
A High-Speed Clockless Serial Link Transceiver

John Teifel and Rajit Manohar
Computer Systems Laboratory

Electrical and Computer Engineering
Cornell University

Ithaca, NY 14853, U.S.A.

Abstract

We present a high-speed, clockless, serial link
transceiver for inter-chip communication in asynchronous
VLSI systems. Serial link transceivers achieve high off-
chip data rates by using multiplexing transmitters and de-
multiplexing receivers that interface parallel on-chip data
paths with high-speed, serial off-chip buses. While syn-
chronous transceivers commonly use multi-phase clocks to
control the data multiplexing and demultiplexing, our clock-
less transceiver uses a token-ring architecture that elim-
inates complex clock generation and synchronization cir-
cuitry. Furthermore, our clockless receiver dynamically
self-adjusts its sampling rate to match the bit rate of the
transmitter. Our SPICE simulations report that in a 0.18-
µm CMOS technology this transceiver design operates at
up to 3-Gb/s and dissipates 77 mW of power with a 1.8-V
supply voltage.

1. Introduction

We describe the design of a high-speed, clockless, se-
rial link transceiver. As the demand for off-chip bandwidth
grows with on-chip operating frequency, high bit-rate I/O
pins become increasingly necessary for inter-chip signaling
interfaces in VLSI systems. While it is always possible to
increase off-chip bandwidth by making buses wider with
more I/O pins, it is often impractical due to cost and limits in
packaging technology. This suggests a chip design should
efficiently utilize its existing I/O pins by driving them at
high bit rates. An attractive high bit-rate I/O communica-
tion scheme, utilized in high-speed synchronous links, mul-
tiplexes and demultiplexes on-chip data onto a high-speed,
off-chip serial bus. In this paper we propose an analogous
scheme for asynchronous links.

Multi-gigabit/second (Gb/s) inter-chip communication
links can be built in standard CMOS processes with high
fan-in multiplexing drivers and high fan-out demultiplexing

R
eceive datapath

D7

D6

D5

D4

D3

D2

D1

D0

MUX

D7

D6

D5

D4

D3

D2

D1

D0

DEMUX

Receiver

T [MHz]

Transmitter

T [MHz]

8xT [MHz]

High−speed
serial bus

T
ransm

it datapath

Figure 1. Serial link using multiplexed transceivers.

receivers. Figure 1 shows a typical Gb/s link that multi-
plexes and demultiplexes data onto a high-speed, off-chip
serial bus. The on-chip data paths in the transmitter and
receiver chip operate at a throughput1 of T and employ an
eight-way multiplexer and demultiplexer. During a single
on-chip cycle, all of the switches in the multiplexer are se-
quentially enabled and eight data bits (D0..7) are transmit-
ted on the serial bus. Similarly at the receiver, the switches
in the demultiplexer sequentially sample the serial bus and
decode all of the eight transmitted data bits (D0..7) in a
single on-chip cycle. Since the data multiplexing occurs
directly at the I/O pins, which behave as low-impedance
transmission lines, we can drive the off-chip serial bus at
high data-rates. In an eight-way multiplexing and demul-
tiplexing transceiver, the off-chip serial bus is required to
support a maximum bit rate of8T .

Existing multiplexed transceiver architectures [5, 12] use
clocks to control the data multiplexing and demultiplex-
ing. A block diagram of a conventional clocked transceiver
is shown in Figure 2. The clocked transmitter uses eight
phase-shifted clocks (φ0..7) generated from an on-chip

1Throughput is the inverse of cycle time.

1

Clocked Sampler
φ1

φ0

φ2

φ3

φ4

φ5

φ6

φ7

φ1

φ0

φ2

φ3

φ4

φ5

φ6

φ7

φ ref

φ ref

Single− to Multi−φ φ
Synchronization

High−Speed
Serial Data

High−Speed
Serial Data

Register
Receive

Clockless Transceiver

Clocked Driver
8:1 Multiplexer

8:1 Demultiplexer

Multi− φ to Single−φ
Synchronization

Register
Receive

A
nalog D

LL/P
LL

A
nalog D

LL/P
LL

Transmitter
Receiver

8:1 Demultiplexer
Token−ring Sampler

8:1 Multiplexer
Token−ring Driver

Transmitter
Receiver

Transmit Transmit
Register Register

Clocked Transceiver

Figure 2. General transceiver architectures.

clock (φref) to control the eight switches of the multiplexer,
with each switch enabled by a unique clock. While the mul-
tiplexed switches operate in parallel, they transmit bits se-
quentially onto the serial bus because their clocks are out-
of-phase. The receiver uses a reference clock (φref), trans-
mitted with the serial data, to generate its own phase-shifted
clocks (φ0..7) that control the switches of the demultiplexer.
The demultiplexed switches operate in parallel, but are se-
quentially enabled (out-of-phase) to correctly decode the se-
rial data. Both the transmitter and receiver use PLLs (phase-
locked loops) or DLLs (delay-locked loops) to generate the
phase-shifted clocks that are critical for precise transmis-
sion and decoding of the serial bit stream. Additionally,
clocked transceivers have a synchronization latency in con-
verting on-chip, single-phase data to multi-phase data used
at the multiplexer and demultiplexer.

Instead of generating multi-phase clocks, we propose a
clockless architecture that uses asynchronous token-rings
to control the data multiplexing and demultiplexing in the
transceiver. Figure 2 shows a side-by-side comparison of
our clockless transceiver to a traditional clocked transceiver.
A clockless transceiver eliminates all of the clock gen-
eration and synchronization circuitry that complicates a
clocked transceiver design. Since no clock is transmitted
with the serial bit stream, a clockless serial link receiver
must extract bit boundaries from the serial data stream. This
requires the serial data to be encoded and transmitted on
more than one data wire. For ease of encoding and decod-
ing our clockless transceiver uses three wires to transmit
serial data, whereas a clocked transceiver would use only

two wires (data and clock). However, the particular data-
encoding that we use in our serial link allows a clockless re-
ceiver to dynamically self-adjust its sampling rate to match
the bit rate sent at the transmitter.

