1

(Aj [t]× Sji ×W
Gj

i).

When V [t] exceeds a threshold θ, the neuron produces
a spike (represented by a digital ‘1’ in its output) and its
voltage is reset to 0. We also enforce that negative voltages
are clipped back to 0 at the end of each time step (to replicate

a reversal potential of 0).

B. Communication Infrastructure

At the heart of the neurosynaptic core is a crossbar mem-
ory that forms the synapses between axons and the neurons.
The crossbar array is configurable so that arbitrary networks
can be set up in the system (e.g. Axons 1, 2, and 3 are
connected to the first neuron in the 2D neuron array in Fig.
1). Each row of the crossbar corresponds to an axon, each
column corresponds to the input of a neuron (the dendrite),
and the junctions are binary synapses implemented by a two
terminal memory cell (e.g., SRAM). Thus each of the N
neurons may get up to K synaptic inputs depending on the
activity in the axons and the configuration of the crossbar.
We chose K as 1024 and N as 256 resulting in 1024×256
crossbar synapses and an enormous configuration space.

Spikes events are sent to and from the core using address-
event representation (AER) packets [7]. On the output side,
an AER transmitter [8] encodes spiking activity by sending
the locations of active neurons through a multiplexed chan-
nel, leveraging the fact that the bandwidth of wires (easily
larger than 100s of MHz) is orders of magnitude larger than
the bandwidth of biological axons (in the 10’s of Hz range).
The spikes can be sent off chip, or routed to an axon of
another core via a look-up table. On the input side, an AER
receiver delivers incoming spikes to the appropriate axon at
a predetermined time configured in a scheduler block. As
spikes are serviced sequentially, their addresses are decoded
to the crossbar where all 256 synaptic connections of an
active axon are read out in parallel.

C. Discrete-time Operation

An example sequence of operation in the core is illustrated
in Fig. 1. The operation has two phases during each time
step.

The positive edge of a global synchronization clock
(Sync) initiates the first phase of operation. In this phase,
address-events along with their time stamps are sent to
the core and are received by the scheduler. The scheduler
evaluates the time stamps and asserts the appropriate axons
that go into a token-ring. The units in the token-ring that
receive active axons assert the rows of the crossbar in a
mutually exclusive manner. Once a wordline in the crossbar
is activated all the neurons that are connected to the axon
(corresponding to the 1’s in the row) receive an input spike
along with information about the type of the axon. The
neurons update their voltages as axon events come in. The
first phase needs to complete within the first half of the
global synchronization clock (that usually has a period of 1
millisecond)—giving us a precise margin in which neural
updates need to complete for potentially all 1024 axon
inputs.

In the second phase of operation, the negative edge of
the synchronization clock is detected by all the neurons. On

receiving this event, neurons whose voltages have exceeded
their respective thresholds produce spikes in their output
ports. The spiking addresses are encoded by the AER
transmitter and sent out of the core sequentially. This phase
needs to complete within the other half of the global clock—
i.e. the AER transmitter has to guarantee that it can service
256 potential spikes within the global timestep.

A 1 millisecond global clock period (typical temporal
precision in biological neural networks) means that the
performance requirements of the circuits in the two phases
of operation are easily met. Breaking neural updates into
two phases ensures that the hardware is always in sync with
an equivalent software simulation at the end of each time
step. Specifically, the order in which address-events arrive
to the core or exit from the core can be variable due to
resource arbitration, especially when events are sent through
a non-deterministic routing network. To preserve one-to-one
correspondence, the different orderings must not influence
the spiking dynamics. We achieve one-to-one equivalence by
first accounting for all the synaptic events and then checking
for spikes.

III. EVENT-DRIVEN IMPLEMENTATION

We implement the architecture of the neurosynaptic core
using asynchronous QDI circuits that are synchronized with
the global timestep. In this section we describe the con-
current processes of our architecture using Communicating
Hardware Processes (CHP - see Appendix) that can be
synthesized into QDI asynchronous circuits using Martin’s
synthesis method [9].

A. Scheduler

!

Filipp Akopyan Cornell/IBM Confidential

!

! "!

!

!

Figure 3. Scheduler implementation in Golden Gate chip

!

The circuit diagram in 3 represents the first and the second CHP processes put

together. This circuit performs all the computation, as well as delays the spike by an

appropriate amount of time (based on the global counter state).

