
Width-Adaptive Data Word Architectures

Rajit Manohar
Computer Systems Laboratory

Electrical and Computer Engineering
Cornell University

Ithaca NY 14853, U.S.A.

Proceedings of the 2001 Conference on Advanced Research in VLSI

Abstract

We discuss number representations for width-adaptive data word architectures. The number
representations are self-delimiting, permitting asynchronous implementations with dynamic width
adaptivity and reduced energy-complexity. We describe how these architectures can be realized
with asynchronous VLSI techniques, and show that they exhibit better energy and throughput char-
acteristics than traditional asynchronous implementations. We study some of the tradeoffs in the
design of this class of architectures.

�� ������	
����

We present width-adaptive data word architectures (WAD) as a new datapath design technique
for constructing precision-adaptive energy-efficient datapath circuits.

Earlier studies of arithmetic have been either algorithmic (cf. [5]) or have been from the per-
spective of synchronous circuit design (cf. [4, 17]). Clearly almost any synchronous algorithm
can be trivially adapted for asynchronous design. However, asynchronous design gives us greater
freedom in choosing our algorithms and therefore the ability to explore a larger design space. In
this paper we present one such exploration into the design of number representations suitable for
asynchronous VLSI implementations.

Existing work in the design of adders and incrementers has demonstrated the advantage of
average-case performance exhibited by asynchronous circuits. It is well known that binary adders
have an average carry chain length that is logarithmic in the number of bits in the representation
(cf. [2]). The obvious synchronous implementation of an adder obtained by cascading full adders
in series cannot take advantage of this fact, since it is possible that the carry chain may be propor-
tional to the number of bits. However, the corresponding asynchronous implementation (cf. [14])
can and does take advantage of this fact. Carry lookahead adders have worst case delays that are
logarithmic in the number of bits. It is known that this is a lower bound on the worst-case delay for
binary addition [20]. Using a combination of ripple-carry and carry lookahead techniques, asyn-
chronous adders can be designed with sublogarithmic average-case latency [11]. In a similar way,
a ripple-carry clocked incrementer might have to wait for the carry chain to propagate through all
the bits of the incrementer; an asynchronous implementation takes, on average, constant time to
complete the increment operation.

In general, algorithms that are not amenable to a decomposition into “balanced” computation
stages can have poor performance characteristics in synchronous implementations since they would

affect global performance; an asynchronous implementation only pays a local penalty in perfor-
mance when the circuit is used, one that may be justified by the resulting savings in area or energy,
or by other improvements resulting from the algorithm.

In this paper we discuss new number representations that allow the design of a new class of asyn-
chronous datapath circuits that exploit data-dependent behavior beyond the current state-of-the-art.
The result is a datapath architecture that adapts the amount of energy it uses for computation in a
data-dependent manner. Section 2 presents the new adaptive number representation and discusses
design choices as well as possible asynchronous representations. Section 3 presents basic data-
path circuits for aligned datapath structures. Section 4 presents datapath circuits suitable for a
finely pipelined implementation. Section 5 discusses additional implementation options. Section 6
presents our simulation results, both from architectural simulations as well as circuit simulations.
Section 7 presents related work, and we summarize our results in Section 8.

�� ������������� �	���� ��������������

In this section we introduce the concept of width-adaptive numbers (WAD numbers), and discuss
various representations of such numbers in the context of an asynchronous VLSI implementation.

Consider the simple numerical operation “���.” Given a binary representation with 64 bits, com-
puting this operation utilizes the same hardware resources as executing “��������� � ������	�,”
even through computing “� � �” seems intuitively easier. Both computations also cause all the
bit-slices of the datapath to be used for producing the result, thereby resulting in wasted energy
in the case of the simpler operation of “� � �.” What is missing in the underlying number repre-
sentation is information about the number of significant digits in the representation. We introduce
width-adaptive number representations as the solution to this problem.

2.1: Number Representation

A width-adaptive binary number representation is one where numbers are represented by the
vector a
 ����� � � � �������� , where each digit is a member of the set ��� �� �� ��, and at least
one digit is in the set ��� ��. The numerical value specified by the vector ����� � � � ��������
is defined to be the same as the value specified by the binary radix complement representation
b
 ����� � � � �������� defined by

��

��
�
�� ��
 � or ��
 �
� ��
 �
� ��
 �

In addition, we impose an alignment condition, namely that �� � ��� �� � ��
 ��, for all � � �.
Notice that the WAD representation is redundant, in that a particular number can be represented in
multiple ways. We say the width of the WAD number is � � argmin���� � ��� ���.

As an example, the 3-digit representation for ����� could be ������ , ������ , or ������ . Because
we enforce the alignment condition, we can unambiguously rewrite the third case as �����—the
compressed representation for the number—because the alignment condition specifies the rest of
the digits. This makes this representation have variable width, since knowing a particular digit is �
or � uniquely specifies the digits that have higher significance. For example, ����� would represent
����� independent of the number of digits used by the WAD representation.

The representation shown above needs two bits to represent a single digit, since there are four
possible alternatives for each digit position. This might be considered wasteful in the number of
bits necessary to represent WAD numbers. This can be addressed in two ways:

� by constructing WAD numbers with a higher radix;

� by only permitting digits in fixed positions in the number representation to be of the form � or
�. These positions could be uniformly or non-uniformly distributed throughout the number.

We adopt the latter approach when designing various circuits in this paper, since it simplifies the
description of the resulting circuits. The circuits can be easily generalized to handle WAD numbers
of higher radix [8].

The purpose of using WAD number representations is to improve performance and reduce the en-
ergy per operation when operations are being performed on small numbers. Asynchronous VLSI is
a natural choice for the implementation of such numbers, because asynchronous design techniques
can take advantage of average-case performance. A naı̈ve clocked WAD datapath would have to
wait for the worst-case delay in a WAD computation, and this would likely slow down the clock
rate unnecessarily. A WAD number has data-dependent width, and asynchronous implementations
can exploit this data-dependent representation to improve performance while reducing the average
energy per operation.