All the circuits in our clockless transceiver, except for
the off-chip serial bus, are designed using quasi-delay-
insensitive (QDI) asynchronous circuits.2 The off-chip
bus is not delay-insensitive (DI) because we do not gen-
erate a low-level acknowledgment for the transmitted serial
data. Purely DI buses require an acknowledgment hand-
shake for every data value transmitted and high bit rates are
not achievable as the data-rate is limited by the round-trip,
inter-chip propagation delay of the DI handshake [8]. Since
our clockless transceiver is targeted for systems using QDI
cores, we want to minimize the timing assumptions needed
to attain high bit rates on the off-chip serial bus. In our
design we need only guarantee one timing constraint:the
transmitter shall not transmit at a bit rate faster than the
maximum bit rate supported by the receiver. This conserva-
tive, one-sided timing assumption allows the transmitter to
transmit bits at any data-rate from zero (idle link) up to the
maximum bit rate supported by the receiver.

This rest of this paper provides design details for high-
speed clockless transceivers and is organized as follows.
Section 2 discusses the three-wire asynchronous signaling
protocol used for data-encoding on the high-speed serial
bus. Section 3 provides architectural details of the token-
ring multiplexers and demultiplexers and in Section 4 we
show circuit details of the transmitter and receiver. In Sec-
tion 5 we show how the transceiver design can be modified
to handle bit errors and Section 6 discusses related work.
Concluding remarks are in Section 7.

2. Three-wire Asynchronous Signaling

Instead of using a clock to determine bit boundaries,
asynchronous signaling protocols encode bit boundaries as
state transitions on interconnect wires. One way to do this
is to use three-wire signaling protocols first proposed by
Røine [21] for use in high-speed asynchronous links. In
three-wire protocols, next state information regarding the
protocol is transmitted across the three-wire interconnect.
Figure 3 shows an example of a three-wire state diagram
that is used for both data encoding at the transmitter and
data decoding at the receiver. Since there are exactly three
states in this protocol, next state information is efficiently
transferred across the interconnect by sending a single pulse
along one of the three interconnect wires. In Figure 3 we
denote this pulse asPi, for i ∈ {0, 1, 2}, wherei is one
wire of the three-wire interconnect upon which the pulse is
transmitted.

2Our clockless transceiver architecture is not restricted to QDI circuits
and is generally applicable to all asynchronous handshake circuits.

2

State 2

State 1

State 0

¬b/P0

b/P1

¬b/P2

¬b/P2

b/P0

b/P1

Pi: pulse on wirei
b: bit to encode/decode

Figure 3. Three-wire state transition diagram.

The three-wire state machine can be initialized to any
of the three states, as long as both the transmitter and re-
ceiver are initialized to the same state.3 At the transmitter
the edges of the state diagram correspond to the data bit,b,
to encode and the interconnect wire,i, upon which to send
a pulse,Pi. For the receiver the edges of the state diagram
correspond to the pulsePi that is received and the data bit,
b, that is subsequently decoded. Since the receiver receives
these pulses asynchronously, it automatically adjusts its de-
coding bit rate to the encoding bit rate at the transmitter.
Tables 1 and 2 summarize the state transition tables for the
transmitter and receiver respectively. It should be noted that
in the three-wire protocol, both the transmitter and receiver
must keep track of their current state to encode and decode
the transmitted data. The three-wire protocol we implement
has the property that two successive pulses (i.e., state tran-
sitions) will not be sent on the same wire, simplifying the
decoding circuitry at the receiver. Figure 4 shows wave-
forms of the three-wire protocol transmitting an example bit
stream along with the corresponding states of the three-wire
protocol.

1

1

2

1 0

0

0

1 2

0 0

0 2

1 1

1 0

wire 0

wire 1

wire 2

Current State

Encoded Data

Figure 4. High-speed three-wire asynchronous signaling.

3. Token-Ring Transceiver Architecture

We use token-rings to design high-speed asynchronous
multiplexed transceivers. A token-ring consists ofn con-
current processing elements connected in a ring, with the
output of processi connected to the input of process(i +
1) modn. While in general token-rings can have one or
more tokens traveling around the ring, we will use rings

3We initialize our circuits to “State 0”.

Inputs Outputs
Current State Data Value Next State Wire Pulse

0 0 2 2
1 1 1

1 0 2 2
1 0 0

2 0 0 0
1 1 1

Table 1. Three-wire state table for transmitter.

Inputs Outputs
Current State Wire Pulse Next State Data Value

0 2 2 0
1 1 1

1 2 2 0
0 0 1

2 0 0 0
1 1 1

Table 2. Three-wire state table for receiver.

with only one token in this paper. Token-rings are common
asynchronous structures that are useful for implementing
distributed mutual exclusion in concurrent VLSI architec-
tures [15, 19]. Mutual exclusion is necessary in token-rings
when elements in the ring can communicate with a common
shared resource. To implement distributed mutual exclusion
in the token-ring, access to shared resources is restricted to
when elements exclusively have the token.

We construct aN :1 multiplexed transceiver with two
independentN -element token-rings, one token-ring at the
transmitter and one at the receiver. Each element in the
token-ring is a single transceiver and communicates with
a non-shared bit slice of the on-chip parallel data path and a
shared off-chip serial bus. Since each element (transceiver)
in the token-ring must sequentially access the shared se-
rial bus, the token traveling around the ring naturally im-
plements this out-of-phase access and ensures distributed
mutual exclusion on the serial bus. As discussed in Sec-
tion 2, each transceiver element requires the current state
of the three-wire protocol to encode or decode data values.
By having each transceiver compute the current state and
send it on the token channel to the next transceiver in the
ring, the token provides a convenient method for distributed
state update in the three-wire protocol and we subsequently
refer to this token as astate-token. In our token-ring im-
plementation of multiplexed transceiver architectures, it is
easiest to encode the token channel as a 1-of-3 channel to
communicate one of three possible states in the three-wire
protocol.

