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Abstract—Drawing on neuroscience, we have developed a
parallel, event-driven kernel for neurosynaptic computation, that
is efficient with respect to computation, memory, and com-
munication. Building on the previously demonstrated highly-
optimized software expression of the kernel, here, we demon-
strate TrueNorth, a co-designed silicon expression of the kernel.
TrueNorth achieves five orders of magnitude reduction in energy-
to-solution and two orders of magnitude speedup in time-to-
solution, when running computer vision applications and complex
recurrent neural network simulations. Breaking path with the
von Neumann architecture, TrueNorth is a 4,096 core, 1 million
neuron, and 256 million synapse brain-inspired neurosynaptic
processor, that consumes 65mW of power running at real-time
and delivers performance of 46 Giga-Synaptic OPS/Watt. We
demonstrate seamless tiling of TrueNorth chips into arrays,
forming a foundation for cortex-like scalability. TrueNorth’s un-
precedented time-to-solution, energy-to-solution, size, scalability,
and performance combined with the underlying flexibility of the
kernel enable a broad range of cognitive applications.

I. OVERVIEW

The brain’s network of interconnected neurons is the most

complex “computer” known—capable of high-level cognition

while consuming less than 20W—unmatched by conventional

von Neumann machines. Engineers have long desired to ap-

proach neurobiology’s capabilities and efficiency by harness-

ing neuroscientific knowledge and translating it into silicon

technology, creating brain-inspired computers [10], [11]. Such

machines have the potential to revolutionize the computer

industry and society by integrating intelligence into devices

limited by power and speed, providing a substrate for a cloud-

based multimedia processing, as well as enabling synaptic

supercomputers for large-scale scientific exploration.

Looking at the brain through the computational lens, its

memory and area requirements scale with number of synapses

whereas computation, communication, power, and speed scale

with synaptic events, where a synaptic event corresponds
to a non-zero valued synapse receiving and processing a

neuronal spike. Remarkably, in this metric, the brain operates

its hundred trillion synapses at an energy efficiency of ∼10fJ
per synaptic event.

We have created an efficient neuroscience-inspired com-

putational kernel, engineered to take advantage of parallel

hardware that includes multiprocessor computers as well as

custom-designed neural processors. In particular, it supports

parallelism across threads, event-based communication, event-

based computation, message aggregation, and localizing mem-

ory with computation.

As a software expression of this kernel, we previously

simulated one hundred trillion synapses via a scalable sim-

ulator, Compass, [6], [7]. In spite of the fact that the function-

level simulator was judiciously optimized along many dimen-

sions and that the simulation used a highly energy-efficient

supercomputer, LLNL’s Sequoia (at the time top-ranked on

Green500), the cost was ∼1μJ per synaptic event—eight
orders of magnitude more than the brain. This dramatic energy

disparity arises from the profound difference between the

neural architecture and organic technology of the brain and the

von Neumann architecture and silicon technology of today’s

computers.

Here we present the silicon expression of the kernel

in the form of a novel brain-inspired architecture leading

to a novel neurosynaptic processor [12]—TrueNorth—that
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Fig. 1. SyNAPSE: Past, Present, and Future. (a) The inspiration for the project lies in neuroanatomy and neurophysiology [1]. We have compiled the
largest long-distance wiring diagram of the primate brain giving insight into communication architecture of the brain [2]. We have developed a simple, digital,
reconfigurable, versatile spiking neuron model that is efficient to implement in hardware and yet supports a wide variety of biologically-relevant spiking
behaviors and computational functions [3]. (b) We have run a series of simulations from “mouse-scale” and “rat-scale” on Blue Gene/L [4] to “cat-scale” on
Blue Gene/P [5] to “human-scale” on Blue Gene/Q [6], [7]. (c) Crystallizing insights from neuroscience and supercomputing, we have demonstrated a key
building block of a novel architecture, namely, a neurosynaptic core, with 256 digital integrate-and-fire neurons and a 1024×256 (= 49) bit SRAM crossbar
memory for synapses [8]. (d) Emulating the clustered hierarchical connectivity of the cortex [9], we have developed a new architecture that in essence is
a network of neurosynaptic cores. The architecture is parallel, distributed, modular, scalable, event-driven, fault-tolerant like the brain. We have developed
a new multi-threaded, massively parallel, functional simulator, Compass, functionally equivalent to this architecture. (e) By using co-design with Compass,
we have conceived, designed, fabricated, and tested TrueNorth with 1 million neurons and 256 million (= 414) synapses. TrueNorth has 4,096 neurosynaptic
cores interconnected via an event-driven network-on-chip. (f) We have created an eight-board system where each board contains one TrueNorth processor
and each of these boards is a stand-alone network node connected via 1Gb Ethernet. (g) By exploiting the tileability of TrueNorth, we have developed and
are testing 4-chip and 16-chip boards with tiled arrays of TrueNorth processors demonstrating native multi-chip communication and to demonstrate a system
with 16 million neurons and 4 billion synapses. (h), (i), (j) Looking to the future, we imagine a “mouse-scale” system with 256 neurosynaptic processors that
consumes merely 256 Watts; a “rat-scale” system with 1,024 processors that consumes only 1kW; and a “1%-human-scale” system with 4,096 processors
that consumes merely 4kW. The 4,096 processor system will contain one trillion (1012) synapses.

achieves ∼10pJ per synaptic event. One of the largest chips
ever fabricated, with 5.4 billion transistors in Samsung’s 28nm
process technology, TrueNorth has 1 million neurons and