The circuit that succeeds the MUX receives the data from the multiplexer (on

channel T). It then looks up the axonal delay of the specified dest_addr (lower 10 bits of

the packet). The value of axon_delay (4 bits) is passed to the asynchronous adder as the

first operand and the y.dt (time when the spike occurred, obtained from the packet) value

as the second operand. The resulting sum is passed to the DEMUX/DECODE unit as the

data input. The control for the DEMUX/DECODE unit is y.dest_addr bits of the packet,

slack matched to the SRAM and the adder.

The DEMUX then outputs 5 bits indicating the final timestamp of when the spike

has to be released to a dedicated crossbar channel. The [Delay + Sync] unit MUST

contain full buffers at the input, because all the hardware used prior to this stage is time-

shared and the DEMUX/DECODE’s output channel has to be “released” as soon as

possible to allow assertion of the next spike.

Each [Delay + Sync] unit compares the timestamp of the global timer with the

obtained delay_y final timestamp and initiates a spike to a corresponding crossbar

channel A[y.dest_addr] communication, when the two values match.

The synchronization is contained in the [Delay + Sync] unit. The synchronization

part is not trivial and requires some design effort. The data obtained from the

DEMUX/DECODE must be aligned to the clock without any knowledge of the data

arrival time in relationship to the clock edge. Precautions have to be taken in order to

avoid potential Metastability during synchronization with the global clock. Such

metastbility may occur since there is no timing correlation between the edge of the

global clock and the packets arriving from the mesh router. A modified two flip-flop

synchronization scheme is used in our design.

!

!

"#$!

Fig. 2. Internal structure of the Scheduler. The overall function is: (1)
Receive input packets; (2) Add the stored axonal delay to the time field
of the packet to get the spike delivery time; (3) Demultiplex the address
field of the packet; and (4) Deliver the spike to the appropriate axons at
the edge of a global clock when the global timestep equals the computed
delivery time of the spikes.

The scheduler receives packets from outside the core and
delivers spikes on the axons at specific times. The packets
may come from spiking neurons in the core or from outside
the core. In addition to these packets, the scheduler also

receives a clock and a global counter time. The block also
stores a configurable axonal delay (inside an SRAM array)
for each of the axons. Each packet (y) coming in contains
an axon address (y.dest addr) and a time of spike (y.dt -
in units of clock ticks). The scheduler decodes the packet
to determine where the spike should be delivered (the axon
number). The time in the packet is added to the axonal delay
for the specified axon, and this value is compared against
the current global counter time on every tick of a clock that
the scheduler receives. When the time matches, a spike is
delivered to the crossbar. This makes the spike delivery to
the crossbar synchronous with the global system clock. The
CHP of the processs is:

Scheduler ≡
*[[IN ?y ;

axon delay := SRAM [y .dest addr];
delay y := y .dt + axon delay ;
[delay y = timestamp];
A[y .dest addr]!spike

]]

The scheduler implements the axonal delay stored in a
1024 (number of axons) by 4 (range of delays) SRAM
array. It receives the packet in the channel IN , adds the
axonal delay to the time in the packet, waits for the global
time to reach this value and then delivers the spike to the
axon corresponding to the address in the packet. Besides
implementing the axonal delay, this procedure synchronizes
input spikes to the core with the clock edge, implementing
the first of the two phases of operation (Section II-C) that
allow the system to produce 1-1 correspondence with a
software simulator.

The internal blocks of the scheduler are illustrated in Fig.
2. For our prototype chip, we used a common delay block
instead of a full 1024 × 4 SRAM array to implement the
axonal delay. This fixed delay is a 4 bit number that can be
configured at the chip’s startup, and is the delay value for all
axons. The Adder adds this delay to the time value in the
packet and passes it to the DEMUX/DECODE unit. The
control for the DEMUX/DECODE unit is the destination
address in the input packet, slack-matched to the SRAM
and the adder. The DEMUX then outputs 5 bits indicating
the final timestamp for spike release to the axon. This value
goes to 1 of 1024 [Delay + Sync] blocks. These blocks must
contain full buffers at the input because all the hardware
used prior to this stage is time-shared and the DEMUX
output channel has to be “released” as soon as possible
to allow assertion of the next spike. Each [Delay + Sync]
unit compares the timestamp of the global timer with the
obtained final timestamp and initiates a spikes to an axon
when the value matches.