3

Receiver

TXcell

TXcell

TXcell

TXcell

TXcell

TXcell

TXcell

TXcell

RXcell

RXcell

RXcell

RXcell

RXcell

RXcell

RXcell

RXcell

L[0]

L[1]

L[2]

L[3]

L[4]

L[5]

L[6]

L[7] R[7]

R[0]

R[1]

R[2]

R[3]

R[4]

R[5]

R[6]

8−
bit datapath slice

8−
bit datapath slice

token−ringtoken−ring

3

Three−wire
Interconnect

ZZ

Transmitter

Figure 5. Basic 8:1 multiplexed transceiver architecture.

Figure 5 shows a basic three-wire protocol implementa-
tion using an asynchronous, multiplexed, token-ring archi-
tecture. The serial transmitter uses an eight element token-
ring that multiplexes parallel data (L[0..7]) onto a shared
bus (Z) that drives the three interconnect wires. The state-
token passed around the ring is the current state value of the
three-wire protocol. Each element of the token-ring con-
tains an identical transmitter circuit and the state-token con-
trols which transmitter is actively driving the shared bus.
The period of a token is equal toN times the inverse of the
transmitted bit rate and each transmitter needs a local cycle
time of at least1/N of the bit rate. In our target technology
(0.18µm CMOS) the token-ring throughput is determined
by how fast each individual stage can drive the shared bus
without suffering signal integrity problems, which in our
circuit design is independent of how optimally the hand-
shakes complete between token-ring elements. As a side re-
sult, the number of elements in the token-ring does not need
to be throughput-optimized and so the number can be any
reasonable value (limited by the wiring capacitance of the
shared bus). In the example shown in Figure 5 a token-ring
of size eight is chosen for convenience of interfacing with a
32-bit on-chip data path. The serial receiver uses a similar
eight element token-ring and shared bus (Z) to reconstruct
parallel data (R[0..7]) from the serial interconnect. Like
the transmitter, each element of the token-ring contains an
identical receiver circuit and the state-token controls which
receiver is sampling the shared bus. In both the transmit-
ter and receiver, the token-ring circuit elements that operate
on the shared buses utilize conservative timing assumptions
(non-QDI) to achieve high serial bit rates and are discussed
in detail in subsequent sections.

4. Circuit Implementation

We assume the three-wire interconnect is built from
a standard printed circuit board using either microstrip

or stripline traces. Various transmission-line signaling
schemes are possible with the three-wire protocol, includ-
ing standard-CMOS, series-terminated, parallel-terminated,
or Gunning Transceiver Logic (GTL) [2, 10]. We decided
against differential signaling because it doubles the amount
of required pins and interconnect signals. In this paper,
a ground-referenced (i.e., single-ended) signaling scheme
with parallel-terminated transmission lines and open-drain
drivers is used for the interconnect design. Figure 6 shows
an example of this interconnect style. A disadvantage of this
scheme is the high static power dissipation when the trans-
mission line is being driven low. GTL type interconnects
have better noise immunity but suffer from the same static
power dissipation problem and have more complicated in-
terface circuitry than the parallel-terminated interconnect
we chose to implement.

8

_Z

Physical Interconnect &
Package Parasitics

Chip B

Z

Vtt

Rt

Chip A

Z[0..7] x

Figure 6. Electrical interconnect configuration.

Figure 6 illustrates how an open-drain, single-ended sig-
naling scheme can be used to implement one wire of the
asynchronous three-wire protocol. The transmitter onChip
A drives the interconnect wire with eight open-drain NMOS
transistors (one for each TXcell) and the receiver onChip
B uses an inverter to restore the transmitted signal to on-
chip voltage levels. The transmitted waveforms have their
logical senses inverted. TheRt resistor terminates the trans-
mission line throughVtt, which can be different than the on-
chip voltage. This circuit connection both minimizes signal
integrity distortion on the transmission line and also restores
the transmission line to aVtt voltage level when it is not be-
ing driven low by the NMOS drivers. As a result, there is no
static power dissipation when the multiplexed transmitter is
not transmitting data (i.e., when the NMOS transistors are
not being driven).

We describe clockless transceiver circuits using Commu-
nicating Hardware Processes (CHP), whose syntax is sum-
marized in the appendix, and construct them using Martin’s
synthesis method [16].

4.1. Multiplexed Transmitter

The CHP for the multiplexed transmitter process is:

TXcell ≡ *[U ?s,L?x ; y := f s(x , s); data tx (Z , y),D !y]

4

The transmitter first receives the current state-token (s)
from the previous token-ring cell onU and the data bit (x)
to encode onL. It then computes (f s) the next state value,
copies this value onD , and thedata tx function transmits
the value on the interconnect-driver wires (Z) that drive the
open-drain drivers in Figure 6. While the peak token-ring
frequency determines the maximum achievable bit rate, the
actual transmitted bit rate is data-dependent on how fast the
on-chip transmitter core supplies data to theL channel.

We useprocess decomposition[18] to break the TXcell
process into a non-QDI process, Tdriver, that contains the
data tx implementation and a QDI process, Tproc, that
contains thef s computation and other channel accesses.
The Tproc and Tdriver processes can be constructed as fol-
lows:

Tproc ≡ *[U ?s, L?x ; T !f s(x , s)]

‖ Tdriver ≡ *[T?y ; data tx (Z , y), D !y]

Although theD communication can logically be at the end
of either the Tproc or the Tdriver processes, we place it in
the Tdriver process so we can more easily control the bit
rate of the transmitter (by placing delay-lines on either the
T or D channels). The final Tcell process is shown in Fig-
ure 7. TheBitWidth andBitRate signals in the figure are
analog control signals (to be discussed shortly) that are used
to control timing margins for the circuits that implement the
data tx function.

D.d

Tproc

U.dU.e

L.e

L.d
Tdriver Z.d

T.e

T.d

BitWidthBitRate

D.e

Figure 7. Multiplexed transmit cell (TXcell).