2.2: Hybrid and Hierarchical Representations

There are several other hybrid WAD number representations possible. For instance, one might
only use a WAD representation for part of the number, or for the part of a number where one
expects a run of zeros or ones to occur. Another possibility is that a number could be represented
using multiple WAD numbers. For example, a 32-bit number could be represented by 8 4-bit
WAD numbers, or by 2 16-bit WAD numbers, or by 4 8-bit WAD numbers, etc. In addition, these
individual WAD numbers could have differing radices. For example, a 4-bit radix 16 WAD number
would use � and � to indicate the presence of all zeros or all ones. If we use 8 of these numbers
to represent a 32-bit number, then the representation has the property that it “compresses” runs of
zeros and ones of length 4 if the runs are aligned with the WAD number boundaries. The rest of
this paper focuses on the basic implementation techniques for binary WAD representations. Some
of the alternatives we have mentioned in this section are discussed in greater detail in [8].

Another possible number representation is one that is hierarchical. A particular number is broken
down into blocks, and each block may be all zeros, all ones, or some other bit pattern. (This is
similar to the case when we use numbers of higher radix.) The information about the block itself
can be encoded using either a normal or an adaptive number representation. When using a normal
number representation, the extra information associated with each block specifies whether the block
is all zeros, all ones, or a mixture of zeros and ones. When using an adaptive representation, we
would also encode whether the other blocks that contain digits that are of higher significance contain

WAD block

WWW W

WAD digit
binary digit

 16-bit WAD number, � � �, � � �

Figure 1. Width-adaptive number

128-b
it d

atap
ath

sen
d

er

receiver

sen
d

er

receiver

sen
d

er

receiver

8-bits per WAD block

Number: ��� � ���Number: ���� ��
��
� �

���Number: ���� ��
��
� �

��

Figure 2. Transmitting numbers in a WAD datapath. Unshaded regions/dotted re-
gions of the datapath do not have any switching activity.

all zeros or all ones as well. This can be repeated to achieve a hierarchical WAD representation.
The discussion of these alternative representations and their design tradeoffs can be found in [8].

2.3: Asynchronous Encoding for Width-Adaptive Numbers

Codes that permit the receiver to detect when valid data is being transmitted independent of the
delays in wires are said to be delay-insensitive (DI) codes (cf. [18]). Asynchronous circuits that are
correct under the speed-independent, delay-insensitive, or quasi-delay-insensitive (QDI) model use
DI codes for data communication between computation blocks. Specific datapath design techniques
for QDI circuit design that use DI codes for communication and computation are discussed by
Martin [14].

The most commonly used DI code is the one-hot code that uses � wires to represent � different
numbers. Initially, all � wires are �. Data value � is transmitted by setting the �th wire to �. The
code returns to the initial state before the next data value is transmitted. One-hot codes for �
 �
are known as dual-rail codes, and those for �
 	 are known as quad-rail codes. These two codes
are commonly used for data encoding.

In traditional number representations, binary digits are typically encoded using dual-rail codes.
Following this approach, a single radix-� WAD digit can be represented using a quad-rail code,
since the digit can take on 	 different values. To reduce the number of wires needed to encode
WAD numbers, we use one WAD digit for every ��� �� binary digits; we refer to this combination
of a WAD digit and ��� �� binary digits as a WAD block of size �. Each such block uses ���� ��
rails to represent a WAD number, and a single WAD block is transmitted using a standard DI code
consisting of ���� �� wires as outlined above. In what follows, we assume that the 	 bit datapath
is divided into
 WAD blocks of size � (and therefore 	

�). Figure 1 pictorally depicts a
16-bit WAD number with �
 	.

Transmitting data in an 	 -bit WAD datapath is significantly different from transmitting data
in a traditional datapath. If a particular WAD block has a � or � as its most significant digit,
then we do not transmit any WAD blocks that would specify bit positions more significant that
the block containing the � or �. For this reason, we refer to � and � as delimiters of the WAD
representation, and WAD block containing them is called a delimiting block. Figure 2 shows an
example of transmitting two different WAD numbers using the same datapath, showing how part of
the datapath not required for transmitting a digit exhibits no switching activity.

If a WAD number has � significant digits, then we only use ������ of the WAD datapath to
communicate the number. The remaining �� � ������
� fraction of the WAD datapath does
not exhibit any switching activity. This means that small numbers can be communicated with
much lower energy than larger numbers. What is unique about this datapath structure is that the

representation adapts to the number of significant digits required without any software intervention,
and the full datapath is available for 	 -bit operations if necessary, as illustrated in Figure 2.

�� ������� ��� �������� ���	
�	��

An aligned datapath structure is one where operations on adjacent bits in the datapath are per-
formed at about the same time. Examples of aligned datapaths include the datapath for the first
asynchronous microprocessor [15] as well as the MiniMIPS processor [16]. In this section we
describe how aligned WAD datapaths are constructed. Almost all modern processors use aligned
datapaths. We use CHP (communicating hardware processes) and handshaking expansions (re-
stricted CHP) to describe the circuits in this paper. A brief description of the notation is provided
in the appendix.

3.1: Standard Communication Cells

A standard technique applied when designing asynchronous circuits is to separate control from
data. For instance, a one-place FIFO

�� �� ���� �

would be replaced with one control process and two datapath processes, as shown below:

�� ����� � 	 �� �� � �� � 	 �� �� � ��� �

This transformation is known as control-data decomposition, and was extensively used in the design
of the first asynchronous microprocessor [15]. We show how standard datapath processes of the
form ���� � ��� (receivers) and ���� � ���� (senders) can be designed for WAD datapaths.

WAD Aligned Sender Process. Processes of the type ��� � � ��� are designed by decomposing
them into a number of concurrent cells, each capable of handling one bit of data along with a
completion tree to combine individual acknowledge signals into a single acknowledge for the �
channel [14]. We begin by providing the compilation of a cell that is capable of handling one WAD
block following Martin’s synthesis procedure [13].