256 million synapses organized in 4,096 neurosynaptic cores
[13]—all operating in a parallel, event-driven fashion and

interconnected via an on-chip network. In terms of energy

efficiency, when running a complex recurrent neural network

with 20Hz average firing rate and 128 active synapses per

neuron in real-time (updated at 1kHz), TrueNorth consumes

merely 65mW and delivers 46 Giga-Synaptic Operations

Per Second per Watt (GSOPS/W)1. Running this network

∼5× faster (amortizing passive power), TrueNorth delivers

81 GSOPS/W. For higher spike rates (200Hz) and higher

1 Just as humans excel at tasks like visual object recognition but perform
poorly at FLOPS, the TrueNorth neurosynaptic processor, while Turing-
complete, is efficient for cognitive applications using synaptic operations,
not FLOPS. Conversely, modern von Neumann processors are efficient for
FLOPS, but not for synaptic operations.

synaptic utilization (256 per neuron), TrueNorth exceeds 400

GSOPS/W. For a number of practical computer vision appli-

cations, we demonstrate that TrueNorth consumes five orders

of magnitude less energy than Compass running on either an

x86 system (with two 6-core processors) or 32 Blue Gene/Q

compute cards [14], [15] (each with up to 64 threads). When

running these applications, TrueNorth has a power density of

20mW/cm2 which is roughly four orders of magnitude lower

than a modern processor with an approximate power density

of 100W/cm2.

To achieve this performance, we have engaged in a multi-

disciplinary, multi-institutional, multi-year DARPA SyNAPSE

project since 2008. Fig. 1 describes the context of TrueNorth,

starting with a series of neuroscience-inspired simulations that

led to a highly-optimized kernel that in turn led to a novel

parallel, distributed, modular, scalable, event-driven, fault-

tolerant architecture that has become the basis of TrueNorth.

These simulations allowed us to understand computation,
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communication, and memory constraints as well as challenges

in scaling and real-time performance. Our optimized simulator,

Compass, is functionally 1:1 equivalent with TrueNorth via co-

design [16], [17]. As a result, we have developed a cache of

applications on Compass [18], such as multi-sensory feature

extraction and pattern recognition; association and context

processing; as well as information extraction, that now run

without modification on TrueNorth, orders of magnitude faster

and for orders of magnitude less energy.

Scaling beyond a single chip, TrueNorth has a tileable

structure enabling modular, scalable cognitive supercomputers

as envisioned in Fig. 1(h-j). As a first step in this direction,

we demonstrate four-chip and sixteen-chip boards with tiled

arrays of TrueNorth processors that communicate without

any additional peripheral circuitry. We also demonstrate a

rack containing eight 1Gb Ethernet cards each with a single

TrueNorth processor. Looking to the future, we can imagine

replicating the “1% human-scale” simulations that required 16

racks of Blue Gene/P and ran 400× slower than real-time [5]

on a TrueNorth system that requires only one rack, would run

in real-time and consume an estimated 128,000× less energy,

as detailed in Section VII. These systems pave the way for

multimedia cloud processors capable of dealing with a myriad

of sensors pervasive in today’s world.

To enable applications across a wide spectrum spanning

neural networks and machine learning, we have developed an

end-to-end ecosystem, described in Fig. 2.

II. RELATED WORK

Neural network simulations on supercomputers have a rich

history, from early work simulating artificial neural networks

[20], to more recent spiking neural networks projects includ-

ing the NEST simulator [21], [22] on the K-computer [23],

bio-physically detailed cortical microcircuits [24], [25], [26],

GPU acceleration [27], and others summarized in [28]. Our

simulations, using our optimized function-level kernel, have

progressed from 16 racks of Blue Gene/L [4] (30 million neu-

rons, 240 billion synapses) to 36 racks of LLNL Dawn Blue

Gene/P [5] (1.6 billion neurons and 8.87 trillion synapses) to

96 racks of LLNL Sequoia Blue Gene/Q [6], [7], culminating

in one hundred trillion synapses at “human-scale.”

Historically, neuro-inspired computers followed Carver

Mead’s pioneering work [10], modeling biological neural cir-

cuits using silicon analog electronics, including neurons [29],

ion channel models [30], and winner-take-all circuits [31].

Larger systems, for example Neurogrid (65k neurons) [32],

CAVIAR (45k neurons) [33], and IFAT (65k neurons) [34]

combine arrays of these analog components with an external

memory to store connectivity information. More recent archi-

tectures include the BrainScaleS project [35], demonstrated a

wafer-scale system (20cm diameter wafer) with a total of 200

thousand analog neurons and 40 million addressable synapses,

and consumes roughly a kilowatt. The SpiNNaker project

[36] demonstrated a 48-chip system (each chip has 18 ARM

processors) simulating a total of 250 thousand neurons and 80

Fig. 2. Building a Cognitive Computing Ecosystem. The inspiration for
the ecosystem lies in neuroscience [1]. The blueprint defines the high-level
architecture, a 2D array of neurosynaptic cores. Each core is an indepen-
dent module integrating computation (neurons), communication (axons), and
memory (synapses). Cores operate in parallel, communicating by sending
messages (spike events) through a mesh network. We have implemented
two expressions of the blueprint, co-designing a scalable supercomputer-
based simulator (Compass [6]) and a scalable silicon-fabricated processor
(TrueNorth [12]), ensuring identical one-to-one operation, such that any model
on the software simulator runs unchanged on the hardware. Enablements or
infrastructure includes an architecture specific “Corelet” language and Corelet
Programming Environment (CPE) [19], a library of algorithms [18] in CPE,
and Compass to simulate networks and to facilitate training off-line. We
developed Applications that ran initially on Compass—even before TrueNorth
was fabricated and tested—and later (without modification) on TrueNorth,
including convolutional networks, liquid state machines, restricted Boltzmann
machines, hidden Markov models, support vector machines, and optical flow
[18]. To promulgate the new ecosystem, we have developed a new teaching
curriculum. Combining all of the pieces, the ecosystem forms a framework
for a new generation of synaptic supercomputers.

million synapses (implemented via off-chip memory), which

consumes 36W.