Given the manner in which the Tproc and Tdriver pro-
cesses were decomposed, their circuit implementations can
be compiled independently [18]. We compile Tproc as a
standard QDI precharge-half-buffer (PCHB) process [14]
and it is shown in Figure 8. The production rules for the
pull-down computation offs are:

en ∧ (L.0 ∧U .2 ∨ L.1 ∧U .1) → T .0↓
en ∧ L.1 ∧ (U .0 ∨U .2) → T .1↓
en ∧ L.0 ∧ (U .0 ∨U .1) → T .2↓

Tdriver is more interesting to compile because it is a non-
QDI process and needs to generate a self-resetting wave-
form on the interconnect-driver wires (Z) as well as control
the transmission bit rate. We also need to guarantee thatZ is

not driven high, consequently activating the open-drain in-
terconnect drivers, when no data is being transmitted. The
internal circuits in this process are QDI, but theZ channel
is non-QDI because its output is not acknowledged.

uv

en

validityf_s

validityvalidity

L.1
L.0
U.2
U.1
U.0

L.e
U.e

T.e

tvlv

en

T.2

T.1

T.0

completion

completion

en

Figure 8. Tproc circuit implementation.

The initial handshaking expansion for the Tdriver pro-
cess is given by:

*[[T DL]; [v(T)]; Z := y ; [v(Z)];
([Z DL]; Z ⇓),
(D := y ; [¬D .e]; T .e↓; [n(T)]; D ⇓);
[D .e]; T .e↑

]

ZDL is a delay-line, whose adjustable latency is controlled
by the voltage on theBitWidthsignal, and sets the bit width
of the output bit stream by controlling the pulse width on
theZ data wires. LikewiseTDL is a delay-line, whose la-
tency is controlled by theBitRatesignal, sets the bit rate of
the output bit stream by controlling the speed of the hand-
shake onT . We useprocess factorization[17] to break this
handshaking expansion into two concurrent parts:

*[[¬D .e]; T .e↓; [D .e]; T .e↑]
‖
*[[T DL]; [v(T)]; Z := y ; [v(Z)];

([Z DL]; Z ⇓), (D := y ; [n(T)]; D ⇓)
]

The first part contains all of the enable signals and is
simply compiled as a wire. The second part contains the
remaining logic necessary to implement Tdriver and we fo-
cus on optimizing this in the rest of this section. The ini-
tial handshaking expansion of the second part of Tdriver
first raisesZ and then in parallel lowersZ and performs a
handshake onD . If the “D := y” rule is moved earlier in
the handshake then a state variable can be eliminated and a
more efficient handshake expansion results:

5

*[[T DL]; [v(T)];
Z := y ; [v(Z)]; (D := y , [Z DL]);
Z ⇓; [n(T)]; D ⇓

]

It should be noted that this reshuffling weakly couplesZDL

with TDL since “Z ⇓” must now wait for both the “D := y”
and “[Z DL]” rules. While this preventsZ DL from in-
dependently setting the pulse width on theZ data wires,
the pulse width can still be modified indirectly by also ad-
justingTDL, which will indirectly control the speed of the
“D := y” rule. This slightly limits the adjustability of the
bit width and bit rate, but in our circuits the ranges are ac-
ceptable to justify this more efficient reshuffling.

a)

dv

en

zen

zen

T.0

T.1

T.2

en

validity

validity

validity

Z
 D

el
ay

L
in

e

BitWidth

T
 D

el
ay

L
in

e

BitRate

D.2

D.1

D.0

Z.2

Z.1

Z.0

zvd

zv

_tv
completion

zen en

b)

zen

en

_tvdv

zvd CC

Figure 9. (a) Tdriver circuit implementation, (b) non-
standard completion circuit.

The compiled production rules for this handshake expan-
sion are shown in Figure 9. The two delay-lines in Fig-
ure 9a control all of the timing assumptions in the mul-
tiplexed transmitter design. The delays of theZDL and
TDL delay-lines should be adjusted such that the bit rate
and bit width are sufficient for the demultiplexed receiver
to decode the transmitted bit pulses. The pull-down for the
precharge computation block ofD is gated byzv to enforce
that “Z := y” is ahead of “D := y” in the handshaking
expansion. Figure 9b gives the non-standard completion
circuit that is used to allow theZ data rails to precharge

without waiting for the handshake to complete onD .

4.2. Demultiplexed Receiver

The CHP for the demultiplexed receiver process is:

RXcell ≡ *[U ?s; z := s;
*[z = s −→ z := data rx (Z)]; D !z ,R!f x (s, z)

]

The receiver first receives the current state-token (s)
from the previous token-ring cell on ChannelU and then
samples the shared state wires (Z) until the next state4 (z)
arrives from the off-chip interconnect. It then copies the
next state value to the next cell on ChannelD , and com-
putes (f x) the encoded data value based on the current and
next states of the three-wire protocol and sends this value
on ChannelR. Thedata rx function samples the Z chan-
nel until a valid data token appears on it and then imme-
diately returns the data value. While the peak token-ring
frequency determines the maximum decodable bit rate, the
actual decode rate is data-dependent on how fast the trans-
mitter sends bits and on how fast the on-chip receiver core
processes data on theR channel.

We would like to decompose the RXcell process into a
non-QDI process, Rsamp, that contains the loop that sam-
ples the state wires and a QDI process, Rproc, that contains
all of the other computation. To facilitate this, RXcell is
transformed to:

*[[U −→ s := U ; z := s;
*[z = s −→ z := data rx (Z)]

];
y := f x (s, z); U ?s; R!y ,D !f s(s, y)

]

wheref s computes the the next state based on the current
state and the encoded data value (y). The Rsamp and Rproc
processes can then be decomposed as follows:

Rsamp ≡ *[[U −→ s := U ; z := s;
*[z = s −→ z := data rx (Z)]

];
T !f x (s, z)

]

Rproc ≡ *[T?y ,U ?s; R!y ,D !f s(s, y)]

The final RXcell process is shown in Figure 10.
Since the Rsamp and Rproc processes share the data rails

of theU Channel, their circuits must be compiled together
to ensure that the data rails ofU are valid for the entire
time the probe selection statement is executing in Rsamp.