The cell has � bits of state, stored in dual-rail state variables ���� � ���� for �
 � �. The dual-
rail state bit ���� � �� � determines if the cell is a delimiter in the datapath (the cell is a delimiter if
��� is true).

The control input to a single cell is received on channel � encoded using two wires �	
 � 	��. The
WAD block of size � is communicated over a channel � using a single acknowledge �
 and data
rails that are encoded as follows:

� The first � � � bits named are encoded using a dual-rail code (a quad-rail encoding is also
possible for these bits; we omit this minor change in the interests of clarity). The code for
data bit � is named ���� � ����.

� If the data block being transmitted over channel � is not a delimiter, then ������� ������ en-
codes the data bit ������� ������; otherwise, ���� � �� � encodes the data bit ������� ������. In
other words, ������� ������ ��� � �� � form a quad-rail code that encodes the most significant
bit of the WAD block.

To summarize, channel� uses ������ wires for data and a single acknowledge ��. The handshak-
ing expansion for a sender, using a passive port � and an active port � is given by:

 co
n

tr
o

l

��

��

��

Figure 3. Aligned WAD sender showing circuit structure. The boxes correspond to
the individual WAD blocks, and the arrows correspond to the ������ wires per cell
for data communication.

���	
�� �	
 � � � � ���� �� ��������� �� �������
���� �� ������ �� ����������� �� �� ��
���� �� ������ �� ������������� �� �������
��
��
�� 	��� �	
�� �	
 � � ����� ������ ����� �� �� ��
�� 	��
�

The reader is referred to [8] for the circuit implementation of this handshaking expansion.
A WAD sender contains
 processes of the form described above. Since the single signal �
 for

the data communication acknowledges the transmitted data for every block, the full 	 -bit datapath
compilation is performed by simply sharing signals 	
 , �
 , and 	� across each sender process.
Figure 3 shows the compilation of an 	 -bit sender. Each blue square denotes one of the sender
processes.

WAD Aligned Receiver Process. The receiver process ��� � ��� is slightly more complex.
Intuitively, the problem arises because overwriting a WAD variable changes the number of datapath
processes that hold a valid data value. Once the operation is complete, all WAD blocks beyond
the delimiter must have their local state variables all set to false for the sender process to function
correctly. We split the write operation to a WAD word into two distinct phases: the reset phase
where all the state bits are set to false, and the write phase where the WAD word is read in from
channel � .

For the reset phase, we would like to ensure that we do not exercise the datapath cells that lie
beyond the delimiter cell. Therefore, a handshaking expansion of the form:

����
�� �	
 � � ����� ������ ����� �� �� ���� ��
�� ����

for the reset phase would not be acceptable, because the �� signal would switch in every datapath
cell. To eliminate this problem, we introduce a dual-rail acknowledge that indicates when we have
hit the delimiter cell. If the cell holds valid data but is not a delimiter, the 	�� signal is used
as the acknowledge; if the cell holds valid data and is a delimiter, the 	�� signal is used as the
acknowledge; if the cell does not hold valid data, none of the acknowledge wires are raised. The
reset phase is described by:

����
�� �	
 � � ����� ������ ���� �� ����� �������� �� �� �� ���� �� ��
�� ����� �����

The reader is referred to [8] for the circuit implementation of this handshaking expansion.
Once the block has been reset, we can proceed with reading a value from input channel � and

write the value received on � into the local state variables. The write phase is described by

reset ack

co
n

tr
o

l

���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������

write ack

do

ri

wo

ro

ci

co

Figure 4. Aligned WAD receiver showing one possible combination of reset and
write phases. The boxes correspond to the individual WAD blocks, and the arrows
correspond to the ��� � �� wires per cell for data communication.

����
�� ���� �	
 � � � � ���� �� ��������� �� �������
���� � �� �� ����������� � ����� �� �� ���
���� � ����� �� ���������� � ����� �� ��������
���� ��
�� ���� ��� � ��� � ��� � � ��� � �� �����
�

(assuming an active protocol on port �). The reader is referred to [8] for the circuit implementation
of this handshaking expansion. An interesting side-effect of separating the reset phase from the
write phase is that the write acknowledge circuitry is simplified. However, the overall circuit is
slower because we have to reset the circuit before performing the write.

We make the following observations to design the acknowledge circuit for the complete datapath.
Consider two adjacent WAD blocks, � and �� � �� (� � � holds bits that are more significant) with
acknowledge signals �	��� 	��� and ����� ���� respectively. If the acknowledge 	�� is true for block
� then block � is a delimiter, and block ����� does not participate in this particular communication
action. If 	�� is true for block �, block �� � �� participates in this communication action because
� is not a delimiting block. Therefore, acknowledges �	��� 	��� and ����� ���� can be combined to
produce a single acknowledge ����� ���� as follows:

���	�� �� ������	�� �� ���� �� ��������� �� �������
�	�� � 	�� � ��� � ����� ����� ���� �

The reader is referred to [8] for the circuit implementation of this handshaking expansion. This
transformation can be applied recursively to obtain an acknowledge pair ����� ���� for the entire
datapath. For this pair, we know that ��� can never be true because a WAD datapath contains
exactly one delimiter block. Therefore, ��� is the acknowledge for the entire reset or write phase.

There are several ways we can combine the reset and write phases into a single communication
action. The simplest way is to simply use the following handshaking expansion, that translates the
write request on input channel � into a reset request on channel � followed by a write request on
channel� :

���	
�� ���� ��
������ ��
�� 	��� �	
�� ���� ��
������ ��
�� 	���

This combination is illustrated in Figure 4. We can overlap the second half of the handshake on
both � and� by using the following handshaking expansion:

���	
�� ���� ��
������ ���� ��
�� 	��� �	
������ ��
 � �
�� 	���

The reader is referred to [8] for the circuit implementation of this handshaking expansion.