The clock synchronization is contained in the [Delay
+ Sync] unit. The synchronization part is not trivial and
requires some design effort. The data obtained from the
DEMUX/DECODE must be aligned to the clock without

any knowledge of the data arrival time in relationship to
the clock edge. Precautions have to be taken in order to
avoid potential metastability during synchronization with the
global clock. Such metastbility may occur since there is no
timing correlation between the edge of the global clock and
the packets arriving from the router. A modified two flip-flop
synchronization scheme is used in our design [10].

B. Axon Token-Ring

At an edge of the synchronizing clock, the scheduler
pulls up the axon lines that have spikes. Each axon has
a corresponding row (a wordline) in the crossbar memory
array. The dendrites (inputs) of a neuron correspond to a
column (bit line) of the crossbar array. Since a dendrite
can potentially connect to multiple axons, the rows of the
crossbar have to be asserted in a mutually exclusive manner.
This function is carried out by an array of axon servers that
implement a token-ring mutual exclusion algorithm [11].
Each server has an axon as its input and the wordline of the
crossbar as its output. A token circulates among the servers
to give them mutually exclusive access to the crossbar.

When an axon is asserted, its server requests its neighbor
to pass the token. The request propagates through the
token-ring, and the token is passed along to the requesting
server. Upon the arrival of the token, the server asserts the
corresponding row of the crossbar. The CHP of an individual
server is given below. Channel A communicates with the
axon from the scheduler and channel WL with the crossbar,
while channels U and D communicate with the neighbor
above or below. The local variable b represents the token.
The D port of the last server is connected to the U port of the
first server. The channel C communicates with a completion
tree (see Fig. 1) that indicates when all the neurons have
completed processing events for a particular axon.
Axon Server ≡

*[[A −→ [b −→ skip []¬b −→ D !; b↑];WL!;
[C −→ C ; A?]

|U −→ [b −→ skip []¬b −→ D !]; b↓;U ?
]]

C. Crossbar Memory

The states of the memory cells of the crossbar array
represent the synaptic configuration of a network (i.e.
which axons connect to which neurons) and determine the
unique properties of that particular network. Organizing the
synapses in this crossbar structure allows an active axon
to fan out to potentially 256 neurons in parallel through a
single control operation. For large connectivity, this reduces
the dynamic power consumption and accelerates the speed
at which the network is updated.

The configuration of the crossbar has to be set up prior
to the operation time of the chip. We included shift register
scanners to configure the bit cells of the array. Standard 6T
SRAM cells were used as the bit cells. The axon token-ring

controls the wordlines of the bit cells while a set of synapse
controllers interfaces the bitlines with the neurons. The CHP
of a synapse controller unit is given below.

Synapse Controller Unit ≡
*[[BL.t −→ N !; C !
[] BL.f −→ C !
]]

When the axon token-ring drives one of the wordlines
of the crossbar, one of the two bitlines of each cell in
the corresponding row will discharge asserting either the
BL.t or the BL.f wires of the synapse controller. If BL.t
is asserted the controller communicates with the neuron
corresponding to the column to update the neuron’s state.
Once this communication is over, or if BL.f was the
wire originally asserted, the controller communicates with
a completion tree. The right-most controller receives the
”type” information for each axon (they are stored in the
last 2 bit cells of each crossbar row) and communicates
this information to the neurons. Once all synapse con-
trollers have completed their operation, the completion tree
communicates wih the C channel of the axon token-ring,
after which the token-ring unit with the token releases the
wordline of the crossbar and token becomes free to travel.
Another token-ring unit with an active axon will then get
the token and assert its corresponding wordline.

D. Neuron

The neurons are the basic computational units in the
system. They were implemented using dedicated circuits
(non-multiplexed), allowing all the neural updates to happen
in parallel. This parallelism comes at the cost of relative
density inefficiency that is in part mitigated by our use of a
dense technology.

The design of the neuron circuits needs to accomodate two
conflicting requirements. On the one hand, a neuron must
service events quickly to avoid holding up the crossbar. On
the other hand, a neuron receives very few events in typical
scenarios, so it must not burn dynamic power when it is idle.
A purely event-driven design is therefore ideal: it has a fast
service time (100MHz-GHz range), but only burns power
during the rare occurrence of an event.

During the first phase of operation (Section. II-C) each
neuron receives event-driven synaptic input from the cross-
bar memory synapse controller. The neurons update their
state (represented by an internal voltage V) by integrating
the incoming synapses (Section. II-A). During the second
phase of operation, the neurons synchronize with the global
clock edge, at which point they output a spike (represented
by a 1 bit output) if their voltage is above threshold or leak
out an amount of the voltage if it is below threshold. The
synchronization of the neuron during the second phase of
operation, along with the synchronization of the scheduler
during the first phase (Section. III-A) ensures that the oper-

ation in the core is in 1-1 correspondence with a software
simulator.