4The next state is guaranteed by the three-wire protocol to be differ-
ent than the current state and so the receiver will never run ahead of the
transmitter.

6

Z.d Rproc

U.d

R.d

D.d

U.e

D.e

R.e

T.d

T.e
Rsamp

Figure 10. Demultiplexed receive cell (RXcell).

Rsamp is simpler than the CHP may first appear and is im-
plemented as a latched sense amplifier, as shown in Fig-
ure 11. The sense amplifier activates and drives theT chan-
nel data rails when the current state-token, the next state
value from the interconnect, and theT channel enable sig-
nal (T.e) are all valid. When the T.e signal is low the sense
amplifier resets itself.

T.1

Z.0

Z.1

Z.2

Vdd

U.2 U.0

T.eT.e

U.1U.2U.0 U.1

T.e

Z.0

Z.1

Z.2

T.0

Figure 11. Rsamp circuit implementation.

Rproc is compiled as a normal QDI PCHB process ex-
cept to implement the probe onU correctly, the T.e sig-
nal must be driven based on the validity and neutrality of
U (rather than a normal PCHB handshake reshuffling that
computes T.e from the state of theT channel). Also we do
not check the neutrality of theT data rails (as Rsamp has
7 full cycles to reset itself). The Rproc circuit is shown in
Figure 12 and the production rules for the pull-down com-
putation offs are:

en ∧ (T .0 ∧U .2 ∨ T .1 ∧U .1) → D .0↓
en ∧ T .1 ∧ (U .0 ∨U .2) → D .1↓
en ∧ T .0 ∧ (U .0 ∨U .1) → D .2↓

The major timing assumption in this receiver design is
that a receive cell can process a bit from the interconnect
and pass control to the next cell in time for it to process the
next bit. In general, the receiver’s token-ring must have a
peak bit-processing throughput equal to or greater than the
maximum bit rate of the three-wire interconnect. This is
a one-sided timing assumption only, as the transmitter can
transmit at an arbitrarily slow bit rate. If the interconnect

T.1

D.e

R.e

en

validityf_s

D.2

D.1

D.0

validity

rv

uv

dv

rv

U.e

T.e

T.0
U.2
U.1
U.0

en

completion

en

en

validity

R.1

R.0

T.0

T.1

U.2
U.1
U.0

completion

en

Figure 12. Rproc circuit implementation.

bit rate is too high for the receiver, transmitted state bits
will be mis-sampled and the three-wire state protocol at the
receiver will get out of synchronization with the state ma-
chine at the transmitter. This will not cause circuit failure,
but will prevent any further data values from being decoded
correctly.

A conservative link design would adjust the delay-lines
in the transmitter to ensure that bit pulses on the three-wire
interconnect are mutually exclusive. However, the receiver
design we use allows this timing constraint to be slightly
relaxed since its circuitry uses sense amplifiers to decode
the incoming bit stream and only samples a small portion
of the bit’s waveform. If the receiving circuitry operates
fast enough to decode each transmitted bit upon its leading
edge transition,5 then strict mutual exclusion need only be
enforced for everyotherbit pulse. Only every other bit re-
quires mutual exclusion because each RXcell has a priori
information about the previously decoded bit from the prior
cell and hence knows to wait for a new bit to arrive, which
by the three-wire protocol is guaranteed to be different than
the previously decoded bit. This relaxed timing constraint

5Our simulations show that this is true for our design, as the receiver
circuitry (due to its lesser complexity) can operate at a higher frequency
than the transmitter circuitry.

7

scheme still requires strict ordering on theleading edgesof
transmitted bits along the three wires, as well as enough de-
lay between the leading edges of consecutive bits so that the
sense amplifiers have time to latch the current bit and sta-
bilize before the leading edge of the next bit arrives at the
receiver.

4.3. Simulation Results

The multiplexed transceiver circuits presented in the pre-
vious sections have been designed and layed out in TSMC’s
0.18µm CMOS process (FO4 delay≈65ps) and simulated
in SPICE. Both the on-chip multiplexed driver and demulti-
plexed receiver circuits have simulated functionally at bit
rates up to 3 Gbps (bit-width≈ 5.1 FO4 delays). The
transmitter is the speed-limiting factor in this design, due
to the circuit overhead necessary to generate self-timed bit
pulses on the interconnect wires. While all on-chip para-
sitics were included in the simulations, only a simple spice
model (no transmission line effects) was used for the off-
chip path. Using more sophisticated models would allow
the transceiver circuits to be tuned for application-specific
interconnect scenarios. Figure 13 shows a simulated wave-
form at the open-drain output of the multiplexed driver cir-
cuits withV dd = 1.8V, V tt = 1.8V, Rt = 50Ω, and500fF
of pad and pin capacitance [1].

_z.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

15 15.5 16 16.5 17

V
ol

ta
ge

 (
V

)

time (ns)

_z.0
_z.1

0

Figure 13. Three-wire multiplexed transmitter output.

The link consumes 23.5pJ/bit, or 76.5mW when run-
ning at full throughput. 77% of the power is consumed
through the pull-up resistor. WhenV tt is reduced to 1.2V,
the link consumes 16.4pJ/bit, or 53.3mW when running at
full throughput. 66% of the power is consumed through
the pull-up resistor. The large amount of power consumed
through the pull-up resistor in the open-drain driver signal-
ing configuration indicates that additional power savings in
this design can be obtained by using more energy-efficient
(and sophisticated) electrical signaling schemes in the front-
end, interconnect stages of the multiplexed transceivers.

The token-ring receiver core area is 600 x 1400λ2 (54
x 126µm2) and the token-ring transmitter core area is 600

x 2000λ2 (54 x 180µm2), which is competitive with the
smallest synchronous links [13].