III. INNOVATIONS: NEUROSYNAPTIC KERNEL AND

EXPRESSIONS

One of the fundamental keys to high-performance scientific

computing is a kernel that is efficient in computation, memory,

and communication, as demonstrated by the gravity kernel

[37], the molecular dynamics iteration [38], fluid flow dynam-

ics [39], the phase-field model of solid and liquid materials

[40], thermodynamics and free energy computation [41], ther-

monuclear computation [42], and atomistic simulation [43].
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We present an efficient kernel, inspired by neuroscience,

that serves as the blueprint for both our software cortical

simulator and silicon cortical processor. The kernel’s pseudo-

code (Listing 1) specifies a spiking neural network simulation,

where neurons are nodes of a graph and their connections

(synapses) are the edges. Individual neurons parameters are

fully programmable, supporting a wide range of spiking be-

haviors with the same basic neuron model [3], and individual

synapses are also programmable, supporting flexible network

topologies. The kernel is designed to take advantage of parallel

hardware including multiprocessor computers and custom-

designed neural chips. In particular, the kernel supports:

• Parallelism across threads: Neurons and synapses are
partitioned into parallel threads that communicate with

each other via messages. Such partitions can have an

efficient implementation when the topology of the neural

network has spatial structure (for example, clustered or

sparse connectivity), and threads are able to utilize local-

ity between memory and computation (for example, using

a local cache on a von Neumann architecture [44], or a

dedicated memory structure on a custom architecture).

• Event-based communication: Spike events, which repre-
sent the individual firing of neurons (for example, when

a neuron’s potential exceeds its programmed threshold)

communicate information within and between threads.

Specifically, each presynaptic spike event is replicated

and sent to all its target synapses (line 15), which are

stored as synaptic events in the threads hosting the

targeted neurons.

• Event-based computation: Within a discrete time step
of a neural simulation, enforced by a synchronization

barrier to ensure determinism, each thread updates its

local neurons by processing all of the pending synaptic

events (line 5). Because neurons fire sparsely in time (on

the order of a few Hertz), the event-based update loop is

significantly more efficient than an alternative approach

that loops over all synapses.

A. Neurosynaptic Core

A further optimization of the kernel is to introduce a novel

fundamental data structure, called a neurosynaptic core, which
integrates axons, neurons, and synapses. The structure of the

core is inspired by observations from neurobiology, where

neurons and their connections often form clusters to create

local cortical microcircuits [45], [46]. The core brings com-

putation, communication, and memory together and operates

in an event-driven fashion.

An individual neurosynaptic core represents 256 axons, 256

neurons, and 256×256 synapses, Fig. 3(a). Externally, axons
are the cores inputs, receiving spike events, and neurons are

the outputs, emitting spike events. Internally, it is a fully-

connected directed graph with programmable synaptic connec-

tions from all axons to all neurons (synapses are non-learning).

Thus, a single core can model networks with in-degree and

out-degree of 256 or less. Functionally, information flows from

individually addressable axons (horizontal lines), through the

1f o r t h r e a d i n a l l t h r e a d s {
/ / Neuron upd a t e s & s p i k e s

3f o r neuron i n t h r e a d . neu rons {
/ / S y n a p t i c i n p u t

5f o r s yn ap s e e v en t t a r g e t i n g neuron . s yn ap s e s {
/ / Compute neuron membrane p o t e n t i a l

7upda t e neuron by syn ap s e ev en t . we igh t ;
}

9/ / Compute neuron l e a k
neuron l e a k u pd a t e ;

11/ / Check i f neuron exceed s t h r e s h o l d
neuron t h r e s h o l d ;

13i f neuron . s p i k e {
/ / Communicate s p i k e e v e n t s

15t r a n sm i t s p i k e e v e n t t o t a r g e t s y n a p s e s ;
/ / Re se t neuron

17neuron r e s e t ;
}

19}
/ / Check communica t ion comple t e

21b a r r i e r ;
/ / Advance t o nex t t ime s t e p

23}
Listing 1. Pseudo-code of the blueprint algorithmic kernel, executed every
time step. Each thread updates all its assigned neurons based on arriving
synaptic events. Then it checks if the neuron has exceeded its threshold, if
so, it communicates to all targeted synapses, which may involve inter-thread
communication.

active synapses in the crossbar (binary-connected crosspoints),

to drive inputs for all of the connected postsynaptic neurons

(vertical lines). Axons are activated by incoming input spike

events, which are generated by neurons anywhere in the

system, and delivered via message passing.

The primary advantage of using a core is that it overcomes

a key communication bottleneck that limits scalability for

large scale network simulations. Specifically, without using

cores, we are required to replicate spike events for each

target synapse; therefore, in a system with N neurons and

S synapses, we need to send S
N events for each spike. By

partitioning the network into neurosynaptic cores, we only

need to send one event to simultaneously target all of a core’s

target_synapses, reducing total traffic by a factor of S
N

(typically 256). In essence, by enforcing a clustered network

topology with in-degree and out-degree of 256, we overcome

an important communication bottleneck.

A neurosynaptic core also offers a memory efficient data

structure, taking advantage of implicit memory addressing. A

crossbar with C input axons and output neurons implements

a fanout of C each time an axon is activated by an input

spike. Uniquely addressing axons (which implicitly addresses

neurons) requires S
C log2

S
C bits. An alternate approach that

explicitly addresses each synapse would require S log2 S bits,
since each neuron would need to store a list of targets

specifying the unique synapses.