3.2: Function Computation

Function block compilation provides a canonical way to translate the computation of a function
into an asynchronous QDI implementation [14]. In this section we show how single argument and
multiple argument functions can be computed for aligned WAD datapaths.

Consider the computation of a function by the CHP process ���� ���� �� ��. The first step
in designing the production rules for this process is control data decomposition. Applying this
transformation, we obtain:

�� �� ���� �� � � � �� ���� � 	 �� �� � �� � 	 �� � � ��� �� � �

We focus on the compilation of the third process above. Following Martin [14], we use the notation
� �
 � to indicate that the data rails of channel� are set to a valid value �, and the notation� � to
indicate that the data rails of channel � are set to the neutral value (all rails false). Communication
channels are encoded using the WAD representation discussed in the previous section.

The handshaking expansion for ��� � ��� �� �� is given by:

���	
��� �
 � �� �� ��
�� 	��� �	
��� �� ��
�� 	�� �

This handshaking expansion can be broken down into two concurrent parts, as shown below:

���	
��� �
 � � ��
�� 	��� �	
��� �� ��
�� 	�� �

	 ������ ���� �
 � �� �� ���� ���� � �

where ���� �� denotes waiting for � to have a valid value, and ���� �� denotes waiting for � to
have a neutral value [14]. The first part is simply the process ��� � � ���, that we have already
compiled. We focus on processes of the form ������ ���� �
 � �� �� ���� ���� ��. Without
repeating all the arguments provided for function block compilation, we state that we can perform
the following decomposition:

� Let ��� � � � � ���� be set of subcodes of the encoding of � such that they cover the entire
code � ;

� Let the output bit �� only depend on the value of � specified by the subcode ��

Then,

������ ���� �
 � �� �� ���� ���� � � � �	 �� ������������ �
 �� ��� �� ���������� ���

where the function �� is simply the part of the function that computes output ��. This is simply the
function block transformation outlined in [14].

This general strategy applies to aligned WAD datapaths as well. The main problem with com-
puting functions using an aligned datapath is illustrated by considering a simple example where we
compute a function of two arguments.

Consider computing the logical AND of two inputs on channels � and � using the function
block strategy, where the datapath is to be constructed using an aligned, 16-bit WAD code with �=4
and
=4. If we look at bit 14 of the output, not only does its value depend on the corresponding
inputs on � and � , but it also depends on the WAD digit in WAD block 0, 1, and 2! Another way
to think about this problem is that the two inputs received on � and � might have different widths.
(Note that whether or not this particular problem occurs depends on the nature of the function being
computed.)

In general, we can solve this problem by introducing an alignment stage that ensures that the
two inputs have the same width by exploiting the redundancy in the WAD number representation.
Aligning the widths of two numbers is equivalent to padding the narrower number so that it matches

the width of the wider number. The circuit for alignment is constructed by using the following
observation: the two inputs have different widths if and only if there is a digit where one of the
two inputs is in ��� �� and the other input is in ��� ��. In this circumstance, we must widen the
narrower number. Details of this construction can be found in [8]. Once we have aligned the two
inputs, function block style computation of functions like logical AND is straightforward. The only
observation that is necessary to complete the compilation is that logical AND can be extended to �
and � as follows: � � �
 �; � � �
 �; � � �
 �.

�� �������� ��� �������� ���	
�	��

A disadvantage of the compilation for WAD blocks shown above is that the control signals are
still broadcast to the entire datapath. Therefore, while we have reduced the amount of energy
dissipated by the datapath cells, we have not reduced the contribution of the control cells to the
total energy. Simply put, we still have an��	� energy term from the capacitive load on the control
distribution wires.

The average cycle time of the WAD system designed in the previous section scales as�����	�,
This is asymptotically the same as the cycle time for the style of datapath design used for the
first asynchronous microprocessor [15]. This is because the width-adaptive completion tree still
has logarithmic depth. In practice, the completion tree delay may have smaller constant factors
because it has a data-dependent delay [8]. The energy used by the system is ��������, where ����
is the expected number of WAD blocks used by the computation (ignoring the��	� term from the
control distribution wires for the moment).

More recent developments in the design of pipelined asynchronous circuits have resulted in the
elimination of the completion tree bottleneck for wide datapaths, and ���� throughput for finely
pipelined asynchronous computations [16]. In this section we examine how WAD datapaths are
designed such that they exhibit ���� throughput. We begin with a few observations as to why this
extension is non-trivial.

The key property that makes finely pipelined QDI circuits faster is that the control distribution
is decoupled from the datapath, and the different datapath cells are not tightly synchronized. As a
result, datapath processes for a particular function that are physically adjacent to one another might
be processing different data items. For example, a finely pipelined implementation of the buffer
���� ����� uses projection to decompose the process into:

�	
 �� �� ���� ��� ��� ��

where each process operates on a fixed number of bits of � , and the different processes are not
synchronized [9]. In the general case, appropriate control distribution ensures that the datapath
operates correctly. Note that separate cells in the datapath are not synchronized with one another,
and it is this transformation that results in improved throughput.

Decoupled datapath cells can lead to the situation shown in Figure 5. In the example shown,
the WAD word 2 (shown in red) follows WAD word 1 on the communication channels. However,
because the two word lengths are different, datapath cells for a single operation may contain parts
of different words. Figure 5 shows a case where the bottom blocks of word 2 are prevented from
advancing because of word 1, but the top blocks can advance into the empty datapath cells above
word 1. When this situation is combined with pipelined completion detection [16], the control
arriving at a cell may no longer be matched with the data arriving at the cell. The problem arises
because the control distribution network needs to know which datapath cell contains the WAD data
word delimiter so that the control distribution can stop at that cell.

����������������������������������
����������������������������������
����������������������������������
����������������������������������

If the datapath
cells are not
synchronized,
then the cells
belonging to
one datapath
operation may
contain parts of
different words.