The internal parameters of the neurons (the threshold,
the leak, and the three synaptic strengths) are configured
at start-up. They are all represented with 8-bit integers in
2’s compliment form. The internal voltage of a neuron is
represented by a 10-bit integer also in 2’s compliment form.

The operation of the neuron is decomposed into control
and datapath blocks. A block diagram of the processes
involved is illustrated in Fig. 3.

!

!

"

#$ #% &

'

(
"#$%&#'!

(
)
&
*
)
!

(
)
&
*
)
!

+,-./0!

122)&!

+,-./0!

"#(31&1%#&!

%4567489:!

;,!

;+!

;<!

'6=>!

,!

,!

?@$"! ?3AB)!

?CD=E0/F!

)G6D0!

?CD=E76!

%CE6!

HE:=06:!I890=J6!

I!K!!L!

IM,L!

ADFN26F!I=9O6!

356G/8O7N&6760!

I890=J6!

Fig. 3. Block diagram of the neuron. The control block interfaces with
the crossbar, directs information flow in the datapath, synchronizes with
the global time step and outputs a spike when the neuron voltage exceeds
its threshold. The datapath elements update the voltage after each synaptic
event and check for a spike when directed by the control.

The CHP of the control block is:
Neuron Control ≡

*[[N −→ G?x ; [x = Type0 −→ M 5!0
[]x = Type1 −→ M 5!1
[]x = Type2 −→ M 5!2
],M 2!0;N

[]C −→ T?y ; [y = spike −→ S , M 5!3,
M 2!1

[]y ! = spike ∧ (y <= 0) −→
M 5!4,M 2!1

[]y ! = spike ∧ (y > 0) −→
M 5!3,M 2!0

];C
]]

The control block interfaces with the synaptic input com-
ing from the neuron’s dedicated crossbar column through
the channel N . Upon a communication request on this
channel, the control reads in the ”type” information of the
axon through the channel G that connects to the synapse

controller representing the last two columns of the crossbar.
Before completing the handshake in N the control commu-
nicates with the datapath of the neuron through channels M5
(that relays synaptic type information) and M2 (for voltage
control in the datapath). Once these communication actions
have completed N and G are acknowledged and the next
cycle of synaptic inputs may come in.

In the second half of the global timestep, the neurons
receive a synchronization event in the channel C (that is
driven by a process that uses one of the edges of the
global clock to initiate a handshake). When this event comes
in, the control initiates a communication with the datapath
through the T channel. The datapath sends back one of three
distinct values indicating whether the voltage for the current
timestep is above threshold, below threshold but above zero;
or below zero. If the voltage is above threshold the control
communicates with the AER transmitter through the channel
S to send out a spike. Through M2 the control also instructs
the datapath to reset the voltage to 0 if there is a spike or
if the voltage is below 0. If the voltage has not been reset
to 0, the control instructs the datapath to apply the leak to
the current voltage.

The CHP of the datapath units are:
MERGE 5 ≡

*[[M 5 −→ M 5?d ;
[d = 0 −→ AI 1!W 0

[]d = 1 −→ AI 1!W 1

[]d = 2 −→ AI 1!W 2

[]d = 3 −→ AI 1!L
[]d = 4 −→ AI 1!0
];

]]

MERGE 2 ≡
*[[M 2 −→ M 2?d ;

[d = 0 −→ AO0?x ; AI 0!x
[]d = 1 −→ AI 0!0
];

]]

ADDER ≡
*[AI 0 ∧AI 1 −→ AI 0?x , AI 1?y ; z := x + y

[]AO0 −→ AO0!z
[]AO1 −→ AO1!z
]]

COMPARATOR ≡
*[T −→ AO1?V ;

[V > Threshold −→ T !0
[](V < Threshold) ∧ (V <= 0) −→ T !1
[](V < Threshold) ∧ (V > 0) −→ T !2
];T

]

When the control drives MERGE 5, the process for-
wards either a synaptic strength (during the integration
phase), a leak (during the resetting phase if V > 0) or
the value 0 (during the resetting phase if V <= 0) to
one of the inputs of the ADDER process. When the

control drives MERGE 2, the process forwards either the
previous voltage (during integration) or the value 0 (if
V > threshold or V < 0 during the firing phase) to
the other input of ADDER. The ADDER process is a
10 bit adder that sends out the sum of its inputs to the
COMPARATOR and the MERGE 2 processes when
they request it. The control drives COMPARATOR when
it needs to evaluate the state of the neuron voltage.