5. Token Resynchronization

Bit errors may occur as a result of unsustainable bit rates,
signal degradation on the interconnect, or anything that vi-
olates the timing assumptions at the demultiplexed receiver.
In asynchronous multiplexed architectures, bit errors will
cause one or more transmitted bits to be lost. These lost bits
will desynchronize the three-wire state encoding and decod-
ing token-rings at the transmitter and receiver, preventing
subsequent data bits from being decoded correctly. This is
in contrast to a synchronous system, where a bit error will
simply result in an incorrect data value and not cause sub-
sequent data values to be decoded incorrectly.

For illustrative purposes in this section we will use the
simple asynchronous link configuration6 that is shown in
Figure 14. C is a channel, of any standard asynchronous
handshake, that gives control-flow feedback information to
the transmitter concerning the status of the receiver (e.g.,
how many bits to transmit, the amount of buffer space in
the receiver, etc.). We assume that tokens on channelC
are queued, such that the transmission of bits on the serial
link and the sending of control tokens will occur in paral-
lel. Without loss of generality, in this example we assume
that the control tokens sent onC simply tell the transmitter
to send 8 bits of data and we call this a “normal ” control
token. As long as control information is still being sent on
C and bits are transmitted on the link, this link will not
deadlock when a bit error occurs. However, after a bit error
occurs the decoded data bits will be incorrect and will be
misaligned by a bit.

Transmitter

Chip

Receiver

Chip

serial link
asynchronous

C

Figure 14. Example link configuration.

For an asynchronous link to successfully recover from a
bit error, the state-token in both the transmitter and receiver
needs to be re-initialized and the token reset to its initial
starting position in the token-ring. This process, which we
refer to astoken resynchronization, requires that the trans-
mitted data be tagged with bits generated from error cor-
recting codes (ECC) so that the demultiplexed receiver can
detect bit errors. We assume these ECC bits are part of the
transmitted data stream and transparent to the token-ring
transceiver circuits. To facilitate re-initializing the state-

6A study of various asynchronous link configurations is in [25].

8

TXcell

TXcell

TXcell

TXcell

TXcell

TXcell

TXcell

TXcell

re
ce

iv
ed

 d
at

a

R
X

co
nt

ro
l

C

token−ring

Ring_init

Receiver

Ring_init

token−ring

L[1]

L[0]

L[2]

L[3]

L[4]

L[5]

L[6]

L[7]

E

Transmitter

tr
an

sm
it

da
ta

T
X

co
nt

ro
l

Z

C

R[0]

R[1]

R[2]

R[3]

R[4]

R[5]

R[6]

R[7]

E

control queue

RXcell

RXcell

RXcell

RXcell

RXcell

RXcell

RXcell

RXcell

Figure 15. Multiplexed transceiver and control circuits
modified to support token resynchronization.

token, we insert the following initialization process at the
head of the transmitter and receive token-rings:

Ring init ≡
*[U ?s,E?e; [¬e −→ D !s[]e −→ D !′′reset state ′′]]

where′′reset state ′′ is the reset value of the state-token,E
is an error channel that determines when the token should
be re-initialized, and theU andD token channels are con-
nected to adjacent token-ring elements in an analogous
manner to the transceiver token-ring elements. TheE chan-
nel also provides a convenient control mechanism to stall
the progression of the state-token that will be exploited in
the resynchronization control circuitry. Since the placement
of theRing init process is symmetric for both the transmit
and receive token-rings, the small additional latency for the
token to pass through this process will not limit the peak bit
rate, although the average bit rate may be slightly lower.

Figure 15 shows the modified token-rings with our multi-
plexed transceiver architecture. The control queue on chan-
nel C allows the transceiver to have multiple outstanding
control tokens and prevents deadlock when bit errors oc-
cur. At reset, this queue is filled with a finite number of
“normal ” control tokens. We assume that theRXcontrol
process has enough data buffering on theR channels to
buffer all outstanding data requests.

The circuits that control the multiplexed transceivers in
an asynchronous link need to be slightly modified to sup-
port token resynchronization. We give the following code
fragment for the process that controls the receiver:

RXcontrol ≡ *[... R?data; err := ecc error(data);
[¬err −→ E !false,C !′′normal ′′

[]err −→ (i : depth : C !′′sync′′;)
E !true;
(i : depth : C !′′normal ′′;)

]; ...]

whereecc error is an ECC function that returns true if a
bit error is detected in the received data anddepth is the
depth of the control queue (i.e., the maximum number of
outstanding control tokens). This control process operates
similarly to the normal multiplexed architecture when no
error has been detected, except it sendsfalse on the new
E channel in the receiver’s token-ring. When the receiver
detects a bit error we send “sync” control tokens onC to
flush the control queue of preceding “normal ” tokens that
will transmit data to the receiver. During this flush the re-
ceiver’s token-ring is stalled (by not communicating onE)
because we know that subsequent transmitted data bits will
be decoded incorrectly and hence they will not be decoded
at all by the receiver. After all of the “normal ” control
tokens have been flushed, we sendtrue on E to reset the
state-token at the receiver and the receiver is ready for nor-
mal operation again. Normal operation resumes by filling
the queue on channelC with “normal ” control tokens.

The process that controls the multiplexed transmitter is
modified by means of the following code fragment to sup-
port token resynchronization:

TXcontrol ≡ *[... C ?c;
[c = ′′normal ′′ −→

[¬init −→ E !false,L!data
[] init −→ E !true,L!data; init↓
]

[]c = ′′sync′′ −→ init↑
]; ...]

whereinit is false upon reset. During normal operation the
transmit control process sendsfalse on E and passes data
along to theL channels of the transmitter to be transmitted
on the link. When the transmit control process receives a
“sync” control token onC , the receiver’s token-ring has
been stalled due to a bit error and so we stall the transmitter
as well. After the control queue has been flushed (i.e., when
a “normal ” control token is received) the transmit control
process resets the state-token at the transmitter by sending
true on E and the transmitter resumes normal operation.