The details of how a core updates its internal state are

summarized here: Synapses are structured as a connection

matrix (in the crossbar), where a connection from axon i to
neuron j is Wi, j (binary). A core updates all of its neurons

at discrete time steps t, which is nominally 1ms. At each
time step t, the core processes a binary input vector of axon
states (whether an input spike is present), where each axon i is
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(a) (b) (c)

Fig. 3. TrueNorth architecture at core, chip, and multi-chip scale. (a) The building block is a neurosynaptic core, where horizontal lines are axons (inputs),
the “square-end half-circle” symbol denotes axon delay buffers, cross points are individually programmable synapses, vertical lines are neuron inputs, and
triangles are neurons (outputs). Neurons behaviors are individually programmable with two examples shown. (b) Cores naturally tile using a 2D on-chip
mesh routing network. Long-range connections between neurons and axons are implemented by sending spike events (packets) over the mesh network. (c)
Individual chips also tile in 2D, with the routing network extending across chip boundaries through peripheral merge and split blocks.

represented by a bit Ai(t). Although each synaptic connection
is binary, it can mediate a multi-valued post-synaptic effect.

Specifically, each axon i is assigned to one of four types
Gi, which corresponds to a weight specified individually for

each neuron. For example, axon–neuron connections can be

set to be excitatory or inhibitory, and each with different

synaptic strengths. Mathematically, at time t, neuron j receives
input: Ai(t)×Wi, j × SGi

j (Listing 1, line 7), where SGi
j is a

programmable signed integer. In an alternate mode, the active

connections are integrated probabilistically (using a pseudo-

random number generator, PRNG, in each core), emulating

stochastic neural dynamics. Neurons integrate synaptic input

over time, maintaining the state in their membrane potential

Vj, and emitting spikes if they exceed their thresholds [3] (line

12); thresholds can also be drawn from the PRNG. Each spike

is associated with a target core, a target axon address, and a

delivery time tD computed as t plus an programmable axonal
delay from 1 to 15 (line 15).

We now describe a software and a silicon expression of

our neuroscience-inspired kernel, both based on neurosynaptic

cores, and are exactly functionally equivalent.

B. Kernel Software Expression: Compass Simulator

Compass is a highly-optimized function-level simulator for

large-scale networks of spiking neurons organized as neurosy-

naptic cores. The simulator is written in C++, sends spike

events via MPI communication [47] and uses OpenMP [48] for

thread-level parallelism. Compass demonstrates outstanding

weak and strong scaling results [6], [7].

The kernel in Listing 1 maps directly to the main semi-

synchronous simulation loop used by Compass, with each

pass simulating a time step. In the Synapse phase (lines 4-8),
each process propagates input spikes from axons to neurons

through the crossbar and performs synaptic integration. Next,

in the Neuron phase (lines 9-13), each process executes the
leak, threshold, and fire model for each neuron. Last, in the

Network phase (line 15) processes send spikes from firing neu-

rons to destination axons. For additional efficiency, Compass

aggregates spikes between pairs of processes into a single MPI

message; overlaps communication with computation; uses an

innovative synchronization scheme requiring just two commu-

nication steps regardless of the number of the processors; uses

meticulous load-balancing; and uses highly compressed data

structures for maintaining neuron and synapses states. These

advances enabled Compass to exercise all 6.3 million threads
and 1.5 million processors on LLNL’s Sequoia Blue Gene/Q.
Compass is indispensable for exploring scaling for large-

scale network simulations; benchmarking inter-core commu-

nication on different neural network topologies; demonstrating

applications in vision, audition, motor control, and sensor inte-

gration [18]; and hypotheses testing, verification, and iteration

regarding neural codes and function. Furthermore, via co-

design, Compass played an instrumental role in developing

our energy-efficient hardware kernel expression, informing

architectural choices in the hardware design, as well as veri-

fying the hardware pre- and post-fabrication via function-level

regression testing.

C. Kernel Hardware Expression: TrueNorth Chip

Our key innovation is a very efficient implementation of

the kernel in silicon. Building on the success of Compass,

we have conceived, designed, built, and tested a custom-

designed neural processor—TrueNorth—that is able to run a

network of neurosynaptic cores in real time, while consuming

little total power (active + passive power). TrueNorth’s archi-

tecture, (Fig. 3), is a custom-designed mixed asynchronous-

synchronous chip that was fabricated in Samsung’s 28nm

process technology. With 5.4 billion transistors in 4.3cm2,
TrueNorth has an on-chip network of 4,096 neurosynaptic
cores—for a total of one million neurons and 256 million

synapses. The physical implementation of a neurosynaptic core

fits in a 390μm×240μm footprint.

Active power is kept low by following the event-driven

nature of the kernel and only evaluating the neural updates that
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are required. Furthermore, we use dedicated memory (built

to the precise size required by a neurosynaptic core), co-

located with the computation—ensuring the energy to move

bits across wires is kept low. Passive power is kept low

using a low power process and choosing slower low-leakage

transistors. Multiplexing the neuron computation results in a

more compact design that reduces both active power (shorter

wires for signaling) and passive power (fewer leakage paths).

TrueNorth’s on-chip network, (Fig. 3(b)), interconnects the

2D array of cores. Spike events (single-word packets) are sent

from neurons to axons via the communication network to

implement long-range point-to-point connections. Unlike the

brain that has slow dedicated physical wires for each connec-

tion, we time-multiplex fast metal wires and digital electronics

to emulate the brain’s high connectivity. Specifically, each core

is equipped with a five-port router that forms the backbone of

our 2D mesh network. When a neuron on a core spikes, it

injects a packet into the mesh, which is passed from core

to core—first in the x dimension then in the y dimension
(deadlock-free dimension-order routing [49])—until it arrives

at its target core, where it fans out locally. The architecture is

robust to core defects: if a core fails, we disable it and route

spike events around it.