E. AER transmitter

Spikes from the 2-dimensional array of neurons are sent
out of the core through token-ring AER transmitter circuits
[8] that allow all the neurons to share one output channel.
In this scheme, a set of row servers and column servers
circulate tokens in each dimension of the neuron array
and give spiking neurons mutually exclusive access to the
shared communication channel. A counter keeps track of the
location of the tokens, and sends out neuron addresses upon
request. This methodology leads to compact transmitter
circuits capable of efficiently servicing clusters of spiking
activity.

!

!

!!!!!!!!!!

"!

!!

!!!!!!!!!!

"!

!!

!!!!!!!!!!

"!

!!

!!!!!!!!!!

"!

!!

!!!!!!!!!!

"!

!!

!!!!!!!!!!

"!

!!

!!!!!!!!!!

"!

!!

!!!!!!!!!!

"!

!!

!!!!!!!!!!

"!

!!

#$! #$! #$!

%$!

%$!

%$!

#"&%!

"#$%&!

'(()&**!

Fig. 4. Illustration of the AER transmitter architecture using a 3×3 sample
neuron array. When a neuron (N) has a spike, it communicates with its
corresponding row server (RS) and column server (CS). A counter (CNTR)
keeps track of circulating row and column tokens and sends out the spike
address through the shared output bus.

The design of the transmitter is illustrated in Fig 4. The
sequence of operation is: (1) A spiking neuron asserts a
row request line; (2) The corresponding row server requests
for the row token from its neighbors; (3) As the row token
moves, the counter keeps track of its position; (4) Upon
receipt of the token, the row server acknowledges the row
request; (5) The neuron then asserts a column request line;
(6) The corresponding column server requests the column
token from its neighbors; (7) As the column token moves,
the counter keeps track of its position; (8) Upon receipt of

the token the column server communicates with the counter
to send out the row and column token addresses and then
acknowledges the column request; (9) The neuron does a
second communication with the row server to indicate the
completion of service.

The neurons interface with their respective servers via
open-drain shared row request lines and shared column
request lines. The servers also communicate with the counter
via shared wires. These wires need to be carefully imple-
mented since transitions are shared across processes and
span an entire dimension of the neuron array.

IV. RESULTS

The neurosynaptic core was fabricated using IBM’s 45nm
SOI process and occupied 4.2mm2 of silicon (Fig. 5, left).
Each of the 256 neurons in the core occupies 35µm × 95µm.
Each SRAM bitcell in the 1024 × 256 synaptic crossbar
array occupied 1.3µm2 (plus another 1.9 µm2 associated
with conservatively-designed periphery). A custom printed
circuit board allows the chip to interface with a PC through
a USB link (Fig. 5, right).

3

membrane potential is above threshold, and if so, it produces a
spike and resets the membrane potential to 0; these spikes are
encoded and sent off as address events in a sequential fashion.
After checking for a spike, the leak is applied.

The purpose of breaking neural updates into two phases
is to ensure that the hardware and software are always in
lock step at the end of each time step. Specifically, the order
in which address events arrive to the core or exit the core
can vary from chip to chip due to resource arbitration—
especially when events are sent through a non-deterministic
routing network. To remain one-to-one, the different orderings
must not influence the spiking dynamics. We achieve one-to-
one equivalence by first accounting for all the axon inputs,
and then checking for spikes after these inputs have been
processed. This also gives us a precise bound for operating in
real time: all address events must be accounted for before the
synchronization event, which we trigger once per millisecond.

IV. TEST RESULTS

2mm

3
m

m

256 Neurons

1
0

2
4

 A
xo

n
s

1024x256
Synapses

Core CPLD

Spikes Out

Axons from
USB

Spikes to
USB

Spikes In

Fig. 3. (left) Neurosynaptic die measures 2mm × 3mm including the I–O
pads. (right) Test board that interfaces with the chip via a USB 2.0 link. Spike
events are sent to a PC for data collection, and are also routed back to the
chip to implement recurrent connectivity.

We have designed, fabricated, and tested our neurosynaptic
core using IBM’s 45nm SOI process. Our core has 3.8 million
transistors in 4.2mm2 of silicon (Fig. 3, left), and all transistors
are ultra-high threshold (UVT) to reduce leakage.