6. Related Work

Asynchronous three-wire inter-chip interfaces first ap-
peared in [23], where a three-wire wired-or signaling
scheme was used for control handshaking on a multiple re-
ceiver bus. Røine proposed [21] and implemented [22] a
three-wire protocol suitable for high-speed interfaces that

9

is similar to the three-wire protocol we used in this pa-
per. However, his three-wire link uses on-chip serial input
and output streams that are in the two-phase DS-format,7

whereas our three-wire link uses on-chip parallel four-
phase input and output streams. In contrast to the novel
distributed-state token-ring we used in this paper for inter-
facing with on-chip parallel data, his design uses simpler
combinational logic to implement the states of the three-
wire protocol because his link interfaces with on-chip serial
data. He does not address the overhead and additional la-
tency required to convert on-chip parallel data paths to the
serial two-phase DS-format, which we believe to be both a
performance penalty and less practical than our three-wire
link that interfaces directly with high-performance, on-chip,
parallel data-path circuits. While our design can save en-
ergy by shutting down and not transmitting data across the
interconnect, Røine’s design must always be transmitting
data because the level shifter on his receiver fails when data
is transmitted below a certain minimum rate.

Asynchronous two-wire protocols are also possible for
use in off-chip interfaces but do not have the property that
two successive state transitions occur on different wires (as
in three-wire protocols). This makes the two-wire proto-
col receiver circuitry more complex and prone to timing er-
rors, especially in a demultiplexed receiver architecture that
has multiple decoders operating in parallel on the same se-
rial data stream. Traditional two-phase data encodings can
be used in two-wire links, where toggling one wire indi-
cates a logical zero and toggling the other wire indicates
a logical one. An alternative two-phase, two-wire data-
encoding scheme called Level-Encoded Dual-Rail [6] uses
two distinct states per logic value. It uses a four state Gray-
code to encode data such that when one of the wires tog-
gles, at least one of the two wires always carries the logical
value of the transmitted data bit (the Gray-code determines
which wire). This scheme has slightly simpler decoding
circuitry but more complicated encoding circuitry than tra-
ditional two-phase data encodings. An asynchronous dif-
ferential two-wire protocol using 3-level voltage signaling
was proposed in [24], however the 3-level voltage signaling
scheme is impractical as it is much more prone to receiver
error than the three-wire protocol because of its sensitivity
to noise and slew rates on the interconnect signals. While
two-wire protocols use one less wire than three-wire pro-
tocols, they are inherently more complicated to implement
and this complexity limits their achievable bit rates in the
asynchronous transceiver architecture described in this pa-
per.

High-speed synchronous link examples, as described in
Section 1, are numerous in the literature (e.g., [5, 12, 26,

7Two-phase DS-format is a two wire serial signaling protocol, where
the D-signal carries serial data and the S-signal is a parity signal that indi-
cates transitions between identical data bits on the D-signal [21].

27]). The main difference between clocked and clockless
transceivers is that synchronous designs require compli-
cated clock generation and synchronization circuitry. While
an asynchronous three-wire transceiver need only ensure
the signal integrity of the state pulses and their relative
skew, a synchronous transceiver must ensure the relative
timing skew and signal integrity between the clock and
data signals. Generating clean multi-phase clocks with low
phase offsets and low jitter requires significant design ef-
fort. In a synchronous transceiver the clock should be con-
tinuously driven from the transmitter to the receiver so that
the two chips remain synchronized, as resynchronizing the
receiver’s DLL or PLL has a high latency cost. This lim-
its the transceiver to transmitting at a single bit rate and is
a power waste when no data is transmitted across a syn-
chronous link. Our clockless transceiver, however, con-
sumes no power when data is not being transmitted and can
start and stop transmitting bits without suffering from a syn-
chronization latency. Additionally, our clockless transceiver
does not need the multi-phase to single-phase data con-
version circuitry, which is a large fraction of the latency
in synchronous links [9]. Recent synchronous high-speed
links have used more complicated signaling schemes and
rely on complex analog signal processing to either reduce
power [3, 13] or greatly increase the symbol rate [4, 7].
While the asynchronous link presented in this paper can-
not compete with the bit rates in these very high-speed syn-
chronous links, we expect that it is possible to apply some of
the complex analog signaling schemes used in clocked links
to the front end of our asynchronous transceiver architecture
and achieve comparable performance improvements.

7. Conclusion

Instead of attempting to design a clockless multi-
plexed transceiver with a superior bit rate than a clocked
transceiver, our goal was to design a clockless architecture
with a relatively high bit rate that avoided the complexi-
ties of clocked architectures (e.g., multi-phase clock genera-
tion and synchronization circuitry). By using asynchronous
token-rings to control data multiplexing and demultiplex-
ing, this transceiver exploits parallelism at the transmitter
and receiver to drive off-chip I/O pins at high bit rates.
Our clockless transceiver supports a data-dependent bit rate
and the receiver dynamically self-adjusts its sample rate to
match the transmitted bit stream. Since timing assump-
tions were kept to a minimum in this design, our clockless
transceiver enables the construction of robust, high-speed
inter-chip communication links for asynchronous VLSI sys-
tems.

10

Acknowledgments

The research described in this paper was supported in
part by the Multidisciplinary University Research Initia-
tive (MURI) under the Office of Naval Research Contract
N00014-00-1-0564, and in part by a National Science Foun-
dation CAREER award under contract CCR 9984299. John
Teifel was supported in part by a Cornell University Fellow-
ship and a National Science Foundation Fellowship.

A Summary of CHP Notation

The CHP notation we use is based on Hoare’s CSP [11]. A
full description CHP and its semantics can be found in [16]. What
follows is a short and informal description.

• Assignment:a := b. This statement means “assign the value
of b to a.” We also writea↑ for a := true, anda↓ for
a := false.

• Selection: [G1 → S1 [] ... [] Gn → Sn], whereGi’s
are boolean expressions (guards) andSi’s are program parts.
The execution of this command corresponds to waiting un-
til one of the guards istrue, and then executing one of the
statements with atrue guard. The notation[G] is short-
hand for[G → skip], and denotes waiting for the predicate
G to become true. If the guards are not mutually exclusive,
we use the vertical bar “|” instead of “[].”