To scale the 2D mesh across chip boundaries, where the

number of inter-chip connections is limited, we use a merge–

split structure at the four edges of the on-chip mesh boundary

(Fig. 3(c)). Packets leaving the mesh are tagged with their row

(or column) before being merged onto a shared link that exits

the chip. Symmetrically, packets that enter the chip from a

shared link are sent to the appropriate row (or column) using

the tagged information. This enables system-level scalability:

TrueNorth chips can be tiled into a 2D array—just like

cores are tiled to create the chip array—without the need for

auxiliary communication circuits.

In summary, the TrueNorth processor is efficient because
(i) memory and computation are co-localized, eliminating the

von Neumann bottleneck; (ii) cores are event-driven, which

results in active power proportional to firing activity; and (iii)

only spike events, which are sparse in time, are communicated

between cores via the long-distance communication network.

Furthermore, TrueNorth is scalable because (i) cores can be
tiled in 2D similar to the mammalian neocortex [50]; (ii) local

core failures do not disrupt global usability; (iii) individual

chips can be tiled in a 2D array through direct chip-to-chip

connections; and (iv) the hierarchical communication model

lowers system bandwidth requirements.

IV. APPLICATIONS

Programming the TrueNorth processor consists of specify-

ing three things: the dynamics of each neuron (setting the neu-

ron parameters and weights), the mapping from neuron outputs

to axon inputs (configuring the network routing tables), and

the local synaptic connectivity between axons and dendrites

(setting the binary crossbars). The Corelet language is used to

efficiently specify all of these parameters.

Fig. 4. Applications for Characterization. Frames of streaming video drive all
applications (a),(d),(g). Two applications generate features: (b) Haar-feature
response map for horizontal lines; (c) eight LBP histograms extracted from
8 subpatches. Two applications identify and focus on interesting objects: (e)
salient object map; (f) example saccades. One application detects and classifies
objects: (h) where pathway; (i) merged what and where results.

A. Corelets

Applications for the TrueNorth processor are developed in

the Corelet Programming Environment (CPE) [19], a new,

object-oriented, compositional language and development en-

vironment that promotes efficient, modular, scalable, and col-

laborative TrueNorth software. A corelet is a functional encap-
sulation of a network of neurosynaptic cores that collectively

perform a specific task. Object-oriented corelets can seam-

lessly build hierarchically composable networks while sharing

underlying code and unified network interfaces. Our approach

is conceptually akin to Banavar’s framework for compositional

modularity [51], and dramatically improves code reuse and

scalability. Corelets are collected in the corelet library—an
ever growing repository of reusable corelets covering numer-

ous TrueNorth implementations of seminal algorithms, includ-

ing linear and non-linear signal and image processing; spatio-

temporal filtering; saliency; object detection, classification, and

recognition; and real-time audio and video analytics [18], a

representative set of which have been selected for testing here.

B. Applications for Performance Characterization

We analyze TrueNorth performance in Section VI on several

complex applications that were co-designed to run on the

simulator and the TrueNorth processor to perform feature

extraction, saliency, detection and classification (Fig. 4), as

well as large-scale recurrent neural network computation.

Feature extraction is a critical component of most computer

vision systems. Here, we tested two types of feature extractors:

Haar-like features, often used in face detection [52], and Local

Binary Patterns (LBP), often used in biometrics, robot navi-

gation, and brain MRI analysis [53]. Both systems processed

100×200 pixel video at 30 frames per second, using either ten
Haar-like features in a network of 617,567 neurons in 2,605
cores with a 135Hz mean firing rate, or 20-bin Local Binary

Pattern feature histograms in a network of 813,978 neurons
in 3,836 cores with a 64Hz mean firing rate.
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A saliency map assigns a measure of interest, or saliency,

to each pixel in an image, often to a select a region for

further processing [54]. First, our saliency system creates a

saliency map using a feature extraction corelet with 889,461
neurons in 3,926 cores and an 86Hz mean firing rate. Sec-
ond, a saccade map selects regions of interest by applying

a winner-take-all mechanism to the saliency map, followed

by temporal inhibition-of-return to promote map exploration,

using a corelet with 612,458 neurons in 2,571 cores and a
5Hz mean firing rate.

Many computer vision tasks require both detecting an

object’s location and classifying its identity. We built a multi-

object detection and classification system for high-resolution,

fixed-camera videos. Our system includes a Where network

to detect objects, a What network to classify objects, and a

What/Where network to bind these predictions into labeled

bounding boxes. We applied this system to the DARPA Neo-

vision2 Tower dataset [55], [56], which contains moving and

stationary people, cyclists, cars, buses, and trucks. A single

TrueNorth chip processed a 240×400 pixel aperture at 30
frames per second in real-time, using 660,009 neurons in
4,018 cores with a 12.8Hz mean firing rate, and achieving
0.85 precision and 0.80 recall on the test set.
Finally, to systematically characterize TrueNorth’s operation

space and performance, we created a set of 88 probabilistically

generated recurrent networks that each use all 4,096 cores and
every neuron on the processor. The set of recurrent networks

spans mean firing rates per neuron from 0 to 200Hz, and active

synapses per neuron from 0 to 256. Neurons project to axons

that are an average of 21.66 hops (cores) away both in x and
y dimensions.

V. MEASUREMENT SYSTEM AND ENVIRONMENT

We benchmarked TrueNorth speed and power against two

high-performance computing architectures: IBM Blue Gene/Q

[57] and Intel x86. On Blue Gene/Q we used up to 32 compute

cards, each card with 16GB of DDR3 DRAM and an 18-core

PowerPC A2 processor (of which 16 cores run applications),

with four hardware threads per core [14]. The x86 system

was a dual socket board with two 6-core E5-2440 processors

operating at 2.4GHz, 188GB of DRAM, a last-level 15MB
shared cache, and Red Hat Enterprise Linux 4.4.7.