The core’s 256 neurons are organized into a 16 × 16 array,
where each neuron occupies 35µm × 95µm. For crossbar
synapses, we use a custom SRAM array with 1024× 256 bits
implementing over 256K binary synapses. The bitcell occupies
1.3µm2 (plus another 1.9µm2 associated with conservatively-
designed periphery). Because our bitcell was custom, its area
is approximately 4× larger than the commercially available
bitcells in the same technology.

To test our design, we built a custom printed circuit board
that interfaces with a PC through a USB link (Fig. 3, right).
Through this link, we can interface our chip to virtual and
real environments via address event communication, as well
as configure neuron–synapse parameters via a shift-register
scanner (not shown).

For testing, we focused on active power1 and one-to-one
equivalence with software. We also demonstrate that our chip
can implement a well-known neural algorithm, a restricted
Boltzmann machine (RBM), which acts as a front end to an
off chip linear classifier for recognizing digits.

1Active power is our primary focus because passive power depends on the
fabrication options, and can be addressed by process selection and availability.

A. Active Power
In our chip, active power scales linearly with spike activity

since the design is purely event driven. To measure active
power, we measure the increase in current beyond the baseline
during high activity (averaged), where all neurons and axons
are active in each time step (1kHz rate).2 Our measurements
are repeated over a range of supply voltages (Fig. 4); at Vdd =
0.85V, the core consumes just 45pJ/spike.

0.85 0.9 0.95 1 1.05
0

20

40

60

80

100

V
core

 (V)

A
ct

iv
e

E
n
er

g
y
 p

er
 S

p
ik

e
(p

J)

0.85 0.9 0.95 1 1.05

10
−2

V
core

 (V)

P
as

si
v
e

P
o
w

er
 (

W
)

Fig. 4. Active energy per spike (red) decreases approximately linearly with
lower Vdd, whereas the core’s total passive power (blue, inset) decreases
exponentially, shown on a log scale.

B. One-to-One Equivalence
To test that the chip satisfied one-to-one equivalence, we

configured the synaptic strength and leak values of each
neuron to +1, and the thresholds to +100. Then, we generated
a pseudorandom connectivity where each synapse had a 20%
probability of being 1. Lastly, the CPLD was set to route all
neuron spikes back into the core (neuron 0,1,2 drove axon
0,1,2, respectively), creating a complex recurrent network.

Running the chip we observe that after 100 time steps, all
the neurons spike in unison due to their identical positive
leaks. This first barrage of spikes is routed back around to the
axonal inputs, activating a pseudorandom pattern of excitatory
recurrent connections; these inputs cause neurons to spike
earlier in the next cycle, thereby having a de-synchronizing
effect. Within a few cycles, the recurrently-driven activity
dominates the dynamics leading to a complex spatiotemporal
pattern. We simulated a software network with an identical
configuration, and confirmed that the software and hardware
have identical behavior (Fig. 5).

C. Implementing a Restricted Boltzmann Machine (RBM)
Our neurosynaptic core is capable of implementing a

wide range of neural network algorithms, where weights are
first learned offline, and then transformed into a hardware-
compatible format. We present one example that implements
a RBM, which is a well-known algorithm for classification and
inference tasks. Specifically, we trained a two-layer RBM with
484 visible units and 256 hidden units on handwritten digits
from the MNIST dataset. Our learning procedure followed
directly from [5]; briefly, we use contrastive divergence to
learn 484× 256 real-valued weights to capture the probability

2Note that an axon event contributes less active power than a spike.

Fig. 5. Left: Neurosynaptic die measures 2mm × 3 mm including the I-O
pads. Right: Test board that interfaces with the chip via a USB 2.0 link.
Spike events are sent to a PC for data collection and can also be routed
back to the chip via the CPLD.

A. Active Power
Our primary focus during the design was the reduction of

active power since passive power can be addressed through
fabrication options and active leakage reduction circuitry
[13]. The purely event-driven nature of the core allowed
us to achieve an ultra-low-power design where active power
is dependent only on the activity rate of the neurons. Our
QDI methodology allows us to readily reduce the operating
voltage in the core without affecting the correctness of the
neural algorithms that it is running. We discuss the power
consumption of the chip in Ref. [14]. At Vdd = 0.85, the
core consumes just 45pJ/spike.