��
��
��
��

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�������
�������
�������
�������

�������
�������
�������
�������

word 1

word 2

Figure 5. The two different WAD words are shown with with a solid delimiter. The
dashed lines group together datapath cells used to implement one datapath opera-
tion, and the arrows denote communication channels.

We avoid these problems by adopting a block-skewed WAD datapath design, similar to traditional
bit-skewed datapaths. The major difference between these datapaths and traditional bit-skewed ones
is that the computation might terminate without using all
 WAD blocks (once we hit a delimiter
block). Note that using a bit-skewed approach would result in a poor clocked implementation
whenever we have to examine all the bits (for instance, doing a zero detect for a branch comparison).

We illustrate this design style by showing the block-skewed implementation of logical operations
as well as binary addition. As usual, control distribution is handled by rippling the control vertically
through the datapath. To permit the entire computation to be finely pipelined, each WAD block
uses a separate acknowledge signal, instead of a shared acknowledge signal for all 	 datapath bits.
Therefore, the number of wires needed for data communication in the block-skewed WAD datapath
is
������, as opposed to
�������� for the aligned datapath—an increase of �
� �� wires.
Note that this wiring overhead is similar to the overhead required for implementing high-throughput
asynchronous QDI circuits using pipelined completion detection [16].

In what follows, we assume the system that incorporates the block-skewed datapath structure is
locally slack elastic [10]. This assumption is necessary to permit the design of a finely pipelined
asynchronous computation using projection-based synthesis techniques [9]. This assumption is
not overly restrictive, since the assumption of local slack elasticity holds for the entire MiniMIPS
design [16]. Also, we provide the CHP construction for datapath operations when �
 �, i.e., when
each digit in the datapath is a WAD digit. The construction for � � � is straightforward [8].

4.1: Block-Skewed Logical Operations

Let ���� �� be a function that takes two bits and produces one bit. The function � represents the
logical operation to be performed for each output bit that is computed. To describe a block-skewed
implementation of this operation, we introduce function ������ � to indicate that � � ��� ��.

Consider a particular bit-position � in the datapath. There are four possible cases for this bit-
position:

� An input is pending on channels � and �;

 ������

��

������

���� ���� ���� ����

����

�� ��

Figure 6. Process connections for block-skewed logical operations.

0

0 1

(0,0)

(0,1)

(1,0)

(1,1)

(0,0)

(0,0)

1001

1

011 0

0 0 0 0

Figure 7. Block-skewed AND, showing the channels that are used.

� An input is pending on channel �;

� An input is pending on channel �;

� No inputs are pending on � or �.

The problem discussed earlier also implies that when inputs are pending on both � and �, these
two inputs might correspond to different operand pairs for the logical operation. The only datapath
digit that is guaranteed to receive an input on� and�, and also knows that those two inputs are part
of the same operand pair is the least significant digit. If we propagate the information about when
a WAD number ends “up” the datapath, then we can use this information to prevent the datapath
problem discussed previously. The information we propagate must be sufficient to determine if the
input on � and � corresponds to the current operand pair for the computation block. When we see
the delimiter digit for both � and �, we know that we need not use the rest of the datapath for the
computation.

The computation is performed by a linear array of processes, each having three inputs and two
outputs: � and � are inputs corresponding to the WAD block; � is an input that is used to com-
municate control information among adjacent processes; � is an output channel corresponding to
the WAD block; � is an output channel used to communicate control information vertically among
adjacent processes. Figure 6 pictorially depicts the channel connections among the processes.

The logical operation is performed by the following CHP process:

������ ��� �������� �� �� ��������� �� �� ��else �� �������
� ����� ��� �������� � ������� �� skip ��else �� � ���� ��� �

The input on channel � at the least significant bit position can be the pair ��� ��; in general it can
be any pair �� � �� such that ������ � � ������� holds. Figure 7 shows an example of how the
datapath computes the logical AND of two WAD numbers, with arrows indicating the channels that
are used for the computation. Note that while some channels have not been shown, those channels
might have pending inputs; they are simply ignored by the operation being performed.

From the CHP, one can immediately conclude that any pair ��� �� sent on channel � satisfies
������� � �������. Therefore, this property holds for any input on channel � (since the �
and � channels are connected to one another—see Figure 6). From the CHP program above, we
can conclude that if ������� holds, we need not know whether �
 � or �
 �; it is sufficient
to know that � � ��� ��. This observation can be used to reduce the number of wires per data item
from 4 to 3 in the representation used to encode � and � for channels � and � , or to even combine
the two into a single 1-of-5 code.

4.2: Block-Skewed Binary Addition

Binary addition can be performed using a similar structure to the one for logical operations.
Along with propagating information about whether or not a delimiter digit has been reached for
an input operand, we also propagate the carry in the usual way. When the data reaches the most

� � ��� �� ! "

0 0 0 X 0
0 0 1 0 1
0 1 0 X 1
0 1 1 X 0
1 1 0 1 0
1 1 1 X 1

� � ��� �� ! "

0 0 0 X 0
0 0 1 X 1
0 1 0 X 1
0 1 1 X 0
1 1 0 X 0
1 1 1 X 1

Delimiter Digits, non-MSB Delimiter Digits, MSB

Table 1. Addition tables for delimiter digits (“X” indicates no output).

significant digit that contains an input for either operand, we use Table 1 to determine the sum and
carry. The carry-in is, therefore, a WAD digit. The CHP for this is given below:

������ �� 	
��
������	
� �� skip
�������	
� �� �������� �� ����������� �� ����else �� ������
��� ��� ��� �� 	
��
�������� � ������� �� �������� ��� �� 	
�� �� � ���� �� ����else �� skip�
��else �� � ���� �� 	������ �� 	
���
��

When ������� � ������� holds, the sum and carry functions correspond to the usual sum
and carry-out functions used for binary addition; the underscores on the digits can be ignored for
purposes of computation. When ������� � ������� holds, then Table 1 determines the sum and
carry-out.