1) Synaptic Operations per Second (SOPS) : Instruction-
based computation is generally measured in Operations per
Second, (for example, FLOPS). Since TrueNorth does not
use traditional von Neumann-style instructions, we define its

fundamental operation to be a synaptic integration, a con-

ditional weighted-accumulate operation that forms the inner

loop of the neuron function (Listing 1, line 7). See [3]

for the full neuron equations. Mathematically, one synaptic
operation is: Vj(t) + Ai(t)×Wi, j × SGi

j , conditioned on both

the synapse being active (Wi, j = 1) and a spike arriving

at the input axon (Ai(t) = 1). Ai(t) and Wi, j are binary,

and the membrane potential Vj(t) and synaptic weights S j
are 20-bit and 9-bit signed integers respectively. SOPS is a

conservative measure of computation that ignores all other

operations (leak, threshold, random number generation, etc.)

computed by each TrueNorth core. SOPS can be computed as

avg. f iring rate×avg. active synapses, thereby counting only
the spikes which pass through connected synapses.

2) Power Consumption: For TrueNorth power, we sampled
the chip’s core current at 65.2kHz with an AD7689 analog-
to-digital converter and smoothed the single time step current

waveform with a level-triggered average (num time steps >
500). Calibrating against a Keithley PS2185 power source, we

found only a 3% difference in estimated RMS current.

For Blue Gene/Q power, we used the EMON interface

[58] to query the IBM DB2 relational database used by Blue

Gene systems to periodically log time stamped environmental

measurements from various components [59]. We averaged

the reported node card (32× 16 cores) power and estimated
compute card (16 cores) power by dividing node card power

by 32. For x86 power, we used the PAPI 5.3.0 interface [60]
to read the Running Average Power Limit (RAPL) registers

[61], which sample at 1kHz (every simulation time step) the

power of the full processor package, of just the compute cores,

or of the external DRAM.

VI. PERFORMANCE RESULTS

A. Logic Correctness: One to One Equivalence

In terms of transistor and neuron count, TrueNorth is

the largest neuromorphic chip ever produced. To verify the

logical correctness, we adopted a hardware–software co-design

strategy based on the shared function-level kernel definition.

1) Prior to fabrication, we compared test vector output from

the optimized function-level simulator, Compass, with the

mixed gate- and transistor-level simulation of the hardware

design. We simulated 413,333 single-core regressions and
7,536 full-chip (instancing up to 2,048 cores) regressions, with
the detailed hardware simulator consuming approximately 100

years of CPU time. 2) Post-fabrication, with TrueNorth sili-

con hardware, we validated the fidelity of the manufacturing

process and transistor layout with an additional set of 289

full-chip regressions. All pre- and post-fabrication regressions

matched 100% between the hardware design and Compass,

the function-level simulator.

We tested the temporal limits of exact 1:1 correspondence

of the hardware and the Compass simulator by running re-

gressions from 10k to 100M time steps. Again, not a single

spike mismatch was found, maintaining 100% agreement. The

longest running regression took 27.7 hours on TrueNorth
at 1kHz (real-time), versus 74 days on Compass using an

x86-based server (dual-socket Intel Xeon X7350 quad-core

processors operating at 2.93 GHz) running 8 threads. We
also ran the regressions at operating voltages ranging from

0.67V to 1.05V. The 88 probabilistically-generated recurrent

neural networks of Section IV-B are a sensitive assay for

any deviation from perfect correspondence, since their rich

stochastic dynamics cause spikes to quickly and chaotically

diverge from simulation if the processor misses even a single

neural operation. To measure the maximum speed at which

we can run the system, we increased the time step frequency
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(a) (b) (c)

(d) (e) (f)

Fig. 5. TrueNorth Characterization. (a) Computation per time (GSOPS): rate vs. synapses at 0.75V. (b) Maximum time step operation frequency (kHz): rate
vs. synapses at 0.75V. (c) Maximum time step operation frequency (kHz): voltage vs. synapses at an average firing rate of 50Hz. (d) Total energy per time
step (μJ): rate vs. synapses at 0.75V. (e) Computation per energy (GSOPS/W): rate vs. synapses at 0.75V. (f) Computation per energy (GSOPS/W): voltage
vs. synapses at an average firing rate of 50 Hz.

until the processor reported an execution error on any of the

88 probabilistically-generated recurrent neural networks. We

repeated this test on neural models in which all synapses are

active and every neuron spiked on every time step, the worst-

case scenario.

B. TrueNorth Performance Characterization

Using our set of 88 probabilistically-generated recurrent

neural networks, we measured time and energy across the

parameter space at different operating voltages, creating the

contour plots in Fig. 5. SOPS increases with both active

synapse count and firing rate (Fig. 5(a)), and correlates with

total energy consumption (Fig. 5(d)). Although total energy

is highest at high synaptic density and firing rate (upper

right, Fig. 5(d)), TrueNorth is performing more computation

in that region. The result is a more efficient use of the

TrueNorth hardware, as quantified by computation per energy

(Fig. 5(e)). When running a complex recurrent neural network

with 20Hz average firing rate and 128 active synapses per

neuron in real-time (updated once per millisecond), TrueNorth

consumes merely 65mW and delivers 46 Giga-Synaptic Oper-

ations Per Second per Watt (GSOPS/W). Running this network

∼5× faster (amortizing passive power), TrueNorth delivers 81
GSOPS/W. A large fraction of the design space exceeds 100

GSOPS/W. For higher spike rates (200Hz) and higher synaptic

utilization (256 per neuron), corresponding to the upper right

corner, TrueNorth exceeds 400 GSOPS/W. Faster-than-real-

time (>1kHz) operation is possible when active synapses are
few and firing rates are low; that is, when the TrueNorth com-

putational load is light (Fig. 5(b)). Computational efficiency

(SOPS/W) increases as operating voltage is lowered (Fig. 5(f)).