B. Example Application
The neurosynaptic core produces one-to-one equivalence

with models in software neural simulators making it conve-
nient to set up neural algorithms on the chip. A wide range

of traditional artificial neural network algorithms [15] for
various applications can readily be configured. In addition,
the biologically-grounded neuron models in our chip allow
novel bio-inspired approaches to be implemented for solving
engineering problems. For example, individual neurons in
the core can efficiently implement a common process-
ing technique in biological neural pathways—coincidence
detection—that does not have an analog [16] in the compu-
tational units of traditional artificial neural networks. In Fig.
6 we illustrate a bio-inspired sound-localization method in
our chip using this technique.

V. CONCLUSION

We have demonstrated a compact modular architecture
that can be a building block for large-scale neuromorphic
systems. Our asynchronous neurosynaptic core combines
digital neurons, large synaptic fanout, and address-event
communication circuits in a low-power event-drive fab-
ric. The embedded crossbar array allows us to implement
synaptic fanout without resorting to off-chip memory that
can create I-O bottlenecks. The asynchronous quasi-delay-
insensitive circuits that we used led to robust circuits
that are operational across a wide range of voltages and
temperatures, making the neurosynaptic core ideally suited
for mobile applications. Our implementation methodology
guaranteed that there is strict correspondence between the
neural algorithm running on the core and an equivalent
simulation of it in a software simulator, greatly increasing
the usability of the chip and its deployment in real-world
scenarios.

APPENDIX

The CHP notation we use is based on Hoare’s CSP [17]. A full
description of CHP and its semantics can be found in [9]. What
follows is a short and informal description.

• Assignment: a := b. This statement means “assign the value
of b to a .” We also write a↑ for a := true , and a↓ for
a := false .

• Selection: [G1 → S1 [] ... [] Gn → Sn], where Gi’s
are boolean expressions (guards) and Si’s are program parts.
The execution of this command corresponds to waiting until
one of the guards is true, and then executing one of the
statements with a true guard. The notation [G] is short-
hand for [G → skip], and denotes waiting for the predicate
G to become true. If the guards are not mutually exclusive,
we use the vertical bar “|” instead of “[].”

• Repetition: *[G1 → S1 [] ... [] Gn → Sn]. The execution
of this command corresponds to choosing one of the true
guards and executing the corresponding statement, repeating
this until all guards evaluate to false . The notation *[S] is
short-hand for *[true → S].

• Send: X !e means send the value of e over channel X .
• Receive: Y ?v means receive a value over channel Y and

store it in variable v .
• Probe: The boolean expression X is true iff a communication

over channel X can complete without suspending.
• Sequential Composition: S ;T
• Parallel Composition: S � T or S ,T .

!

!

D
E

L
A

Y
 L

IN
E

D
E

L
A

Y
 L

IN
E

LEFT SENSOR

RIGHT SENSOR

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

NEUROSYNAPTIC

CORE

MOTION

!

"#!

$
%
&
'(
)
!*
)
+
%
,
!

Time (ms)

N
e

u
ro

n
 I

n
d

e
x

-###!

./0%!1023!

"##!

4"!

5/0&678/()!

!9:/;!

!

!

Fig. 6. Sound localization using axonal delays and coincidence detection. Coincidence detecting neurons spike when their inputs come within a time
window defined by the neurons’ internal parameters. Left: There is a difference in the arrival times of a sound in two sensors located at opposite sides
of a system (e.g. two ears). Hence the sensors contain information about the location of the sound source. This information is decoded by a set of
coincidence-detecting neurons (circles) arranged systemically along axonal delay lines. For example, the top-most neuron has a short delay line from
the left sensor but a long delay line from the right sensor. When the sound source is exactly adjacent to the right sensor, the axonal delay in the right
sensor path compensates for the time lag between the arrival of the sound in the two sensors. The neuron would thus receive coincident inputs and
respond maximally, decoding the location of the sound source. Avian auditory pathways use this mechanism for sound localization [12]. Center: The
neurosynaptic core can use a similar method for localizing a sound source based on the inputs of two sensors (not shown). The sensors would have to
receive the sound and convert them into address-event packets. The first input (corresponding to the sensor closer to the sound source) will hit several
axon lines that implement different axonal delays using the scheduler (in our prototype system, the operation of the scheduler is replicated outside the
chip). Each neuron in the core will connect to one of these axon lines. The second input will hit a separate axon line that connects to all neurons.
Those neurons that have temporally coincident inputs will spike maximally, representing the location of the sound source in neural space. The difference
between the input arrival times in the two sensors will typically be in the 10s of microseconds range. The sensors may amplify this difference to keep
the core at its usual (millisecond) precision range, or the time step in the core may be made more precise. Right: The dynamics of the chip when the
axon lines are driven in the manner suggested. The sound source starts at the left of the core, moving all the way to the right in a semi-circular trajectory,
and then back to its original position. As the source moves, a unique neuron spikes to indicate the new location. A total of 50 neurons were included
to identify 50 distinct positions. A software simulation running the same algorithm confirms that our chip is in 1-1 correspondence.