MSB Circuit. The circuit at the most significant digit in the entire datapath has to be modified.
Since the two WAD inputs must have reached their delimiter digit when this process is used, we
can assert that ������� � ������� holds immediately before the � ��� ��� �� 	
� action. Table 1
shows how the addition table must be modified to preserve the property that the WAD number ends
in a delimiter digit. The CHP can be simplified accordingly.

The adder can be modified to perform a subtraction by taking the two’s complement of one of the
inputs. This can be done by using a carry-in of 1 and by complementing all the bits in the usual way.
Note that the complement of � is �, and the complement of � is �; therefore, the WAD representation
does not introduce additional complications when performing the complement operation.

4.3: Block-Skewed Width Alignment

Both logical operations and addition have a similar structure. This similarity is a result of the
part of the computation that ensures the two inputs have the same width. If we need to perform
this alignment by itself (normally it should be folded into the function computation as done in the
previous two sections), it can be done by the following CHP process:

������ ��� �������� �� ����������� �� ����else �� �������
���������� �������� � ������� �� skip��else �� � ���� ��� �

The outputs on the channels �� and �� in the datapath contain copies of the inputs � and �
respectively. However, the copies of � and � are guaranteed to have the same width. This circuit

could be used on the output of a register file to ensure that the two operands being fetched for a
particular function unit have the same width.

4.4: Block-Skewed Comparator

Given two WAD numbers, the comparison � � will take time that is proportional to the
number with the largest width. Comparing �
 � can be made faster on average, because we can
determine � �
 � as soon as we reach a digit where the numbers � and � differ. If we know that
the representation for a particular number � uses the most compact representation possible (for
instance, the number is not represented as ��� when it could be represented as ��), then a compare
to zero is a constant time operation since all we need to know is whether the least significant digit
is �. We have used this technique to design a number of other datapath elements, and the interested
reader is referred to [8] for details.

!� "����
� ��������������� ��� "����
����

The WAD representation is redundant, permitting a number to be represented in multiple ways.
This simplifies the implementation of various datapath operations, but the result of the operation
might not be represented in the most compact manner possible. For example, consider the operation
���� � ����. The result of this operation would be ����. (The reader is invited to check this
by examining Table 1.) While this is correct, we would prefer to have the output be �� since
that would reduce the number of datapath digits necessary to represent the number. When the
representation has the property that it uses the minimum number of datapath digits possible, we say
the representation is fully compacted.

Full compaction circuitry introduces throughput overhead, because we may have to check all the
transmitted WAD blocks before we can determine the correct fully compacted representation. If
the number representation is aligned, it is possible to design a full-compaction circuit with average-
case latency ������� #��, where ����� #� is the expected value of the logarithm of the number of
digits in the WAD input [8]. When using a pipelined, block-skewed datapath the input digits arrive
skewed in time and this imposes an additional overhead in full compaction.

Instead, we can gradually compact the representation as the number is transmitted through vari-
ous routing circuits (splits, merges, crossbars, etc) that are usually present in any architecture. We
can design a one-step compaction circuit that attempts to compress the representation by one block
if possible. For example, the one-step compaction circuit would take ���� and compact it to ���.
The advantage of using one-step compaction is that it only introduces a constant latency overhead,
and it does not asymptotically reduce the throughput of the system.

The design of the various compaction circuits along with an analysis of their behavior can be
found in [8]. Full-compaction would be useful if we keep re-using a particular piece of data over
and over again, because the number of digits in its WAD representation may grow unchecked. If
we expect that re-use is low, then the faster one-step compaction step might suffice.

#� ���	������ ���	���

In this section we present some of our results from both circuit and architectural simulation of
WAD datapaths, as well as some analysis of the throughput and energy characteristics of WAD
datapaths with more traditional datapath design approaches. The architectural simulations are used

run m88ksim gcc compress li ijpeg perl
Datapath: 1�32-bit WAD number

1/n 11.3 12.2 16.9 14.2 13.2 13.3
1/o 9.3 11.1 14.1 13.6 11.5 12.1
1/f 9.1 10.6 11.5 13.3 11.2 11.5

2/n 13.4 13.6 18.1 15.2 14.9 14.6
2/o 9.9 11.6 14.6 14.1 12.1 12.6
2/f 9.6 11.2 12.1 13.8 11.8 12.0

4/n 16.6 16.2 20.4 17.3 17.8 17.0
4/o 11.2 12.8 15.9 15.1 13.5 13.7
4/f 11.0 12.3 13.3 14.8 13.3 13.1

8/n 21.4 21.1 24.9 21.5 22.4 21.2
8/o 13.7 15.1 18.2 17.3 16.3 15.9
8/f 13.6 14.7 15.6 16.9 16.1 15.4

Datapath: 4�8-bit WAD number

1/f 9.5 10.9 11.9 13.8 11.7 11.8
2/f 13.1 14.5 14.8 15.7 14.5 14.8

Datapath: 4�8-bit radix-256 WAD number

8/f 11.2 13.0 13.6 14.7 13.4 13.3

Table 2. Average operand width for a 32-bit MIPS processor.

to determine typical widths of numbers used by applications. The results validate the qualitative
discussions we provided earlier.

6.1: Architectural Simulation

We used chpsim, a compiled asynchronous CHP simulator that generates an estimate of both
energy and cycle time for an asynchronous computation. We used the CHP for the MiniMIPS
asynchronous processor [16], and determined the WAD block width used by each 32-bit integer
function unit for a number of different benchmarks from the SPEC95 benchmark suite. The graphs
in Figure 8 show the cumulative distribution function of the widths of the data transferred to and
from the integer function units for an architecture similar to the MiniMIPS processor. Points in
Figure 8 that are closer to the top left corner of the graph correspond to better cases for WAD
designs, because that means that more operands had smaller operand widths. Each graph shows
three distribution functions: “no compaction” corresponds to the case when we do not use any
compaction circuitry on the output of function units; “full compaction” corresponds to the case
when we use the relatively slow full-compaction circuitry; “one-step compaction” corresponds to
the case when we use the fast, one-step compaction strategy. We also gathered this information for
block sizes �, �, 	, and �. The results show that we need not implement full compaction circuitry
in practice, as register re-use does not happen frequently enough to cause operand widths to grow
significantly.