Maximum execution speed increases with voltage (Fig. 5(c)),

but total power increases as voltage squared. Consequently,

SOPS/W is maximized at lower voltages, limited only by

the minimum voltage that can still ensure correct circuit-level

functional operation (∼700mV).
C. Characterization versus Compass on BG/Q and x86

To benchmark Compass performance on the BG/Q and

x86 systems, we first measured execution time and energy

for the 88 probabilistically-generated recurrent neural net-

works. Fig. 6 depicts TrueNorth’s advantage in speed and

energy consumption relative to the Compass simulator run-

ning on the BG/Q and x86 systems. Speedup is defined

as the ratio of execution times for the same application

on the von Neumann system versus TrueNorth: Speedup =
TProc/TTrueNorth. Similarly, × power and × energy improve-

ment are ratios: ×Improvementpower = PProc/PTrueNorth and
×Improvementenergy = EProc/ETrueNorth. TrueNorth executes 1
order of magnitude faster than Compass running on 32 hosts of

BG/Q and two to three orders of magnitude faster than the x86

system. TrueNorth is five orders of magnitude more energy

efficient than both systems, measured per time step, over the

entire characterization space. Note that execution time and

energy are physical invariants that do not rely on definitions

of computation (that is, FLOPS or SOPS).

D. Application Performance Comparison

Next, we benchmarked the five computer vision applications

described in Section IV-B on the TrueNorth processor and
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(a) × Speedup vs. BG/Q (b) × Improvement Energy vs. BG/Q

(c) × Speedup vs. x86 (d) × Improvement Energy vs. x86

Fig. 6. TrueNorth performance vs. Compass: (a) one order of magnitude
speedup of execution time vs. 32 host BG/Q, (b) five orders of magnitude
reduction in energy vs. 32 host BG/Q, (c) two to three orders of magnitude
speedup of execution time vs. dual socket x86, (d) five orders of magnitude
reduction in energy vs. dual socket x86.
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Fig. 7. (a) Execution speedup vs. × power improvement, and (b) × energy
improvement of TrueNorth processor versus Compass simulator running on
up to 32 BG/Q processors and up to two x86 processors on five computer
vision applications. Left to right: Neovision Multi-Object Detection and
Classification, Haar wavelet features, Local Binary Patterns, Saccade map,
and Saliency map.

on the BG/Q and x86 systems, (Fig. 7). One TrueNorth

processor has a speedup of one and two orders of magnitude,

respectively, over either a weak-scaling number of BG/Q

processors (≈ 2 neuro-synaptic cores per thread, 32 threads per
compute card) or two x86 processors, and consumes four and

three orders of magnitude less power, respectively. Overall,

TrueNorth uses over five orders of magnitude less energy per

time step than Compass running on either the BG/Q or x86

systems. These speedups and energy improvements, shown in

Fig. 7, are in line with those of the probabilistically-generated

recurrent networks shown in Fig. 6.

E. BG/Q Characterization

Fig. 8 illustrates the run-times and corresponding energy

consumptions for strong scaling runs for the Neovision appli-

cation on BG/Q. We see significant speedups as we scale the

number of processors and threads, but even the best operating

point is 12× slower than real-time. In summary, a single host
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Fig. 8. Single Chip Neovision run time and power consumption on IBM Blue
Gene/Q as a function of number of host processors and simulation threads.

is the most power-efficient but slowest; 32 hosts is the fastest

but requires more power.

VII. FUTURE SYSTEMS AND APPLICATIONS

TrueNorth’s modular, scalable architecture and ultra-low

power consumption provide an unique opportunity to cre-

ate brain-inspired information technology systems with 100

trillion synapses, which is comparable to “human-scale.” We

conceive that such systems would constitute 96 racks, each

rack with 4,096 TrueNorth processors and consuming merely
4kW. The key is to leverage TrueNorth’s seamless tiling for

low-power local-connectivity along with recent advances in

interconnect technology for long-range connectivity.

A. Eight Board TrueNorth Array

Fig. 1(f) pictures eight boards, each containing a stand-alone

network node with a single TrueNorth processor and a Zynq

FPGA. We think of TrueNorth as “cortex” and the Zynq as

“thalamus.” The Zynq FPGA, with dual core ARM processors

and programmable logic fabric, serves as an interface between

the TrueNorth processor and the high-speed interconnection

network. These boards were used to drive the characterization

study and applications presented here.

B. 4×1 TrueNorth Array Board

Like the cortex, TrueNorth processors are designed to tile

by communicating directly with each other without need for

additional peripheral circuitry. Fig. 1(g) shows a 4× 1 array
of TrueNorth processors through which we have confirmed

the operation of the asynchronous inter-chip communication

channels, and which represents our first foray towards large-

scale systems. This board includes four socketed TrueNorth

processors which communicate via a native asynchronous bus

protocol, Fig. 3(c).

C. 4×4 TrueNorth Array Board

Fig. 9 shows a 4×4 array of TrueNorth processors in sock-
ets, representing 16 million neurons and 4 billion synapses.

This board demonstrates TrueNorth’s native 2D asynchronous
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Fig. 9. The 16-chip board is organized as a 4× 4 array of (socketed)
TrueNorth Processors. Chips communicate natively with neighbors in 2D,
implementing 16 million neurons and 4 billion synapses.

inter-chip communications interconnect. Board edge connec-

tors enable board-level interconnection, continuing the tiled

scalability. A column of low-power FPGAs interface between

the TrueNorth compute array and a rear connected Zynq

network interface module. Total board power, while running a

16M neuron network at real time is 7.2W, divided 2.5W and

4.7W between the TrueNorth array operating at 1.0V and the

supporting logic (which includes the FPGAs) respectively.