ACKNOWLEDGMENTS

This research was sponsored by DARPA under contract No.
HR0011-09-C-0002. The views and conclusions contained herein
are those of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of DARPA or
the U.S. Government. Authors thank William Risk and Sue Gilson
for project management, Ben Hill, Ben Johnson, Rob Karmazin,
Carlos Otero, Jon Tse, Scott Fairbanks, Scott Hall, Kavita Prasad
for physical design, Steven Esser and Greg Corrado for their work
on digital neurons, and Andrew Cassidy and Rodrigo Alvarez for
developing software for data collection.

REFERENCES

[1] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural
Science. McGraw-Hill Medical, 4th ed., July 2000.

[2] R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D. S. Modha,
“The cat is out of the bag: cortical simulations with 109 neurons, 1013
synapses,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, (New York,
NY, USA), pp. 63:1–63:12, ACM, 2009.

[3] C. Mead, “Neuromorphic electronic systems,” Proceedings of the
IEEE, vol. 78, pp. 1629 –1636, Oct. 1990.

[4] K. Boahen, “Neurogrid: emulating a million neurons in the cortex,”
IEEE international conference of the engineering in medicine and
biology society, 2006.

[5] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational
and Mathematical Modeling of Neural Systems. The MIT Press, 2005.

[6] A. J. Martin, “Programming in VLSI: From communicating processes
to delay-insensitive circuits,” in Developments in Concurrency and
Communication, UT Year of Programming Series (C. A. R. Hoare,
ed.), pp. 1–64, Addison-Wesley, 1990.

[7] M. A. Mahowald, VLSI analogs of neuronal visual processing: a
synthesis of form and function. PhD thesis, Pasadena, CA, USA,
1992. UMI Order No. GAX92-32201.

[8] N. Imam and R. Manohar, “Address-event communication using
token-ring mutual exclusion,” in ASYNC, pp. 99–108, IEEE Computer
Society, 2011.

[9] A. J. Martin, “Programming in VLSI: From communicating processes
to delay-insensitive circuits,” in Developments in Concurrency and
Communication, UT Year of Programming Series (C. A. R. Hoare,
ed.), pp. 1–64, Addison-Wesley, 1990.

[10] F. Akopyan, Hybrid Synchronous/Asynchronous Design. Ph.D. thesis,
Cornell University, April 2011.

[11] A. J. Martin, “Distributed mutual exclusion on a ring of processes,”
Sci. Comput. Program., vol. 5, pp. 265–276, October 1985.

[12] B. Grothe, “New roles for synaptic inhibition in sound localization,”
Nature Reviews Neuroscience, vol. 4, pp. 1–11, 2003.

[13] C. T. O. Otero, J. Tse, and R. Manohar, “Static power reduction tech-
niques for asynchronous circuits,” in IEEE International Symposium
on Asynchronous Circuits and Systems, May 2010.

[14] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and
D. Modha, “A digital neurosynaptic core using embedded crossbar
memory with 45pJ per spike in 45nm,” Proceedings of the IEEE
Custom Integrated Circuits Conference, September 2011.

[15] S. Haykin, Neural Networks and Learning Machines (3rd Edition).
Prentice Hall, 3 ed., Nov. 2008.

[16] W. Maass and C. M. Bishop, eds., Pulsed neural networks. Cam-
bridge, MA, USA: MIT Press, 1999.

[17] C. A. R. Hoare, “Communicating sequential processes,” Communica-
tions of the ACM, vol. 21, no. 8, pp. 666–677, 1978.

	Introduction
	Architecture and Operation
	Neurons and Synapses
	Communication Infrastructure
	Discrete-time Operation

	Event-Driven Implementation
	Scheduler
	Axon Token-Ring
	Crossbar Memory
	Neuron
	AER transmitter

	Results
	Active Power
	Example Application

	Conclusion
	Appendix
	References