Table 2 summarizes the operand width averages for 6 different benchmarks from the SPEC95
integer benchmark suite. The distribution plots for these benchmarks can be found in [8]. The rows
are labelled by block width followed by “f” for full compaction, “n” for no compaction, and “o” for

Operand Widths

Average: 12.3

Average: 12.8

Average: 16.2

SPEC: 126.gcc. Blocksize: 1

Average: 11.1

full compaction
Average: 10.6

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 F

u
n

ct
io

n
 (

%
) SPEC: 126.gcc. Blocksize: 4

no compaction

Average: 12.2

simple compaction

no compaction

full compaction

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 F

u
n

ct
io

n
 (

%
)

100

100

80

60

40

20

0
4 8 12 16 20 24 28 32

Operand Widths

80

60

40

20

0
4 8 12 16 20 24 28 32

simple compaction

Figure 8. Distribution of operand widths for the SPEC95 benchmark gcc.

one-step compaction. Many other hybrid datapath design choices were also simulated for average
operand width. Three of these design points are also shown in Table 2. The �/f 	��� ��! datapath
corresponds to a datapath constructed using 4 8-bit WAD numbers, where the WAD numbers use
full compaction and a block size of � (�
 �� �). The last entry in the table corresponds to a
datapath containing 4 radix-256 WAD numbers. In this representation, when an individual byte is
all zeros or all ones, the byte is fully compacted (width 1).

The table shows that one-step compaction is a reasonable design point, especially when the block
size of the WAD number increases. Also, observe that the difference between the average operand
widths for different block sizes is close to half the block size, as might be expected. Using multiple
WAD numbers does not always improve the operand width, because the savings resulting from
compressing runs of �’s and �’s in the middle of an operand are offset by the overhead of having
to always transmit information for each WAD number. The table also shows that using numbers
of higher radix might be advantageous even though such representations typically require more
complex VLSI implementations.

The table shows that, on average, a WAD representation using one-step compaction would acti-
vate between 29% and 57% of the datapath, depending on the application and type of WAD repre-
sentation used. This is a significant improvement over a traditional datapath where each datapath

cell is activated for every operation.

6.2: Circuit Simulation

The physical design of the circuits we have described in this paper was done using the magic
VLSI layout editor. The extracted layout was simulated with aspice, a mixed analog-digital
simulator. All reported results are for quasi delay-insensitive circuits. We compare WAD circuits
to normal bit-skewed designs as well as the finely pipelined aligned datapath designs used by the
MiniMIPS asynchronous processor [16].

WAD datapaths have different energy and throughput characteristics compared to traditional dat-
apath designs. We compare the circuits on �$�, where � is the energy per operation and $ is the
cycle time of the circuit. We use this metric because it is independent of voltage to first order, and
therefore can be used to combine both energy and throughput into a single metric [16]. We designed
datapath circuits using three design styles: WAD, traditional bit-skewed, and finely pipelined cir-
cuits like those used by the MiniMIPS. In each case we designed the circuits to minimize �$� in
order to make a fair comparison. The spice results show that WAD datapath circuits have �$� that
is between 40% and 70% the �$� of competing designs. This means that, e.g., for a fixed $, the
energy of a WAD implementation can be as low as 40% of the energy of other circuit styles. Our
results did not model RC delays on wires; block-skewed WAD datapath circuits are superior to their
traditional (both pipelined and unpipelined) counterparts in this regard, because they do not have
vertical control distribution wires that traverse the height of the datapath.

To summarize, our preliminary circuit and architectural simulation results show that operand-
based adaptivity using a WAD representation more than compensates for any circuit overhead in-
troduced by adopting a WAD design style.

$� ������� ���%

It is easy to envison a datapath that can be partitioned into chunks having narrower width. Exist-
ing architectures that have such support include the Intel MMX extensions, Sun’s VIS extensions,
MicroUnity’s MediaProcessor, Hewlett-Packard’s MAX-2, and the PowerPC Altivec extensions.
What differentiates a WAD datapath is the use of dynamic partitioning while the computation is
being performed. There is no software support necessary for exploiting a WAD datapath, and the
amount of datapath resources used by a computation is dynamically determined by the number of
significant digits necessary to perform the computation. Brooks and Martonosi present a technique
for 64-bit clocked processors that uses clock gating based on the value of operands to “turn off” the
top 48 bits of the datapath [1]. Their approach, however, uses a traditional number representation
and has several drawbacks. They use a zero detect circuit every time the integer unit is used. This
circuit consumes ��	� energy and takes �����	� time (where 	 is the number of bits checked
by the zero detect). They have to widen the result MUX for the integer function unit. The im-
pact of introducing operand-based clock gating on the cycle time of the clocked processor is not
evaluated—their proposal requires a 48-bit zero-detect to complete before the top 48 bits of the
integer unit can be clocked. The impact of this structure on clock skew and jitter is also not eval-
uated. Spice simulations we have done show that such a comparator would take about 25% of the
cycle time of an aggressively designed clocked processor. This zero-detect delay would increase for
wider datapath structures, exacerbating the problem. As opposed to this, the number representations
we have introduced naturally carry width information, and using an asynchronous implementation

automatically gives us fine-grained operand-based power management. Our representation is sym-
metric and provides lower power consumption for small positive as well as negative numbers, and
scales to arbitrary width datapaths without modification.

Sign-magnitude numbers have been used for low power implementations for both clocked as
well as bundled-data asynchronous circuits. This representation is attractive because the high order
bits stay zero when small positive or negative numbers are used. However, when a dual-rail repre-
sentation is used for performance reasons, the sign-magnitude representation does not save power.
As opposed to this, WAD datapaths do not activate high order datapath cells when small numbers
are used.