D. Vision for Large-scale Systems

To achieve massive scale, we conceive a hierarchically inter-

connected TrueNorth system consisting of multi-chip boards,

making up rack units, that are assembled into racks (Fig. 1,

bottom). As a key building block, we imagine boards with 16

TrueNorth processors arranged in a 4×4 matrix, with a single
FPGA communicating spikes and configuration data between

an edge of the TrueNorth processor array and a networking

interface (for example 1Gb Ethernet, PCIe, Infiniband). We

conservatively budget 10W of total power per 4×4 processor
board. Next, we imagine a quarter-rack unit with a passive

backplane interconnecting 64 TrueNorth boards. We budget

1kW per fully populated backplane. This backplane unit could

replicate, for 6400× less energy, the “rat-scale” simulations

that required 32 racks of Blue Gene/L [62] and yet ran

10× slower than real-time [4]. Putting four quarter-rack units

together along with high-performance networking switches

and power supplies, we project a full rack unit with 4,096

processors consuming approximately 4kW of power (with only

∼300 Watts attributed to TrueNorth processors). This single-
rack system could replicate, for 128,000× less energy, the

“1% human-scale” simulations that required 16 racks of Blue

Gene/P and ran 400× slower than real-time [5].

To bring our low-power modular TrueNorth system vi-

sion to reality, we are investigating a number of research

challenges. One challenge is selecting proper interconnect

[63], [64], [65], [66] types and topologies suitable for large-

scale TrueNorth applications, which may differ significantly

from the interconnect of supercomputers used for physical

simulation. Another challenge is maximizing the system’s

computation per energy while minimizing communication

and system management overhead. The system must include

traditional CPUs for system management and network training,

as well as interface FPGAs to bridge between TrueNorth,

CPUs, and high-speed interconnect. The correct ratio between

TrueNorth processors and the support infrastructure is an

open question. With low power a major requirement, the

operating environment for a TrueNorth system is different

from conventional supercomputers. TrueNorth processors may

be densely packed together with minimal cooling and power

distribution concerns, an advantage during system scale out.

On the software side, defining a new programming paradigm

that enables high productivity akin to MPI [47] or OpenMP

[48] for today’s supercomputers is a vital area of research.

Learning large-scale neural networks that can take advantage

of the enormous TrueNorth system scale is an important

direction.

Such synaptic supercomputers, may enable a slew of appli-

cations in visual and auditory scene analysis and understand-

ing; self-driving vehicles; medical image processing; multi-

sensory feature extraction, classification, pattern recognition,

association, context processing, abstraction, and understand-

ing; financial services; and public safety as well as serve as

platforms for studying learning, cognition, and phenomeno-

logical system-level neuroscience.

VIII. CONCLUSION

Over the past 6 years as part of the DARPA SyNAPSE

program, we have created a end-to-end ecosystem that en-

compasses the entire development stack for neural-inspired

applications. Algorithms and applications are first developed

in our new programming language and environment; they

are then simulated using our highly-optimized neural network

simulator, Compass; and finally, the same networks are de-

ployed on our real-time and energy-efficient neural-processor,

TrueNorth. Using co-design as the design principle, Compass

and TrueNorth are both expressions of the same underly-

ing kernel. Although both expressions have equivalent func-

tional behavior, TrueNorth hardware achieves a ∼100,000×
reduction in energy-to-solution and ∼100× reduction in

time-to-solution as compared to Compass, which has been

meticulously-tuned for high performance on von Neumann

microprocessors and supercomputers. This dramatic improve-

ment is attained by a radically new, non-von Neumann, event-
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based architecture that tightly integrates memory, computation,

and communication into a neurosynaptic core and connects a

massive number of such cores (4,096) via an event-driven
network-on-chip. Unlike today’s processors that are optimized

for FLOPS, TrueNorth is optimized for SOPS (Synaptic Oper-

ations Per Second)—the fundamental unit of computation for

large-scale spiking neural networks. Remarkably, TrueNorth

achieves a performance of 46 Giga-SOPS/Watt while running a

wide-range of benchmark networks. Given the complementary

nature of FLOPS and SOPS, hybrid computers that combine

today’s processors with TrueNorth are inevitable. Because

TrueNorth chips are designed to be seamlessly tiled (due

to their native chip-to-chip communication interface), it is

possible to create large-scale neurosynaptic supercomputers.

We have already demonstrated a plethora of neural-inspired

applications on Compass and TrueNorth, which include com-

plex visual processing and pattern recognition tasks. Our

ecosystem will form the foundation for ultra-low-power, com-

pact, real-time, multi-modal sensorimotor information tech-

nology systems that are on the horizon, and that these will

in turn provide enormous societal and economic benefits. In

addition to the already demonstrated benefits of our ecosystem

in terms of energy-to-solution, time-to-solution, SOPS/Watt

performance, scale, and flexibility for applications, we believe

that our multi-faceted approach will have far reaching impact.

For example, our ecosystem is a powerful testimony to the

co-design methodology that is becoming increasingly more

relevant as Moore’s law begins to stall and heterogeneous

architectures begin to emerge. In addition, our work highlights

the role of today’s supercomputers as indispensable in bringing

the vision of Compass and TrueNorth to reality. Realizing the

full potential of the neurosynaptic ecosystem is a rewarding

and challenging endeavor, which will require contributions and

collaborations across the entire breadth and depth of machine

learning, neural networks, computer vision and audition, neu-

roscience, robotics, computer architecture, circuit design, sim-

ulation methodology, programming languages, visualization,

usability, design, and, needless to say, supercomputing.
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