• Repetition:*[G1→ S1 [] ... []Gn → Sn]. The execution
of this command corresponds to choosing one of thetrue
guards and executing the corresponding statement, repeating
this until all guards evaluate tofalse. The notation*[S] is
short-hand for*[true → S].

• Send:X !e means send the value ofe over channelX .

• Receive: Y ?v means receive a value over channelY and
store it in variablev .

• Probe: The boolean expressionX is true iff a communica-
tion over channelX can complete without suspending.

• Sequential Composition:S ; T

• Parallel Composition:S ‖ T or S ,T .

• Simultaneous Composition:S • T both S andT are com-
munication actions and they complete simultaneously.

Additionally, we use the notationX := x to indicate that the
data rails of channelX are set to a valid valuex , and the notation
X ⇓ to indicate that the data rails of channelX are set to the
neutral value.v(X) denotes the validity of channelX andn(X)
denotes the neutrality [20].

References

[1] http://www.asat.com/mosis

[2] H. B. Bakoglu.Circuits, Interconnections, and Packaging for VLSI.Addison
Wesley, 1990.

[3] K. K.-Y. Chang, W. Ellersick, T.-S. Chuang, S. Sidiropoulos, M. Horowitz.
A 2 Gb/s/pin CMOS asymmetric serial link.VLSI Circuits Symposium, June
1998, pages 216-217.

[4] W. Dally and J. Poulton, ”Transmitter Equalization for 4 Gb/s signaling,”IEEE
Micro Jan/Feb 1997, pages 48-56.

[5] W.J. Dally, M.-J. E. Lee, F.-T. R. An, J. Poulton, and S. Tell. High Performance
Electrical Signaling.MPPOI98, 1998.

[6] M. Dean, T. Williams, and D. Dill. Efficient self-timing with level-encoded 2-
phase dual-rail (LEDR).Advanced Research in VLSI: Proceedings of the 1991
UC Santa Cruz Conference, 1991.

[7] R. Farjad-Rad, C.-K.K. Yang, M. Horowitz. A 0.3-um CMOS 8-Gb/s 4-PAM
serial link transceiver.IEEE Journal of Solid State Circuits, May 2000, pages
757-764.

[8] S.B. Furber, A. Efthymiou, and Montek Singh. A Power-Efficient Duplex
Communication System.Workshop on Asynchronous Interfaces: Tools, Tech-
niques and Implementations (AINT-2000), July 2000.

[9] M. Galles. Scalable Pipelined Interconnect for Distributed Endpoint Routing:
the SGI SPIDER Chip.Proc. Symp. High Performance Interconnects (Hot
Interconnects 4), August 1996.

[10] B. Gunning, L. Yuan, T. Nguyen, T. Wong. A CMOS low-voltage-swing
transmission-line transceiver.IEEE International Solid-State Circuits Confer-
ence, 1992

[11] C.A.R. Hoare. Communicating Sequential Processes.Communications of the
ACM, 21(8):666–677, 1978

[12] M. Horowitz, C.-K. K. Yang, S. Sidiropoulos. High-speed electrical signaling:
overview and limitations.IEEE Micro, January 1998, pages 12-24

[13] M.-J. E. Lee, W. Dally, P. Chiang. Low-Power Area-Efficient High-Speed I/O
Circuit Techniques.IEEE Journal of Solid-State Circuits, November 2000,
Vol. 35, No. 11, pages 1591-1599.

[14] A.M. Lines. Pipelined Asynchronous Circuits. M.S. Thesis, California Insti-
tute of Technology, 1996.

[15] A.J. Martin. Distributed Mutual Exclusion on a Ring of Processes.Science of
Computer Programming, 5, 265-276, 1985.

[16] A. J. Martin. Compiling Communicating Processes into Delay-insensitive
VLSI circuits.Distributed Computing, 1(4), 1986.

[17] A.J. Martin. Formal Program Transformations for VLSI Circuit Synthesis. In
E.W. Dijkstra, editor,Formal Development of Programs and Proofs, UT Year
of Programming Series, pp. 59–80, Addison Wesley, 1989.

[18] A.J. Martin. Synthesis of Asynchronous VLSI Circuits.Formal Methods for
VLSI Design, J. Staunstrup, Ed. North-Holland, 1990.

[19] A.J. Martin.Asynchronous Circuits for Token-Ring Mutual Exclusion. Caltech
Computer Science Technical report CS-TR-90-09.

[20] A.J. Martin. Asynchronous Datapaths and the Design of an Asynchronous
Adder.Formal Methods in System Design, 1:117–137, 1992.

[21] P.T. Røine. A System for Asynchronous High-speed Chip to Chip Com-
munication.Proc. International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, 1996.

[22] P.T. Røine.Performance of Synchronous and Asynchronous High-Speed Links:
A Practical Experiment. PhD thesis, Dept. of Informatics, University of Oslo,
May 2000.

[23] I.E. Sutherland, C.E. Molnar, R.F. Sproull, and J.C. Mudge. The trimosbus.
Proceedings of the First Caltech Conference on Very Large Scale Integration,
1979.

[24] C. Svensson and J. Yuan. A 3-level asynchronous protocol for a differential
two-wire communication link.IEEE Journal of Solid-State Circuits, 1994.

[25] J. Teifel.Interchip Communication in Asynchronous VLSI Systems. M.S. the-
sis, Cornell University, May 2002. (Available as Cornell Computer Systems
Lab Technical Report CSL-TR-2002-1027).

[26] C.-K. Yang and M. Horowitz. A 0.8um CMOS 2.5Gb/s oversampling receiver
and transmitter for serial links.IEEE Journal of Solid-State Circuits. Decem-
ber 1996, pages 2015-2023.

[27] E. Yeung, M. Horowitz. A 2.4 Gb/s/pin simultaneous bidirectional parallel
link with per-pin skew compensation.Journal of Solid State Circuits, Novem-
ber 2000, pages 1619-1628.

11