&� �	����'

In this paper we introduced a new class of number representations for datapath design. The rep-
resentations use a variable number of digits to represent integers based on the number of significant
digits used by the computation. These representations are suitable for asynchronous implementa-
tion methods, and we provided several candidate implementations for both the finely pipelined and
unpipelined datapath design points. We reported preliminary architectural and circuit simulations
that demonstrate that WAD designs can provide a significant reduction in energy consumption for
typical operand widths in a number of applications.

�
%��(���������

This work was supported in part by the Multidisciplinary University Research Initiative (MURI)
under the Office of Naval Research Contract N00014-00-1-0564, and in part by a National Science
Foundation CAREER award under contract CCR 9984299.

�� ��������

The CHP notation we use is based on Hoare’s CSP [3]. A full description CHP and its semantics
can be found in [13]. What follows is a short and informal description.

� Assignment: � �
 �. This statement means “assign the value of � to � .” We also write ��
for � �
 ���� , and �� for � �
 ����� .

� Selection: �!� � "� �� ��� ��!� � "��, where !
 ’s are boolean expressions (guards) and
"
 ’s are program parts. The execution of this command corresponds to waiting until one of
the guards is !% �, and then executing one of the statements with a !% � guard. The notation
�!� is short-hand for �! � �
#�, and denotes waiting for the predicate & to become true.
If the guards are not mutually exclusive, we use the vertical bar “�” instead of “��.”

� Repetition: ��!� � "� �� ��� ��!� � "��. The execution of this command corresponds
to choosing one of the !% � guards and executing the corresponding statement, repeating this
until all guards evaluate to ����� . The notation ��"� is short-hand for ������ � "�.

� Send: � �� means send the value of � over channel � .

� Receive: � � means receive a value over channel � and store it in variable � .

� Probe: The boolean expression � is ���� iff a communication over channel � can complete
without suspending.

� Sequential Composition: " �$

� Parallel Composition: " 	 $ or " �$.

� Simultaneous Composition: " � $ both " and $ are communication actions and they com-
plete simultaneously.

��)����
��

[1] David Brooks and Margaret Martonosi. Dynamically Exploiting Narrow Width Operands to Improve Processor
Power and Performance. HPCA-5, January, 1999.

[2] A.W. Burks, H.H. Goldstein, and John von Neumann. Preliminary discussion of the logical design of an electronic
computing instrument. Institute for Advanced Study, Princeton, N.J. June 1946. Also available in A.H. Taub, Ed.,
Collected works of John von Neumann, 5:34–79, Macmillan, New York 1963.

[3] C.A.R. Hoare. Communicating Sequential Processes. Communications of the ACM, 21(8):666–677, 1978

[4] Kai Hwang. Computer Arithmetic. John Wiley & Sons, 1979.

[5] Donald Ervin Knuth. Seminumerical Algorithms. The Art of Computer Programming, Vol. 2. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1981.

[6] Andrew Matthew Lines. Pipelined Asynchronous Circuits. M.S. thesis, Caltech Computer Science, 1995.

[7] Rajit Manohar. The Impact of Asynchrony on Computer Architecture. Ph.D. thesis, Caltech Computer Science
Technical Report CS-TR-98-12, July 1998.

[8] Rajit Manohar. The Design and Implementation of Width-Adaptive Datapaths. Cornell Computer Systems Labora-
tory Technical Report CSL-TR-2000-1005, September 2000.

[9] Rajit Manohar, Tak-Kwan Lee, and Alain J. Martin. Projection: A Synthesis Technique for Concurrent Systems.
Proceedings of the Fifth International Symposium on Advanced Research in Asynchronous Circuits and Systems,
April 1999.

[10] Rajit Manohar and Alain J. Martin. Slack Elasticity in Concurrent Computing. Proceedings of the Fourth Inter-
national Conference on the Mathematics of Program Construction, Lecture Notes in Computer Science 1422, pp.
272–285, Springer-Verlag, June 1998.

[11] Rajit Manohar and José Tierno. Asynchronous Parallel Prefix Computation. IEEE Transactions on Computers
47(11):1244–1252, November 1998.

[12] Alain J. Martin. Formal Program Transformations for VLSI Circuit Synthesis. In E.W. Dijkstra, editor, Formal
Development of Programs and Proofs, UT Year of Programming Series, pp. 59–80, Addison Wesley, 1989.

[13] Alain J. Martin. Compiling Communicating Processes into Delay-insensitive VLSI circuits. Distributed Computing,
1(4), 1986.

[14] Alain J. Martin. Asynchronous Datapaths and the Design of an Asynchronous Adder. Formal Methods in System
Design, 1:117–137, 1992.

[15] Alain J. Martin, Steven M. Burns, Tak-Kwan Lee, Drazen Borkovic, and Pieter J. Hazewindus. The design of an
asynchronous microprocessor. In Charles L. Seitz, editor, Advanced Research in VLSI: Proceedings of the Decen-
nial Caltech Conference on VLSI, pp. 351–373, MIT Press, 1991.

[16] A.J. Martin, A. Lines, R. Manohar, M. Nyström, P. Penzes, R. Southworth, U. Cummings, and T.K. Lee. The
Design of an Asynchronous MIPS R3000 Processor. Proceedings of the 17th Conference on Advanced Research in
VLSI. Los Alamitos, Calif.: IEEE Computer Society Press, 1997.

[17] O.L. MacSorley. High-Speed Arithmetic on Binary Computers. Proceedings of the IRE, 49(1):67–91. 1961.

[18] Tom Verhoeff. Delay-insensitive codes—an overview. Distributed Computing, 3:1–8, 1988

[19] Ted Eugene Williams. Self-timed rings and their application to division. PhD Thesis. Computer Systems Labora-
tory, Stanford University, May 1991.

[20] S. Winograd. On the Time Required to Perform Addition. Journal of the Association for Computing Machinery
12(2):277-285, April 1965.

